The chemical changes produced by the unicellular plants, such as yeasts and bacteria, to which allusion has been made in the last chapter, are known as fermentation and putrefaction, and are of such importance to the tanner, both for good and evil, that the subject must be treated in some detail. No scientific distinction exists between fermentation and putrefaction, though it is customary to restrict the latter term to those decompositions of nitrogenous animal matter which yield products of disagreeable smell and taste. The organisms which are the cause of both fermentation and putrefaction are known by the general term of “ferments.” This term has also been extended in recent years so as to include the so-called “unorganised ferments” (enzymes, zymases) which are active products secreted by the “organised ferments” or living organisms. These latter are again divided into three classes:—
The members of one class are distinguished from those of another by their form, and, more especially, by the substances they produce during their life-history. All three classes are now considered to be fungi. All ferments possess the following three properties:— 1. They are nitrogenous bodies. 2. They are unstable, i.e. they are destroyed by heat, chemicals, etc. 3. A relatively small quantity of the ferment is capable of producing great changes in the substances upon which it acts, especially if the products of the change can be removed as they are formed. The general character of fermentation will be best understood by a closer study of the yeast cell, which has already been described (p. 12), and its life-history briefly sketched. It has been shown that it is a growing plant of a very simple type, belonging to the fungi. These are devoid of the green colouring matter which enables the higher plants to utilise the energy of sunlight to assimilate the carbonic acid of the atmosphere, exhaling its oxygen, and employing its carbon for the building up of tissue; and they must therefore, like animals, have their nutriment ready formed, and capable of supplying energy by its oxidation. For yeast, as has been stated, the appropriate nourishment is glucose, or “grape-sugar.” This is broken down, in the main, into the simpler compounds, alcohol and carbonic acid, while a small portion is utilised for the building up of the cell and the formation of secondary products. The main reaction is represented by the following equation:
Yeast cannot directly ferment ordinary cane-sugar (C12H22O11), but secretes a substance called invertase, which so acts on the sugar as to break it up, with absorption of one molecule of water, into two molecules of fermentable glucose (dextrose and levulose) which serve as nourishment for the yeast. [4] Compare O’Sullivan and Thompson, Jour. Chem. Soc., 1890, p. 834; 1891, p. 46. Very many different unorganised ferments are known to exist, as they are not only produced by yeasts and bacteria, but are formed by the cells of higher plants and animals; thus the digestive principles, pepsin, trypsin, ptyalin, are of this character—ptyalin, like diastase, converting starch into sugar; and such bodies fulfil many functions both in animal and vegetable economy. In fermentation, as in disease, it is often difficult to distinguish what is due to the direct action of bacteria, and what to the unorganised ferments which they produce, and the question is further complicated by the fact that in most natural fermentations more than one ferment-organism is present. Sometimes the action of the unorganised ferments may be distinguished by the fact that the addition of chloroform has little effect on their activity while it paralyses that of the living organism. By exposure to high temperature both are destroyed, the bacteria, yeasts and moulds being killed and the unorganised ferments coagulated like white of egg, and so rendered inoperative. Many antiseptics also destroy the activity of both organisms and enzymes; but others, like chloroform, have no action on the latter. In some cases, as in that of invertase, the actual zymase can be precipitated by alcohol from its aqueous solution, filtered off, and restored to activity by transference into water. Since both classes of ferments are destroyed by high temperatures, all fermentation-processes are completely and permanently arrested by exposure to sufficient heat, and subsequent preservation in vessels so closed that no new ferment-germs can gain access. A familiar instance is that of tinned meats. All fully developed bacteria are destroyed by a very short exposure to a boiling temperature, and most by 60° to 70° C., but many species produce spores which are extremely difficult to destroy. The thermophilic bacteria discovered by Globig and further investigated by Rabinowitsch, [5] Centr. Blatt fÜr Bakt., II. Abth. vol. i. p. 585. For absolute sterilisation it is therefore necessary either to boil under pressure so as to raise the temperature to, say 110° C., or to heat repeatedly for a short time to temperatures of 80°-100° C. at successive intervals of 24 hours, in order to allow the spores to develop. This process is frequently performed for bacteriological observation in flasks or test-tubes merely stopped with a plug of sterilised cotton-wool, which has been found to efficiently filter the germs from the air which enters through it (see L.I.L.B., p. 270). The ferment-organisms cannot thrive and multiply unless they have proper nourishment and conditions of growth, the amount of moisture and the temperature being two of the most important of the latter. Use is made of this in the preservation of many