DISTRIBUTION.
§ 104. There is a distribution of organisms in Space, and there is a distribution of organisms in Time. Looking first at their distribution in Space, we observe in it two different classes of facts. On the one hand, the plants and animals of each species have their habitats limited by external conditions: they are necessarily restricted to spaces in which their vital actions can be performed. On the other hand, the existence of certain conditions does not determine the presence of organisms that are fit for them. There are many spaces perfectly adapted for life of a high order in which only life of a much lower order is found.
While, in the inevitable restriction of organisms to environments with which their natures correspond we find a negative cause of distribution, there remains to be found that positive cause whence results the presence of organisms in some places appropriate to them and their absence from other places equally appropriate or more appropriate. Let us consider the phenomena as thus classed.
§ 105. Facts which illustrate the limiting influence of surrounding conditions are abundant, and familiar to all readers. It will be needful, however, here to cite a few typical ones of each order.
The confinement of different kinds of plants and different kinds of animals, to the media for which they are severally adapted, is the broadest fact of distribution. We have extensive groups of plants that are respectively sub-aerial and sub-aqueous; and of the sub-aqueous some are exclusively marine, while others exist only in rivers and lakes. Among animals we similarly find some classes confined to the air and others to the water; and of the water-breathers some are restricted to salt water and others to fresh water. Less conspicuous is the fact that within each of these contrasted media there are further widespread limitations. In the sea, certain organisms exist only between certain depths, and others only between other depths—the limpet and the mussel within the littoral zone, and numerous kinds at the bottom of the ocean; and on the land, there are Floras and Faunas peculiar to low regions and others peculiar to high regions. Next we have the familiar geographical limitations made by climate. There are temperatures which restrict each kind of organism between certain isothermal lines, and hygrometric states which prevent the spread of each kind of organism beyond areas having a certain humidity or a certain dryness. Besides such general limitations we find much more special limitations. Some minute vegetal forms occur only in snow. Hot springs have their peculiar Infusoria. The habitats of certain Fungi are mines or other dark places. And there are creatures unknown beyond the water contained in particular caves. After these limits to distribution imposed by physical conditions, come limits imposed by the presence or absence of other organisms. Obviously, graminivorous animals are confined within tracts which produce plants fit for them to feed on. The great carnivores cannot exist out of regions where there are creatures large enough and numerous enough to serve for prey. The needs of the sloth limit it to certain forest-covered spaces; and there can be no insectivorous bats where there are no night-flying insects. To these dependences of the relatively-superior organisms on the relatively-inferior organisms which they consume, must be added certain reciprocal dependences of the inferior on the superior. Mr. Darwin's inquiries have shown how generally the fertilization of plants is due to the agency of insects, and how certain plants, being fertilizable only by insects of certain structures, are limited to regions inhabited by insects of such structures. Conversely, the spread of organisms is often bounded by the presence of particular organisms beyond the bounds—either competing organisms or organisms directly inimical. A plant fit for some territory adjacent to its own, fails to overrun it because the territory is pre-occupied by some plant which is its superior, either in fertility or power of resisting destructive agencies; or else fails because there lives in the territory some mammal which browses on its foliage or bird which devours nearly all its seeds. Similarly, an area in which animals of a particular species might thrive, is not colonized by them because they are not fleet enough to escape some beast of prey inhabiting this area, or because the area is infested by some insect which destroys them, as the tsetse destroys the cattle in parts of Africa. Yet another more special series of limitations accompanies parasitism. There are parasitic plants that flourish only on trees of some few species, and others that have particular animals for their habitats—as the fungus which is fatal to the silk-worm, or that which so strangely grows out of a New Zealand caterpillar. Of animal-parasites various kinds lead lives involving specialities of distribution. We have kinds which use other creatures for purposes of locomotion, as the Chelonobia uses the turtle, and as a certain Actinia uses the shell inhabited by a hermit-crab. We have the parasitism in which one creature habitually accompanies another to share its prey, like the annelid which takes up its abode in a hermit-crab's shell, and snatches from the hermit-crab the morsels of food it is eating. We have again the commoner parasitism of the Epizoa—animals which attach themselves to the surfaces of other animals, and feed on their juices or on their secretions. And once more, we have the equally common parasitism of the Entozoa—creatures which live within other creatures. Besides being restricted to the bodies of the organisms it infests, each species has usually still narrower limits of distribution; in some cases the infested organisms furnish fit habitats for the parasites only in certain regions, and in other cases only when in certain constitutional states. There are more indirect modes in which the distributions of organisms affect one another. Plants of some kinds are eaten by animals only in the absence of kinds that are preferred to them; and hence the prosperity of such plants partly depends on the presence of the preferred plants. Mr. Bates has shown that some South American butterflies thrive in regions where insectivorous birds would destroy them, did they not closely resemble butterflies of another genus which are disliked by those birds. And Mr. Darwin gives cases of dependence still more remote and involved.
