TERTIARY PERIOD.

Previous

A new organic creation makes its appearance in the Tertiary period; nearly all the animal life is changed, and what is most remarkable in this new development is the appearance, in larger numbers, of the great class of Mammifera.

During the Primary period, Crustaceans and Fishes predominated in the animal kingdom; in the Secondary period the earth was assigned to Reptiles; but during the Tertiary period the Mammals were kings of the earth; nor do these animals appear in small number, or at distant intervals of time; great numbers of these beings appear to have lived on the earth, and at the same moment; many of them being, so to say, unknown and undescribed.

If we except the Marsupials, the first created Mammals would appear to have been the Pachyderms, to which the Elephant belongs. This order of animals long held the first rank; it was almost the only representative of the Mammal during the first of the three periods which constitute the Tertiary epoch. In the second and third periods Mammals appear of species which have now become extinct, and which were alike curious from their enormous proportions, and from the singularity of their structure. Of the species which appeared during the latter part of the epoch, the greater number still exist. Among the new Reptiles, some Salamanders, as large as Crocodiles, and not very distinct from existing forms, are added to the animal creation during the three periods of the Tertiary epoch. Chelonians were abundant within the British area during the older epoch. During the same epoch Birds are present, but in much fewer numbers than the Mammalia; here songsters, there birds of prey, in other cases domestic—or, rather, some appear to wait the yoke and domestication from man, the future supreme lord of the earth.

The seas were inhabited by a considerable number of beings of all classes, and nearly as varied as those now living; but we no longer find in the Tertiary seas those Ammonites, Belemnites, and Hippurites which peopled the seas and multiplied with such astonishing profusion during the Secondary period. Henceforth the testaceous Mollusca approximate in their forms to those of the present time. The older and newer Tertiary Series contain few peculiar genera. But genera now found in warmer climates were greatly developed within the British area during the earlier Tertiary times, and species of cold climates mark the close of the later Tertiaries.

What occurs to us, however, as most remarkable in the Tertiary epoch is the prodigious increase of animal life; it seems as if it had then attained its fullest extension. Swarms of testaceous Mollusca of microscopic proportions—Foraminifera and Nummulites—must have inhabited the seas, crowding together in ranks so serried that the agglomerated remains of their shells form, in some places, beds hundreds of feet thick. It is the most extraordinary display which has appeared in the whole range of creation.

Vegetation during the Tertiary period presents well-defined characteristics. The Tertiary flora approaches, and is sometimes nearly identical with, that of our days. The class of dicotyledons shows itself there in its fullest development; it is the epoch of flowers. The surface of the earth is embellished by the variegated colours of the flowers and fruits which succeed them. The white spikes of the GramineÆ display themselves upon the verdant meadows without limit; they seem provocative of the increase of Insects, which now singularly multiply. In the woods crowded with flowering trees, with rounded tops, like our oak and birch, Birds become more numerous. The atmosphere, purified and disembarrassed of the veil of vapour which has hitherto pervaded it, now permits animals with such delicate pulmonary organs to live and multiply their race.

During the Tertiary period the influence of the central heat may have ceased to make itself felt, in consequence of the increased thickness of the terrestrial crust. By the influence of the solar heat, climates would be developed in the various latitudes; the temperature of the earth would still be nearly that of our present tropics, and at this epoch, also, cold would begin to make itself felt at the poles.

Abundant rains would, however, continue to pour upon the earth enormous quantities of water, which would give rise to important rivers; new lacustrine deposits of fresh water were formed in great numbers; and rivers, by means of their alluvial deposits, began to form new land. It is, in short, during the Tertiary epoch that we trace an alternate succession of beds containing organic beings of marine origin, with others peculiar to fresh water. It is at the end of this period that continents and seas take their respective places as we now see them, and that the surface of the earth received its present form.

The Tertiary epoch, or series, embraces three very distinct periods, to which the names of Eocene, Miocene, and Pliocene have been given by Sir Charles Lyell. The etymology of these names is derived—Eocene, from the Greek ???, dawn, and ?a????, recent; Miocene, from e???, less, ?a????, recent; and Pliocene, from p?e???, more, ?a????, recent; by which it is simply meant to express, that each of these periods contains a minor or greater proportion of recent species (of Testacea), or is more or less remote from the dawn of life and from the present time;[81] the expressions are in one sense forced and incorrect, but usage has consecrated them, and they have obtained universal currency in geological language, from their convenience and utility.

Fig. 148

Fig. 148.—Trigonia margaritacea. (Living form.)