articles of food, etc., since by ensuring that at least one of the conditions necessary for growth shall be absent, these substances are prevented from decomposing. For instance, hides are preserved by drying them; the absence of sufficient moisture hindering the growth of any organisms in them so long as they are dry, but as soon as they become somewhat damp, putrefaction commences at once. The waste products of organisms are often poisonous to themselves, and for this reason fermentations frequently come to an end before the whole of the substance is fermented. Thus neither beer nor vinegar can be obtained of more than a certain strength by direct fermentation, the alcohol or acetic acid checking the growth of their respective ferments. A solution of glucose “set” with the lactic ferment of sour milk will only produce lactic acid to the extent of about half a per cent.; but if chalk be added, the lactic acid will be neutralised as produced, and the fermentation will go on till the whole of the glucose is converted into insoluble calcium lactate. [6] For the practical preparation of lactic acid, the solution may contain 71/2-11 per cent. of glucose, and some nitrogenous nourishment. The solution should be slightly acid. See Journ. Soc. Ch. Ind., 1897, p. 516. Many of the products of bacteria (like those of some of the higher plants) are intensely poisonous both to animals and man. Many of the severe symptoms of disease are caused by these poisons produced in the body. Thus the tetanus-bacteria produce a poison similar in its effects to strychnine, and quite as virulent. Not only are such poisons produced by disease-bacteria in the body, but frequently also in the earlier stages of putrefactive fermentation. The latter are known as ptomaines, and when present in cheese and preserved foods are liable to cause poisoning. Such putrefactions are often unaccompanied by any disagreeable odour or flavour. The fermentations which are most important in the tannery are, firstly, the ordinary putrefaction which attacks hides as well as other animal matter, and which is usually a complicated process carried on by many sorts of bacteria and other micro-organisms. This may be regarded as generally injurious to the tanner; but it is utilised in the “sweating” process for depilation and in the “staling” of sheepskins, in both of which advantage is taken of the fact that the soft mucous layer of the epidermis, which contains the hair-roots, putrefies more rapidly than the fibrous structure of the hide itself. In soaking also, use is made of the power of putrefactive ferments to dissolve the cementing substance of the hide, though in this case with doubtful advantage to the tanner. In the liming process putrefaction makes itself felt when the limes are allowed to become stale and charged with animal matter, softening the hide and finally rendering the leather loose, empty and inclined to “pipe.” Here the effect is in many cases useful if not carried too far. In bating and puering, the action is almost entirely due to the enzymes and other products of bacterial activity, the original chemical constituents of the dung being apparently of minor importance. Naturally the liquid is adapted to the growth of many other organisms beside those acting most advantageously on the hide, and injury in the bates from wrong forms of putrefaction In drenching, the effect is, at first, entirely due to the weak acids produced by bacterial fermentation of the bran, but becomes complicated in its later stages by putrefactive and other fermentations which may be desirable or otherwise. In the tanning liquors, fermentation is not so marked, but is of great importance owing to the production of acids by bacterial action from the sugars present in the material. The acids themselves are apt to be fermented and destroyed, principally by the oxidising action of Saccharomyces mycoderma and the higher moulds (see p. 14), which also act destructively on the tannins. The effect of these acids on the hides is to swell them and to neutralise any lime they may contain. They also give to the liquors a characteristic sour taste, as a consequence of which, liquors containing acetic and lactic acids are usually known in the tannery as “sour liquors.” It is doubtful whether the action of fungi is completely stayed even by the drying process. The heating of leather in the sheds is due to bacteria and the higher moulds, and Eitner considers their growth one of the causes of the “spueing” or “gumming” of curried leathers. From what has been said, it is obvious that, with regard to fermentations, a double problem is presented to the leather manufacturer, since he desires to utilise those which make for his advantage, while controlling or destroying those which are injurious. The first step to a solution of these problems is a more complete knowledge of the organisms which serve or injure us, that we may, as it were, discriminate friends and enemies. We may then approach the question in two ways. Taking the drenching process as an example, we may on the one hand introduce a “pure cultivation” of the right ferment into a sterilised bran infusion, and so induce only the one fermentation which we require; or, on the other hand, as different ferments are affected in varying degrees by antiseptics, we may perhaps choose such as permit the growth of the organism we want, while killing or discouraging the rest. We may also arrange the nutriment, temperature, degree of acidity and other conditions, so as to favour one organism rather than another. All three methods have been applied in brewing with good results. |