Such are the chief negative causes of distribution—the inorganic and organic agencies that set bounds to the spaces which organisms of each species inhabit. Fully to understand their actions we must contemplate them as working not separately but in concert. We have to regard the physical influences, varying from year to year, as now producing an extension or restriction of the habitat in this direction and now in that, and as producing secondary extensions and restrictions by their effects on other kinds of organisms. We have to regard the distribution of each species as affected not only by causes which favour multiplication of prey or of enemies within its own area, but also by causes which produce such results in neighbouring areas. We have to conceive the forces by which the limit is maintained, as including all meteorologic influences, united with the influences, direct or remote, of numerous co-existing species.
One general truth, indicated by sundry of the above illustrations, calls for special notice—the truth that all kinds of organisms intrude on one another's spheres of existence. Of the ways in which they do this the commonest is invasion of territory. That tendency which we see in the human races, to overrun and occupy one another's lands, as well as the lands inhabited by inferior creatures, is a tendency exhibited by all classes of organisms in various ways. Among them, as among mankind, there are permanent conquests, temporary occupations, and occasional raids. Every spring an inroad is made into the area which our own birds occupy, by birds from the South; and every winter the fieldfares of the North come to share the hips and haws of our hedges, and thus entail on our native birds some mortality. Besides these regularly-recurring incursions there are irregular ones; as of locusts into countries not usually visited by them, or of certain rodents which from time to time swarm into areas adjacent to their own. Every now and then an incursion ends in permanent settlement—perhaps in conquest over indigenous species. Within these few years an American water-weed has taken possession of our ponds and rivers, and to some extent supplanted native water-weeds. Of animals may be named a small kind of red ant, having habits allied to those of tropical ants, which has of late overrun many houses in London. The rat, which must have taken to infesting ships within these few centuries, furnishes a good illustration of the readiness of animals to occupy new places that are available. And the way in which vessels visiting India are cleared of the European cockroach by the kindred Blatta orientalis, shows us how these successful invasions last only until there come more powerful invaders. Animals encroach on one another's spheres of existence in further ways than by trespassing on one another's areas: they adopt one another's modes of life. There are cases in which this usurpation of habits is slight and temporary; and there are cases where it is marked and permanent. Grey crows often join gulls in picking up food between tide-marks; and gulls may occasionally be seen many miles inland, feeding in ploughed fields and on moors. Mr. Darwin has watched a fly-catcher catching fish. He says that the greater titmouse sometimes adopts the practices of the shrike, and sometimes of the nuthatch, and that some South American woodpeckers are frugivorous while others chase insects on the wing. Of habitual intrusions on the occupations of other creatures, one case is furnished by the sea-eagle, which, besides hunting the surface of the land for prey, like the rest of the hawk-tribe, often swoops down upon fish. And Mr. Darwin names a species of petrel that has taken to diving, and has a considerably modified organization. The last cases introduce a still more remarkable class of facts of kindred meaning. This intrusion of organisms on one another's modes of life goes to the extent of intruding on one another's media. The great mass of flowering plants are terrestrial, and (aside from other needs) are required to be so by their process of fructification. But there are some which live in the water, and protrude their flowers above the surface. Nay, there is a still more striking instance. At the sea-side may be found an alga a hundred yards inland, and a phÆnogam rooted in salt water. Among animals these interchanges of media are numerous. Nearly all coleopterous insects are terrestrial; but the water-beetle, which like the rest of its order is an air-breather, has aquatic habits. Water appears to be an extremely unfit medium for a fly; and yet Mr. [now Sir John] Lubbock has discovered more than one species of fly living beneath the surface of the water and coming up occasionally for air. Birds, as a class, are specially fitted for an aerial existence; but certain tribes of them have taken to an aquatic existence—swimming on the surface of the water and making continual incursions beneath it, and some kinds have wholly lost the power of flight. Among mammals, too, which have limbs and lungs implying an organization for terrestrial life, may be named kinds living more or less in the water and are more or less adapted to it. We have water-rats and otters which unite the two kinds of life, and show but little modification; hippopotami passing the greater part of their time in the water, and somewhat more fitted to it; seals living almost exclusively in the sea, and having the mammalian form greatly obscured; whales wholly confined to the sea, and having so little the aspect of mammals as to be mistaken for fish. Conversely, sundry inhabitants of the water make excursions on the land. Eels migrate at night from one pool to another. There are fish with specially-modified gills and fin-rays serving as stilts, which, when the rivers they inhabit are partially dried-up, travel in search of better quarters. And while some kinds of crabs do not make land-excursions beyond high-water mark, other kinds pursue lives almost wholly terrestrial.