THE EOCENE PERIOD.

During this period terra firma has vastly gained upon the domain of the sea; furrowed with streams and rivers, and here and there with great lakes and ponds, the landscape of this period presented the same curious mixture which we have noted in the preceding age, that is to say, a combination of the vegetation of the primitive ages with one analogous to that of our own times. Alongside the birch, the walnut, the oak, the elm, and the alder, rise lofty palm-trees, of species now extinct, such as Flabellaria and Palmacites; with many evergreen trees (Conifers), for the most part belonging to genera still existing, as the firs, the pines, the yews, the cypresses, the junipers, and the thuyas or tree of life.

The Cupanioides, among the SapindaceÆ; the Cucumites, among the CucurbitaceÆ (species analogous to our bryony), climb the trunks of great trees, and hang in festoons of aerial garlands from their branches.

The Ferns were still represented by the genera Pecopteris, by the TÆniopteris, Asplenium, Polypodium. Of the mosses, some Hepaticas formed a humble but elegant and lively vegetation alongside the terrestrial and frequently ligneous plants which we have noted. Equiseta and CharÆ would still grow in marshy places and on the borders of rivers and ponds.

It is not without some surprise that we observe here certain plants of our own epoch, which seem to have had the privilege of ornamenting the greater watercourses. Among these we may mention the Water Caltrop, Trapa natans, whose fine rosettes of green and dentated leaves float so gracefully in ornamental ponds, supported by their spindle-shaped petioles, its fruit a hard coriaceous nut, with four horny spines, known in France as water-chestnuts, which enclose a farinaceous grain not unpleasant to the taste; the pond-weed, Potamogeton, whose leaves form thick tufts of green, affording food and shelter to the fishes; NympheaceÆ, which spread beside their large round and hollow leaves, so admirably adapted for floating on the water, now the deep-yellow flowers of the Nenuphar now the pure white flowers of the NymphÆa. Listen to Lecoq, as he describes the vegetation of the period:—“The Lower Tertiary period,” he says, “constantly reminds us of the tropical landscapes of the present epoch, in localities where water and heat together impress on vegetation a power and majesty unknown in our climates. The AlgÆ, which have already been observed in the marine waters at the close of the Cretaceous period, represented themselves under still more varied forms, in the earlier Tertiary deposits, when they have been formed in the sea. Hepaticas and Mosses grew in the more humid places; many pretty Ferns, as Pecopteris, TÆniopteris, and the Equisetum stellare (Pomel) vegetated in cool and humid places. The fresh waters are crowded with Naiades, Chara, Potamogeton, Caulinites, with Zosterites, and with Halochloris. Their leaves, floating or submerged, like those of our aquatic plants, concealed legions of Molluscs whose remains have also reached us.

“Great numbers of Conifers lived during this period. M. Brongniart enumerates forty-one different species, which, for the most part, remind us of living forms with which we are familiar—of Pines, Cypresses, Thuyas, Junipers, Firs, Yews, and Ephedra. Palms mingled with these groups of evergreen trees; the Flabellaria Parisiensis of Brongniart, F. raphifolia of Sternberg, F. maxima of Unger; and some Palmacites, raised their widely-spreading crowns near the magnificent Hightea; MalvaceÆ, or Mallows, doubtless arborescent, as many among them, natives of very hot climates, are in our days.

“Creeping plants, such as the Cucumites variabilis (Brongn.), and the numerous species of CupanioÏdes—the one belonging to the CucurbitaceÆ, and the other to the SapindaceÆ—twined their slender stems round the trunks, doubtless ligneous, of various LeguminaceÆ.

“The family of BetulaceÆ of the order CupuliferÆ show the form, then new, of Quercus, the Oak; the JuglandeÆ, and UlmaceÆ mingle with the ProteaceÆ, now limited to the southern hemisphere. Dermatophyllites, preserved in amber, seem to have belonged to the family of the EricineÆ, and Tropa ArcturÆ of Unger, of the group ŒnothereÆ, floated on the shallow waters in which grew the Chara and the Potamogeton.

“This numerous flora comprises more than 200 known species, of which 143 belonged to the Dicotyledons, thirty-three to the Monocotyledons, and thirty-three to the Cryptogams.

“Trees predominate here as in the preceding period, but the great numbers of aquatic plants of the period are quite in accordance with the geological facts, which show that the continents and islands were intersected by extensive lakes and inland seas, while vast marine bays and arms of the sea penetrated deeply into the land.”

Fig. 149

Fig. 149.—Branch of Eucalyptus restored.

