CHAPTER III. THE LIVING CELL.

Previous

The larger part of the materials employed in leather manufacture are organic in their origin, and the skin itself is an organised structure, while the life-processes of putrefaction and fermentation play a large part in the tannery. Some knowledge, therefore, of biological structures and processes is necessary to a full understanding of much which follows, and a few words are not out of place with regard to the foundations of life itself.

The bricks of which all living structures are built are the living “cells” and their products, and these first elements differ little, if at all, whether the life is animal or vegetable, the distinction being produced rather by the way in which they are put together, than by differences in the cells themselves. This is so much the case that it is often difficult to decide in which of the two classes to place the simplest organisms, since most of these forms are capable of active movement, and their modes of nutrition and reproduction are common to both kingdoms.

In its simplest form, the cell, whether animal or vegetable, is strictly speaking not a cell at all, but consists merely of a minute mass of living jelly or protoplasm. Such is the amoeba found in water and damp soil, such are the lymph-cells and white blood-corpuscles of our bodies, and such also some stages at least of the lowest forms of fungi, like the Æthalium septicum which is sometimes found on old tan-heaps as a crawling mass of yellow slime. If a drop of saliva be examined with the microscope under a cover-glass, with one-sixth objective and small opening of diaphragm,[3] a few scattered semi-transparent objects will be found, of the apparent size of a lentil or small pea, and of rounded form. These are lymph-corpuscles (Fig. 1). Their contents are full of small granules, and if they be observed quickly, or if the slide be kept at about the warmth of the body, it will be noticed that these are in constant streaming motion. If the warmth can be kept constant, which is difficult without special apparatus, and the cells can be observed from time to time, it may be seen that they lose their circular form, and put out protuberances (pseudopodia, “false feet”) one of which will gradually increase in bulk, till it absorbs the whole cell, which thus crawls about. It will now readily be understood how these cells wander through all the tissues of the body, passing through the smallest pores like the fairy who put her finger through a keyhole, and grew on the other side till she was all through! This independent vitality, in a warm and suitable nutrient liquid, may continue for more than a week, and, in the case of amoeba, quite indefinitely.

[3] For details of microscopic manipulation in this and the following chapter see L.I.L.B., p. 234 et seq.

Fig. 1.—Lymph-corpuscle of frog, showing gradual change of form. (Ranvier.)

It is possible that by close attention, a rounded or elongated body, somewhat like an oil-globule, may be seen within the cell, though it is generally more obvious when the latter has been killed and stained with a weak solution of iodine. This is the nucleus, and within it is a still smaller speck called the nucleolus, which bears an important, and as yet little understood, part in the life-history of the cell. After a period, it undergoes certain somewhat complicated changes, and divides into two, the nucleus elongates, and also divides, each half carrying with it a portion of the living protoplasmic jelly, and thus forming two complete and independent cells. This is the life-history, not only of the lymph-cell, but with more or less modification, of every living cell or tissue.

Fig. 2.—Yeast-cells, much magnified.

These cells, like all living things, feed on the nutriment which surrounds them, and even enclose small particles of solid food, which are gradually dissolved and disappear. In this way the white blood-corpuscles are said to feed upon and destroy the still smaller organisms which gain access to the blood, and which might otherwise cause disease. The matter which cells consume is not, of course, destroyed, but simply converted into other forms, some of which are useless, or even poisonous to the cells, and which, like the secretions of higher animals, are discharged into the surrounding fluids; while others are retained, and contribute to the growth of the cell. Thus most vegetable cells secrete cellulose, or plant-tissue, which forms a wall enclosing the protoplasm, and so justifies the name of cell. If to warm water and a little sugar we add enough yeast to render it slightly milky, and examine it like the saliva, we shall have before us typical vegetable cells of the simplest form (Fig. 2). There is the same granular protoplasm, and there is the nucleus, though it cannot be seen without special preparation, the rounded spaces which look like one, being simply filled with transparent fluid, and called vacuoles. There is, however, no motion, as in the case of amoeba, for the cells are enclosed in a tough skin of cellulose, which will be evident if they are crushed by putting some folds of blotting paper on the cover-glass, and pressing it with the handle of a needle or a rounded glass rod, when the protoplasm will be forced out and the skin remain like a burst bladder. This will be more obvious if the cells are previously stained with iodine or magenta, which will stain the protoplasm, but not the membrane. It is easy to observe the multiplication of the yeast-cells, which is somewhat different to that of the corpuscles. Instead of enlarging as a whole, and dividing into two equal cells, a small bud appears on the side of the parent-cell, and enlarges till it becomes itself a parent-cell with buds of its own. These do not break away at once, and hence chains and groups of attached cells are formed which are easily noticed in growing yeast if a microscope be employed. The principal nutriment of yeast is grape-sugar or glucose; and much more of this is consumed than is needed to produce the cellulose wall and the substance of new cells; just as in the animal, sugar, starch and fat are consumed to give heat and energy. In the yeast, this extra sugar is split up into carbon dioxide, which escapes as gas, and to which yeast owes its power of raising bread; and into alcohol, which in too large proportion is poisonous to the yeast itself.

Fig. 3.—Epithelium-cells. Ranvier.
p, pressure-marks; g, granular protoplasm.

In examining the saliva for lymph-cells, it is probable that some much larger objects may have been noticed of irregular polygonal outline and with a well-marked nucleus. These are cells from the lining epithelium of the mouth, and only differ from those of the epidermis of skin in their form and size (Fig. 3). Note the markings caused by the pressure of overlapping cells. In these cells the wall is formed of keratin or horny tissue, which takes the place of the cellulose of the yeast.

Fig. 4.Penicillium glaucum, a common green mould.

Other simple forms of cell are those of Saccharomyces mycoderma or torula which forms a skin on the surface of old liquors, and which much resembles a small yeast; and of the various ferments which are found in liquors, bates and drenches, which will be more fully described in the chapter following.

Many of these, such as the acetic and lactic ferments, which, like all other bacteria, multiply by division, do not separate, but remain connected in chains or chaplets, like a string of beads. From these, the step is not a long one to the hyphÆ or stems of the higher moulds, which are too frequently found on leather which has been slowly dried, and which consist simply of tubular cells which elongate and divide by the formation of septa or cross-partitions, and thus build up a complicated plant-structure (Fig. 4). As we proceed higher in the scale of plant and animal life, the forms and products of the cells become more varied, and instead of one single cell, fulfilling all the functions of the plant or animal, each class of cell has its own peculiar duties and properties, while all work together for the maintenance of the complex structure of which they form a part.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page