Guided by these two classes of facts, we must regard the bounds to each species' sphere of existence as determined by the balancing of two antagonist sets of forces. The tendency which every species has to intrude on other areas, other modes of life, and other media, is restrained by the direct and indirect resistance of conditions, organic and inorganic. And these expansive and repressive energies, varying continually in their respective intensities, rhythmically equilibrate each other—maintain a limit that perpetually oscillates from side to side of a certain mean.
§ 106. As implied at the outset, the character of a region, when unfavourable to any species, sufficiently accounts for the absence of this species; and thus its absence is not inconsistent with the hypothesis that each species was originally placed in the regions most favourable to it. But the absence of a species from regions that are favourable to it cannot be thus accounted for. Were plants and animals localized wholly with reference to the fitness of their constitutions to surrounding conditions, we might expect Floras to be similar, and Faunas to be similar, where the conditions are similar; and we might expect dissimilarities among Floras and among Faunas, proportionate to the dissimilarities of their conditions. But we do not find such anticipations verified.
Mr. Darwin says that "in the Southern hemisphere, if we compare large tracts of land in Australia, South Africa, and western South America, between latitudes 25° and 35°, we shall find parts extremely similar in all their conditions, yet it would not be possible to point out three faunas and floras more utterly dissimilar. Or again we may compare the productions of South America south of lat. 35° with those north of 25°, which consequently inhabit a considerably different climate, and they will be found incomparably more closely related to each other, than they are to the productions of Australia or Africa under nearly the same climate." Still more striking are the contrasts which Mr. Darwin points out between adjacent areas that are totally cut off from each other. "No two marine faunas are more distinct, with hardly a fish, shell, or crab in common, than those of the eastern and western shores of South and Central America; yet these great faunas are separated only by the narrow, but impassable, isthmus of Panama." On opposite sides of high mountain-chains, also, there are marked differences in the organic forms—differences not so marked as where the barriers are absolutely impassable, but much more marked than are necessitated by unlikenesses of physical conditions.
Not less suggestive is the converse fact that wide geographical areas which offer decided geologic and meteorologic contrasts, are peopled by nearly-allied groups of organisms, if there are no barriers to migration. "The naturalist in travelling, for instance, from north to south never fails to be struck by the manner in which successive groups of beings, specifically distinct, yet clearly related, replace each other. He hears from closely allied, yet distinct kinds of birds, notes nearly similar, and sees their nests similarly constructed, but not quite alike, with eggs coloured in nearly the same manner. The plains near the Straits of Magellan are inhabited by one species of Rhea (American Ostrich), and northward the plains of La Plata by another species of the same genus; and not by a true ostrich or emu, like those found in Africa and Australia under the same latitude. On these same plains of La Plata, we see the agouti and bizcacha, animals having nearly the same habits as our hares and rabbits and belonging to the same order of Rodents, but they plainly display an American type of structure. We ascend the lofty peaks of the Cordillera and we find an alpine species of bizcacha; we look to the waters, and we do not find the beaver or musk-rat, but the coypu and capybara, rodents of the American type. Innumerable other instances could be given. If we look to the islands off the American shore, however much they may differ in geological structure, the inhabitants, though they may be all peculiar species, are essentially American."
What is the generalization implied by these two groups of facts? On the one hand, we have similarly-conditioned, and sometimes nearly-adjacent, areas, occupied by quite different Faunas. On the one hand, we have areas remote from one another in latitude, and contrasted in soil as well as climate, occupied by closely-allied Faunas. Clearly then, as like organisms are not universally, or even generally, found in like habitats, nor very unlike organisms in very unlike habitats, there is no manifest pre-determined adaptation of the organisms to the habitats. The organisms do no occur in such and such places solely because they are either specially fit for those places, or more fit for them than all other organisms.