It is moreover a peculiarity of this period that the whole of Europe comprehended a great number of those plants which are now confined to Australasia, and which give so strange an aspect to that country, which seems, in its vegetation, as in its animals, to have preserved in its warm latitudes the last vestiges of the organic creations peculiar to the primitive world. As a type of dicotyledonous trees of the epoch, we present here a restored branch of Eucalyptus (Fig. 149), with its flowers. All the family of the ProteaceÆ, which comprehends the Banksia, the Hakea, the Gerilea protea, existed in Europe during the Tertiary period. The family of Mimosas, comprising the Acacia and Inga, which in our age are only natives of the southern hemisphere, abounded in Europe during the same geological period. A branch of Banksia, with its fructification, taken from impressions discovered in rocks of the period, is represented in Fig. 150—it is different from any species of Banksia living in our days.

Fig. 150

Fig. 150.—Fruit-branch of Banksia restored.

Mammals, Birds, Reptiles, Fishes, Insects, and Molluscs, form the terrestrial fauna of the Eocene period. In the waters of the lakes, whose surfaces are deeply ploughed by the passage of large Pelicans, lived Molluscs of varied forms, as Physa, LimnÆa, Planorbis; and Turtles swam about, as Trionyx and the Emides. Snipes made their retreat among the reeds which grew on the shore; sea-gulls skimmed the surface of the waters or ran upon the sands; owls hid themselves in the cavernous trunks of old trees; gigantic buzzards hovered in the air, watching for their prey; while heavy crocodiles slowly dragged their unwieldy bodies through the high marshy grasses. All these terrestrial animals have been discovered in England or in France, alongside the overthrown trunks of palm-trees. The temperature of these countries was then much higher than it is now. The Mammals which lived under the latitudes of Paris and London are only found now in the warmest countries of the globe.

The Pachyderms (from the Greek pa???, thick, de?a, skin) seem to have been amongst the earliest Mammals which appeared in the Eocene period, and they held the first rank from their importance in number of species as well as in size. Let us pause an instant over these Pachyderms. Their predominance over other fossil Mammals, which exceed considerably the number now living, is a fact much insisted on by Cuvier. Among them were a great number of intermediate forms, which we seek for in vain in existing genera. In fact, the Pachyderms are separated, in our days, by intervals of greater extent than we find in any other mammalian genera; and it is very curious to discover among the animals of the ancient world the broken link which connects the chain of these beings, which have for their great tomb the plaster-quarries of Paris, Montmartre and Pantin being their latest refuge.

Each block taken from those quarries encloses some fragment of a bone of these Mammals; and how many millions of these bones had been destroyed before attention was directed to the subject! The PalÆotherium and the Anoplotherium were the first of these animals which Cuvier restored; and subsequent discoveries of other fragments of the same animals have only served to confirm what the genius of the great naturalist divined. His studies in the quarries of Montmartre gave the signal, as they became the model, for similar researches and restorations of the animals of the ancient world, all over Europe—researches which, in our age, have drawn geology from the state of infancy in which it languished, in spite of the magnificent and persevering labours of Steno, Werner, Hutton, and Saussure.

Fig. 151

Fig. 151.—PalÆotherium magnum restored.

The PalÆotherium, Anoplotherium, and Xiphodon were herbivorous animals, which must have lived in great herds. They appear to have been intermediate, according to their organisation, between the Rhinoceros, the Horse, and the Tapir. There seem to have existed many species of them, of very different sizes. After the labours of Cuvier, nothing is easier than to represent the PalÆotherium as it lived: the nose terminating in a muscular fleshy trunk, or rather snout, somewhat like that of the Tapir; the eye small, and displaying little intelligence; the head enormously large; the body squat, thick, and short; the legs short and very stout; the feet supported by three toes, enclosed in a hoof; the size, that of a large horse. Such was the great PalÆotherium, peaceful flocks of which must have inhabited the valleys of the plateau which surrounds the ancient basin of Paris; in the lacustrine formations of Orleans and Argenton; in the Tertiary formations of Issil and Puy-en-Velay, in the department of the Gironde; in the Tertiary formations near Rome; and in the beds of limestone[82] at the quarries of Binsted, in the Isle of Wight. Fig. 151 represents the great PalÆotherium, after the design, in outline, given by Cuvier in his work on fossil bones.

Fig. 152

Fig. 152.—Skull of PalÆotherium magnum.