The induction under which these facts come, and which unites them with various other facts, is a totally-different one. When we see that the similar areas peopled by dissimilar forms, are those between which there are impassable barriers; while the dissimilar areas peopled by similar forms, are those between which there are no such barriers; we are at once reminded of the general truth exemplified in the last section—the truth that each species of organism tends ever to expand its sphere of existence—to intrude on other areas, other modes of life, other media. And we are shown that through these perpetually-recurring attempts to thrust itself into every accessible habitat, each species spreads until it reaches limits which are for the time insurmountable.
§ 107. We pass now to the distribution of organic forms in Time. Geological inquiry has established the truth that during a Past of immeasurable duration, plants and animals have existed on the Earth. In all countries their buried remains are found in greater or less abundance. From comparatively small areas multitudinous different types have been exhumed. Every exploration of new areas, and every closer inspection of areas already explored, brings more types to light. And beyond question, an exhaustive examination of all exposed strata, and of all strata now covered by the sea, would disclose types immensely out-numbering those at present known. Further, geologists agree that even had we before us every kind of fossil which exists, we should still have nothing like a complete index to the past inhabitants of our globe. Many sedimentary deposits have been so altered by the heat of adjacent molten matter, as greatly to obscure the organic remains contained in them. The extensive formations once called "transition," and now re-named "metamorphic," are acknowledged to be formations of sedimentary origin, from which all traces of such fossils as they probably included have been obliterated by igneous action. And the accepted conclusion is that igneous rock has everywhere resulted from the melting-up of beds of detritus originally deposited by water. How long the reactions of the Earth's molten nucleus on its cooling crust, have been thus destroying the records of Life, it is impossible to say; but there are strong reasons for believing that the records which remain bear but a small ratio to the records which have been destroyed. Thus we have but extremely imperfect data for conclusions respecting the distribution of organic forms in Time. Some few generalizations, however, may be regarded as established.
One is that the plants and animals now existing mostly differ from the plants and animals which have existed. Though there are species common to our present Fauna and to past Faunas, yet the facies of our present Fauna differs, more or less, from the facies of each past Fauna. On carrying out the comparison, we find that past Faunas differ from one another, and that the differences between them are proportionate to their degrees of remoteness from one another in Time, as measured by their relative positions in the sedimentary series. So that if we take the assemblage of organic forms living now, and compare it with the successive assemblages of organic forms which have lived in successive geologic epochs, we find that the farther we go back into the past, the greater does the unlikeness become. The number of species and genera common to the compared assemblages, becomes smaller and smaller; and the assemblages differ more and more in their general characters. Though a species of brachiopod now extant is almost identical with a species found in Silurian strata, though between the Silurian Fauna and our own there are sundry common genera of molluscs, yet it is undeniable that there is a proportion between lapse of time and divergence of organic forms.
This divergence is comparatively slow and continuous where there is continuity in the geological formations, but is sudden, and comparatively wide, wherever there occurs a great break in the succession of strata. The contrasts which thus arise, gradually or all at once, in formations that are continuous or discontinuous, are of two kinds. Faunas of different eras are distinguished partly by the absence from the one of type's present in the other, and partly by the unlikenesses between the types common to both. Such contrasts between Faunas as are due to the appearance or disappearance of types, are of secondary significance: they possibly, or probably, do not imply anything more than migrations or extinctions. The most significant contrasts are those between successive groups of organisms of the same type. And among such, as above said, the differences are, speaking generally, small and continuous where a series of conformable strata gives proof of continued existence of the type in the locality; while they are comparatively large and abrupt where the adjacent formations are shown to have been separated by long intervals.
Another general fact, referred to by Mr. Darwin as one which palÆontology has made tolerably certain, is that forms and groups of forms which have once disappeared from the Earth, do not reappear. Passing over the few species which have continued throughout the whole period geologically recorded, it may be said that each species after arising, spreading for an era, and continuing abundant for an era, eventually declines and becomes extinct; and that similarly, each genus during a longer period increases in the number of its species, and during a longer period dwindles and at last dies out. After making its exit neither species nor genus ever re-enters. The like is true even of those larger groups called orders. Four types of reptiles which were once abundant have not been found in modern formations, and do not at present exist. Though nothing less than an exhaustive examination of all strata, can prove conclusively that a type of organization when once lost is never reproduced, yet so many facts point to this inference that its truth can scarcely be doubted.