The discovery and re-arrangement of these and other forms, now swept from the face of the globe, are the noblest triumphs of the great French zoologist, who gathered them, as we have seen, from heaps of confused fragments, huddled together pell-mell, comprising the bones of a great many species of animals of a former age of the world, all unknown within the historic period. The generic characters of PalÆotherium give them forty-four teeth, namely, twelve molars, two canines, and twenty-eight others, three toes, a short proboscis, for the attachment of which the bones of the nose were shortened, as represented in Fig. 153, leaving a deep notch below them. The molar teeth bear considerable resemblance to those of the Rhinoceros. In the structure of that part of the skull intended to support the short proboscis, and in the feet, the animal seems to have resembled the Tapir.

Fig. 153

Fig. 153.—Skeletons of the PalÆotherium magnum (a) and minimum (b) restored.

The geological place of the extinct PalÆotherium seems to have been in the first great fresh-water formation of the Eocene period, where it is chiefly found with its allies, of which several species have been found and identified by Cuvier. Dr. Buckland is not singular in thinking that they lived and died on the margins of lakes and rivers, as the Rhinoceros and Tapir do now. He is also of opinion that some retired into the water to die, and that the dead carcases of others may have been drifted into the deeper parts in seasons of flood.

The PalÆotherium varied greatly in size, some species being as large as the Rhinoceros, while others ranged between the size of the Horse and that of a Hog or a Roe. The smaller PalÆotherium resembled the Tapir. Less in size than a Goat, with slim and light legs, it must have been very common in the north of France, where it would browse on the grass of the wild prairies. Another species, the P. minimum, scarcely exceeded the Hare in size, and it probably had all the lightness and agility of that animal. It lived among the bushy thickets of the environs of Paris, in Auvergne, and elsewhere.All these animals lived upon seeds and fruits, on the green twigs, or subterranean stems, and the succulent roots of the plants of the period. They generally frequented the neighbourhood of fresh water.

Fig. 154

Fig. 154.—Anoplotherium commune. One-twentieth natural size.

The Anoplotherium (from a??p???, defenceless, ??????, animal), had the posterior molar teeth analogous to those of the Rhinoceros, the feet terminating in two great toes, forming an equally divided hoof, like that of the Ox and other Ruminants, and the tarsus of the toes nearly like those of the Camel. It was about the size of the Ass; its head was light; but what would distinguish it most must have been an enormous tail of at least three feet in length, and very thick at its junction with the body. This tail evidently served it as a rudder and propeller when swimming in the lakes or rivers, which it frequented, not to seize fish (for it was strictly herbivorous), but in search of roots and stems of succulent aquatic plants. “Judging from its habits of swimming and diving,” says Cuvier, “the Anoplotherium would have the hair smooth, like the otter; perhaps its skin was even half naked. It is not likely either that it had long ears, which would be inconvenient in its aquatic kind of life; and I am inclined to think that, in this respect, it resembled the Hippopotamus and other quadrupeds which frequent the water much.” To this description Cuvier had nothing more to add. His memoir upon the pachydermatous fossils of Montmartre is accompanied by a design in outline of Anoplotherium commune, which has been closely followed in Fig. 154.There were species of Anoplotherium of very small size. A. leporinum (or the Hare-Anoplotherium), whose feet are evidently adapted for speed; A. minimum and A. obliquum were of still smaller dimensions; the last, especially, scarcely exceeded the size of a rat. Like the Water-rats, this species inhabited the banks of brooks and small rivers.

Fig. 155

Fig. 155.—Xiphodon gracile.

The Xiphodon was about three feet in height at the withers, and generally about the size of the Chamois, but lighter in form, and with a smaller head. In proportion as the appearance of the Anoplotherium commune was heavy and sluggish, so was that of Xiphodon gracile graceful and active; light and agile as the Gazelle or the Goat, it would rapidly run round the marshes and ponds, depasturing on the aromatic herbs of the dry lands, or browsing on the sprouts of the young shrubs. “Its course,” says Cuvier, in the memoir already quoted, “was not embarrassed by a long tail; but, like all active herbivorous animals, it was probably timid, and with large and very mobile ears, like those of the stag, announcing the slightest approach of danger. Neither is there any doubt that its body was covered with short smooth hair; and consequently we only require to know its colour in order to paint it as it formerly existed in this country, where it has been dug up after so many ages.” Fig. 155 is a reproduction from the design in outline with which Cuvier accompanied the description of this animal, which he classes with the Anoplotherium, and which has received in our days the name of Xiphodon gracile.

The gypsum-quarries of the environs of Paris include, moreover, the remains of other Pachyderms: the ChÆropotamus, or River-hog (from ?????? p?ta??), which has some analogy with the living Pecari, though much larger; the Adapis, which reminds us, in its form, of the Hedgehog, of which, however, it was three times the size. It seems to have been a link between the Pachyderms and the Insectivorous Carnivora. The Lophiodon, the size of which varied with the species, from that of the Rabbit to that of the Rhinoceros, was still more closely allied to the Tapir than to the Anoplotherium; it is found in the lower beds of the gypseous formation, that is to say in the “Calcaire Grossier.”

A Parisian geologist, M. Desnoyers, librarian of the Museum of Natural History there, has discovered in the gypseous beds of the valley of Montmorency, and elsewhere in the neighbourhood of Paris, as at Pantin, Clichy, and Dammartin, the imprints of the footsteps of some Mammals, of which there seems to be some question, especially with regard to the Anoplotherium and PalÆotherium. Footprints of Turtles, Birds, and even of Carnivora, sometimes accompany these curious traces, which have a sort of almond-shape more or less lobed, according to the divisions of the hoof of the animal, and which recall to mind completely, in their mode of production and preservation, those imprints of the steps of the Labyrinthodon which have been mentioned as occurring in rocks of the Triassic period. This discovery is interesting, as it furnishes a means of comparison between the imprints and the animals which have produced them. It brings into view, as it were, the material traces left in their walks upon the soil by animals now annihilated, but who once occupied the mysterious sites of an earlier world. (See Fig. 1, p. 12.)

It is interesting to picture in imagination the vast pasturages of the Tertiary period swarming with Herbivora of all sizes. The country now surrounding the city of Paris belongs to the period in question, and not far from its gates, the woods and plains were crowded with “game” of which the Parisian sportsman little dreams, but which would nevertheless singularly animate the earth at this distant epoch. The absence of great Carnivora explains the rapid increase of the agile and graceful denizens of the wood, whose race seems to have been so multiplied then, but which was ultimately annihilated by the ferocious beasts of prey which afterwards made their appearance.

The same novelty, riches, and variety which distinguished the Mammals of the Tertiary period extended to other classes of animals. The class of Birds, of which we can only name the most remarkable, was represented by the curious fossil known as the “Bird of Montmartre.” The bones of other birds have been obtained from Hordwell, as well as the remains of quadrupeds. Among the latter the HyÆnodon, supposed to be the oldest known example of a true carnivorous animal in the series of British fossils, and the fossil Bat known as the Vespertilio Parisiensis. Among Reptiles the Crocodile, which bears the name of Isle of Wight Alligator, Crocodilus Toliapicus. Among the Turtles the Trionyx, of which there is a fine specimen in the Museum of Natural History in Paris (Fig. 156).

Fig. 156

Fig. 156.—Trionyx, or Turtle, of the Tertiary period.

In the class Fishes we now see the Pleuronectes, or flat-fish, of which Platax altissimus and Rhombus minimus are well-known examples. Among the Crustaceans we see the earliest crabs. At the same time multitudes of new Mollusca make their appearance: Oliva, Triton, Cassis, Harpa, Crepidula, &c.

Plate XXIII

XXIII.—Ideal Landscape of the Eocene Period.

The hitherto unknown forms of Schizaster are remarkable among Echinoderms; the Zoophytes are also abundant, especially the Foraminifera, which seem to make up by their numbers for their deficiency in size. It was in this period, in the bosom of its seas, and far from shore, that the Nummulites existed, whose calcareous envelopes play such a considerable part as the elements of some of the Tertiary formations. The shelly agglomerates of these Protozoan Rhizopods constitute now very important rocks. The Nummulitic limestone forms, in the chain of the Pyrenees, entire mountains of great height; in Egypt it forms strata of considerable extent, and it is of these rocks that the ancient pyramids were built. What an enormous time must have been necessary to convert the remains of these little shells into beds many hundreds of feet thick! The Miliola were also so abundant in the Eocene seas as to constitute the greater part of calcareous rocks[83] out of which Paris has been built. Agglomerated in this manner, these little shells form the continuous beds of limestone which are quarried for building purposes in the environs of Paris, at Gentilly, Vaugirard, and ChÂtillon.


On the opposite page we present, in Plate XXIII., an imaginary landscape of the Eocene period. We remark amongst its vegetation a mixture of fossil species with others belonging to the present time. The Alders, the Wych-elms, and the Cypresses, mingle with Flabellaria; the Palms of extinct species. A great Bird—a wader, the Tantalus—occupies the projecting point of a rock on the right; the Turtle (Trionyx), floats on the river, in the midst of NymphÆas, Nenuphars, and other aquatic plants; whilst a herd of PalÆotheria, Anoplotheria, and Xiphodon peacefully browse the grass of the natural meadows of this peaceful oasis.