To frame a conception of the total amount and general direction of the change in organic forms during the time measured by our sedimentary series, is at present impossible—the data are insufficient. The immense contrast between the few and low forms of the earliest-known Fauna, and the many and high forms of our existing Fauna, has been commonly supposed to prove, not only great change but great progress. Nevertheless, this appearance of progress may be, and probably is, mainly illusive. Wider knowledge has shown that remains of comparatively well-organized creatures really existed in strata long supposed to be devoid of them, and that where they are absent, the nature of the strata often explains their absence, without assuming that they did not exist when these strata were formed. It is a tenable hypothesis that the successively-higher types fossilized in our successively-later deposits, indicate nothing more than successive migrations from pre-existing continents to continents that were step by step emerging from the ocean—migrations which necessarily began with the inferior orders of organisms, and included the successively-superior orders as the new lands became more accessible to them and better fitted for them.[43]
While the evidence usually supposed to prove progression is thus untrustworthy, there is trustworthy evidence that there has been, in many cases, little or no progression. Though the orders which have existed from palÆozoic and mesozoic times down to the present day, are almost universally changed, yet a comparison of ancient and modern members of these orders shows that the total amount of change is not relatively great, and that it is not manifestly towards a higher organization. Though nearly all the living forms which have prototypes in early formations differ from these prototypes specially, and in most cases generically, yet ordinal peculiarities are, in numerous cases, maintained from the earliest times geologically recorded, down to our own time; and we have no visible evidence of superiority in the existing genera of these orders. In his lecture "On the Persistent Types of Animal Life," Prof. Huxley enumerated many cases. On the authority of Dr. Hooker he stated "that there are Carboniferous plants which appear to be generically identical with some now living: that the cone of the Oolitic Araucaria is hardly distinguishable from that of an existing species; that a true Pinus appears in the Purbecks and a Juglans in the chalk." Among animals he named palÆozoic and mesozoic corals which are very like certain extant corals; genera of Silurian molluscs that answer to existing genera; insects and arachnids in the coal-formations that are not more than generically distinct from some of our own insects and arachnids. He instanced "the Devonian and Carboniferous Pleuracanthus, which differs no more from existing sharks than these do from one another;" early mesozoic reptiles "identical in the essential characters of their organization with those now living;" and Triassic mammals which did not differ "nearly so much from some of those which now live, as these differ from one another." Continuing the argument in his "Anniversary Address to the Geological Society" in 1862, Prof. Huxley gave many cases in which the changes that have taken place, are not changes towards a more specialized or higher organization—asking "in what sense are the Liassic Chelonia inferior to those which now exist? How are the Cretaceous Ichthyosauria, Plesiosauria, or Pterosauria less embryonic or more differentiated species than those of the Lias?" While, however, contending that in most instances "positive evidence fails to demonstrate any sort of progressive modification towards a less embryonic or less generalized type in a great many groups of animals of long-continued geological existence," Prof. Huxley added that there are other groups, "co-existing with them under the same conditions, in which more or less distinct indications of such a process seem to be traceable." And in illustration of this, he named that better development of the vertebrÆ which characterizes some of the more modern fishes and reptiles, when compared with ancient fishes and reptiles of the same orders; and the "regularity and evenness of the dentition of the Anoplotherium as contrasting with that of existing Artiodactyles."[44]
The facts thus summed up do not show that higher forms have not arisen in the course of geologic time, any more than the facts commonly cited prove that higher forms have arisen; nor are they regarded by Professor Huxley as showing this. Were those which have survived from palÆozoic and mesozoic days down to our own day, the only types; and did the modifications, rarely of more than generic value, which these types have undergone, give no better evidences of increased complexity than are actually given by them; then it would be inferable that there has been no appreciable advance. But there now exist, and have existed during the more recent geologic epochs, various types which are not known to have existed in earlier epochs—some of them widely unlike these persistent types and some of them nearly allied to these persistent types. As yet, we know nothing about the origins of these new types. But it is possible that causes like those which have produced generic differences in the persistent types, have, in some or many cases, produced modifications great enough to constitute ordinal differences. If structural contrasts not exceeding certain moderate limits are held to mark only generic distinctions; and if organisms displaying larger contrasts are regarded as ordinally or typically distinct; it is obvious that the persistence of a given type through a long geologic period without apparently undergoing deviations of more than generic value, by no means disproves the occurrence of far greater deviations in other cases; since the forms resulting from such far greater deviations, being regarded as typically distinct forms, will not be taken as evidence of great change in an original type. That which Prof. Huxley's argument proves, and that only which he considers it to prove, is that organisms have no innate tendencies to assume higher forms; and that "any admissible hypothesis of progressive modification, must be compatible with persistence without progression through indefinite periods."