With a general resemblance in their fossils, nothing can be more dissimilar, on the whole, than the lithological or mineral characters of the Eocene deposits of France and England; “those of our own island,” says Lyell,[84] “being almost exclusively of mechanical origin—accumulations of mud, sand, and pebbles; while in the neighbourhood of Paris we find a great succession of strata composed of limestones, some of them siliceous, and of crystalline gypsum and siliceous sandstone, and sometimes of pure flint used for millstones. Hence it is by no means an easy task to institute an exact comparison between the various members of the English and French series. It is clear that, on the sites both of Paris and London, a continual change was going on in the fauna and flora by the coming in of new species and the dying out of others; and contemporaneous changes of geographical conditions were also in progress in consequence of the rising and sinking of the land and bottom of the sea. A particular subdivision, therefore, of time was occasionally represented in one area by land, in another by an estuary, in a third by sea; and even where the conditions were in both areas of a marine character, there was often shallow water in one, and deep sea in another, producing a want of agreement in the state of animal life.” The Eocene rocks, as developed in France and England, may be tabulated as follows, in descending order:—

English. French.
Upper
Eocene.
Hempstead beds. Fluvio-
marine
series.
Calcaire de la Beauce. GrÈs de Fontainebleau.
Bembridge beds. Calcaire silicieux or Calcaire Lacustre Moyen.
Gypseous series of Montmartre.
Middle
Eocene.
Osborne beds.
Headon beds.
GrÈs de Beauchamp and Calcaire Marin.
Upper Bagshot sand. Upper Sables Moyens.
Barton clay.
Bracklesham beds.
Middle
Bagshot.
Lower Sables Moyens,
Lower Calcaire Grossier,
and Glauconie GrossiÈre.
Lower Bagshot beds. Lits coquilliÈres.
Glauconie Moyenne.
Lower Eocene. London clay. Wanting.
Woolwich and Reading beds, or Plastic clay. Argile Plastique.
Glauconie InfÉrieure.
Oldhaven beds.
Thanet sands. Sables InfÉrieurs.

The Woolwich and Reading Beds, or the Plastic Clay of older writers, consists of extensive beds of sand with occasional beds of potter’s clay, which lie at the base of the Tertiary formation in both England and France. Generally variegated, sometimes grey or white, it is employed as a potter’s earth in the manufacture of delf-ware.

In England the red-mottled clay of the Woolwich and Reading Beds in Hampshire and the Isle of Wight is often seen in contact with the chalk; but in the south-eastern part of the London basin, Mr. Prestwich shows that the Thanet Sand (consisting of a base of fine, light-coloured sand, mixed with more or less argillaceous matter) intervenes between the Chalk and the Oldhaven Beds, or in their absence the Woolwich and Reading beds, which lie below the London Clay. The Thanet Sands derive their name from their occurrence in the Isle of Thanet, in Kent, in the eastern part of which county they attain their greatest development. Under London and its southern suburbs the Thanet sand is from thirteen to forty-four feet thick, but it becomes thinner in a westerly direction, and does not occur beyond Ealing.[85]

The Woolwich and Reading beds in the Hampshire basin rest immediately on the Chalk, and separate it from the overlying London Clay, as may be seen in the fine exposure of the Tertiary strata in Alum Bay, at the western extremity of the Isle of Wight, and in Studland Bay, on the western side of the Isle of Purbeck, in Dorsetshire.

In the London basin the Woolwich and Reading beds also rest on the Chalk, where the Thanet Sands are absent, as is the case, for the most part, over the area west of Ealing and Leatherhead.

The beds in question are very variable in character, but may be generally described as irregular alternations of clays and sands—the former mostly red, mottled with white, and from their plastic nature suitable for the purposes of the potter; the latter also of various colours, but sometimes pure white, and sometimes containing pebbles of flint.

The Woolwich and Reading beds are called after the localities of the same names; they are fifty feet thick at Woolwich, and from sixty to seventy feet at Reading.

The Oldhaven beds (so termed by Mr. W. Whitaker from their development at the place of the same name in Kent) are a local deposit, occurring beneath the London Clay on the south side of the London basin, from Croydon eastward, at the most eastern part of Surrey, and through Kent—in the north-western corner of which county they form some comparatively broad tracts. The beds consist of rounded flint pebbles, in a fine sandy base, or of fine light-coloured sand, and are from eighty to ninety feet thick under London.

The London Clay, which has a breadth of twenty miles or more about London, consists of tenacious brown and bluish-grey clay, with layers of the nodular concretions, called Septaria, which are well known on the Essex and Hampshire coasts, where they are collected for making Roman cement. The London Clay has a maximum thickness of nearly 500 feet. The fossils of the London Clay are of marine genera, and very plentiful in some districts. Taken altogether they seem to indicate a moderate, rather than a tropical climate, although the Flora is, as far as can be judged, certainly tropical in its affinities.[86] The number of species of extinct Turtles obtained from the Isle of Sheppey alone, is stated by Prof. Agassiz to exceed that of all the species of Chelone now known to exist throughout the globe. Above this great bed lie the Bracklesham and Bagshot beds, which consist of light-yellow sand with an intermediate layer of dark-green and brown clay, over which lie the Barton Clay (in the Hampshire basin) and the white Upper Bagshot Sands, which are succeeded by the Fluvio-marine series comprising the Headon, Bembridge, and Hempstead series, and consisting of limestones, clays, and marls, of marine, brackish, and fresh-water origin.[87] For fuller accounts of the Tertiary strata of England, the reader is recommended to the numerous excellent memoirs of Mr. Prestwich, to the memoir “On the Tertiary Fluvio-marine Formations of the Isle of Wight,” by Professor Edward Forbes, and to the memoir “On the Geology of the London Basin,” by Mr. W. Whitaker.

At the base of the Argile Plastique of France is a conglomerate of chalk and of divers calcareous substances, in which have been found at Bas-Meudon some remains of Reptiles, Turtles, Crocodiles, Mammals, and, more lately, those of a large Bird, exceeding the Ostrich in size, the Gastornis, which Professor Owen classes among the wading rather than among aquatic birds. In the Soissonnais there is found, at the same horizon, a great mass of lignite, enclosing some shells and bones of the most ancient Pachyderm yet discovered, the Coryphodon, which resembles at once both the Anoplotherium and the Pig. The Sables InfÉrieurs, or Bracheux Sands, form a marine bed of great thickness near Beauvais; they are principally sands, but include beds of calciferous clay and banks of shelly sandstone, and are considered to be older than the plastic clay and lignite, and to correspond with the Thanet Sands of England. They are rich in shells, including many Nummulites. At La FÈre, in the Department of the Aisne, a fossil skull of Arctocyon primÆvus, supposed to be related both to the Bear and to the Kinkajou, and to be the oldest known Tertiary Mammal, was found in a deposit of this age. This series seems to have been formed chiefly in fresh water.

The Calcaire grossier, consisting of marine limestones of various kinds, and with a coarse, sometimes compact, grain, is suitable for mason-work. These deposits, which form the most characteristic member of the Paris basin, naturally divide themselves into three groups of strata, characterised, the first, by Nummulites; the second by Miliolites; and the third or upper beds by Cerithia. The beds are also sometimes named Nummulite limestone, Miliolite limestone, and Cerithium limestone. Above these a great mass, generally sandy, is developed. It is marine at the base, and there are indications of brackish water in its upper parts; it is called Beauchamp Sandstone, or Sables Moyens (GrÈs de Beauchamp). These sands are very rich in shells. The siliceous limestone, or lower travertin, is a compact siliceous limestone extending over a wide area, and resembles a precipitate from mineral waters. The gypseous formation consists of a long series of marly and argillaceous beds, of a greyish, green, or white colour, in the intervals between which a thick deposit of gypsum, or sulphate of lime, is intercalated. This gypsum bed is found in its greatest thickness in France at Montmartre and Pantin near Paris. The formation of this gypsum is probably due to the action of free sulphuric acid upon the carbonate of lime of the formation; the sulphuric acid itself being produced by the transformation of the gaseous masses of sulphuretted hydrogen emanating from volcanic vents, into that acid, by the action of air and water. It was, as we have already said, in the gypsum-quarries of Montmartre that the numerous bones of PalÆotherium and Anoplotherium were found. It is exclusively at this horizon that we find the remains of these animals, which seem to have been preceded by the Coryphodon, and afterwards by the Lophiodon; the order of succession in the appearance of these animals is now perfectly established. It may be added that round Paris the Eocene formation, from its lowest beds to the highest, is composed of beds of plastic clay, of the Calcaire grossier with its Nummulites, Miliolites, and Alveolites, followed by the gypseous formation; the series terminating in the Fontainebleau Sandstone, remarkable for its thickness and also for its fine scenery, as well as for its usefulness in furnishing paving-stone for the capital. In Provence the same series of rocks are continued, and attain an enormous thickness. This upper part of the Eocene deposit is entirely of lacustrine formation. Grignon has procured from a single spot, where they were embedded in a calcareous sand, no less than 400 fossils, chiefly formed of comminuted shells, in which, however, were well-preserved species both of marine, terrestrial, and fresh-water shells. Of the Paris basin, Sir Charles Lyell says: “Nothing is more striking in this assemblage of fossil testacea than the great proportion of species referable to the genus Cerithium. There occur no less than 137 species of this genus in the Paris basin, and almost all of them in the Calcaire grossier. Most of the living Cerithia (Figs. 157 and 168) inhabit the sea near the mouths of rivers, where the waters are brackish; so that their abundance in the marine strata now under consideration is in harmony with the hypothesis that the Paris basin formed a gulf into which several rivers flowed.”[88]