One very significant fact must be added concerning the relation between distribution in Time and distribution in Space. I quote it from Mr. Darwin:—"Mr. Clift many years ago showed that the fossil mammals from the Australian caves were closely allied to the living marsupials of that continent. In South America a similar relationship is manifest, even to an uneducated eye, in the gigantic pieces of armour like those of the armadillo, found in several parts of La Plata; and Professor Owen has shown in the most striking manner that most of the fossil mammals, buried there in such numbers, are related to the South American types. This relationship is even more clearly seen in the wonderland collection of fossil bones made by MM. Lund and Clausen in the caves of Brazil. I was so much impressed with these facts that I strongly insisted, in 1839 and 1845, on this 'law of the succession of types,'—on 'this wonderful relationship in the same continent between the dead and the living.' Professor Owen has subsequently extended the same generalization to the Mammals of the Old World. We see the same law in this author's restorations of the extinct and gigantic birds of New Zealand. We see it also in the birds of the caves of Brazil. Mr. Woodward has shown that the same law holds good with sea-shells, but from the wide distribution of most genera of molluscs, it is not well displayed by them. Other cases could be added, as the relation between the extinct and living landshells of Madeira, and between the extinct and living brackish-water shells of the Aralo-Caspian Sea."
The general results, then, are these. Our knowledge of distribution in Time, being derived wholly from the evidence afforded by fossils, is limited to that geologic time of which some records remain—cannot extend to those remoter times the records of which have been obliterated. From these remaining records, which probably form but a small fraction of the whole, the general facts deducible are these:—That such organic types as have lived through successive epochs, have almost universally undergone modifications of specific and generic values—modifications which have commonly been great in proportion as the period has been long. That besides the types which have persisted from ancient eras down to our own era, other types have from time to time made their appearance in the ascending series of strata—types of which some are lower and some higher than the types previously recorded; but whence these new types came, and whether any of them arose by divergence from the previously-recorded types, the evidence does not yet enable us to say. That in the course of long geologic epochs nearly all species, most genera, and a few orders, have become extinct; and that a species, genus, or order, which has once disappeared from the Earth never reappears. And, lastly, that the Fauna now occupying each separate area of the Earth's surface is very nearly allied to the Fauna which existed on that area during recent geologic times.
§ 108. Omitting sundry minor generalizations, the exposition of which would involve too much detail, what is to be said of these major generalizations?
The distribution in Space cannot be said to imply that organisms have been designed for their particular habitats and placed in them; since, besides the habitat in which each kind of organism is found there are commonly other habitats, as good or better for it, from which it is absent—habitats to which it is so much better fitted than organisms now occupying them, that it extrudes these organisms when allowed the opportunity. Neither can we suppose that the purpose has been to establish varieties of Floras and Faunas; since, if so, why are the Floras and Faunas but little divergent in widely-sundered areas between which migration is possible, while they are markedly divergent in adjacent areas between which migration is impossible?
Passing to distributions in Time, there arise the questions—why during nearly the whole of that vast period geologically recorded have there existed none of those highest organic forms which have now overrun the Earth?—how is it that we find no traces of a creature endowed with large capacities for knowledge and happiness? The answer that the Earth was not, in remote times, a fit habitation for such a creature, besides being unwarranted by the evidence, suggests the equally awkward question—why during untold millions of years did the Earth remain fit only for inferior creatures? What, again, is the meaning of extinction of types? To conclude that the saurian type was replaced by other types at the beginning of the tertiary period, because it was not adapted to the conditions which then arose, is to conclude that it could not be modified into fitness for the conditions; and this conclusion is at variance with the hypothesis that creative skill is shown in the multiform adaptations of one type to many ends.
What interpretations may rationally be put on these and other general facts of distribution in Space and Time, will be seen in the next division of this work.
PART III.
THE EVOLUTION OF LIFE.