Fig. 157.—Cerithium telescopium.
(Living form.)

To give the reader some idea of the formation, first come the limestones and lower marls, which contain fine lignite or wood-coal produced from vegetable matter buried in moist earth, and excluded from all access of air, a material which is worked in some parts of the south of France as actively as a coal-mine. In these lignites Anodon and other fresh-water shells are found.

From the base of Sainte-Victoire to the other side of Aix, we trace a conglomerate characterised by its red colour, but which dies away in its prolongation westward. This conglomerate contains land-snails (Helix) of various sizes, mixed with fresh-water shells. Upon this conglomerate, comprising therein the marls, rests a thick deposit of limestone with the gypsum of Aix and Manosque, which is believed to correspond with that of Paris. Some of the beds are remarkably rich in sulphur. The calcareous marly laminÆ which accompany the gypsum of Aix contain Insects of various kinds, and Fishes resembling Lebias cephalotes. Finally, the whole terminates at Manosque in a fresh series of marls and sandstones, alternating with beds of limestone with LimnÆa and Planorbis. At the base of this series are found three or four beds of lignite more inflammable than coal, which also give out a very sulphurous oil. We may form some estimate of the thickness of this last stage, if we add that, above the beds of fusible lignite, we may reckon sixty others of dry lignite, some of them capable of being very profitably worked if this part of Provence were provided with more convenient roads.

“The Nummulitic formation, with its characteristic fossils,” says Lyell,[89] “plays a far more conspicuous part than any other Tertiary group in the solid framework of the earth’s crust, whether in Europe, Asia, or Africa. It often attains a thickness of many thousand feet, and extends from the Alps to the Carpathians, and is in full force in the north of Africa, as, for example, in Algeria and Morocco. It has been traced from Egypt, where it was largely quarried of old for the building of the Pyramids, into Asia Minor, and across Persia, by Bagdad, to the mouth of the Indus. It occurs not only in Cutch, but in the mountain ranges which separate Scinde from Persia, and which form the passes leading to Caboul; and it has been followed still further eastward into India, as far as eastern Bengal and the frontiers of China.”

“When we have once arrived at the conclusion,” he adds, “that the Nummulitic formation occupies a middle place in the Eocene series, we are struck with the comparatively modern date to which some of the greatest revolutions in the physical geography of Europe, Asia, and northern Africa must be referred. All the mountain chains, such as the Alps, Pyrenees, Carpathians, and Himalayas, into the composition of whose central and loftiest parts the Nummulitic strata enter bodily, could have had no existence till after the Middle Eocene period.”

The Eocene strata, Professor Ramsay thinks, extended in their day much further west, “because,” he says, “here, at the extreme edge of the chalk escarpments, you find outlying fragments of them,” from which he argues that they were originally deposited all over the Chalk as far as these points, but being formed of soft strata they were “denuded” backwards.

The Beloptera represented in Fig. 195 are curious Belemnite-like organisms, occurring in Tertiary strata, and evidently the internal bone of a Cephalopod, having a wing-like projection or process on each side. As a genus it holds a place intermediate between the Cuttle-fish and the Belemnite.

THE MIOCENE PERIOD.

The Miocene formation is not present in England; unless we suppose, with Sir Charles Lyell, that it is represented by the Hempstead beds of the Isle of Wight.

It is on the European continent that we find the most striking characteristics of the Miocene period. In our own islands traces of it are few and far between. In the Island of Mull certain beds of shale, interstratified with basalt and volcanic ash, are described by the Duke of Argyll as of Miocene date;[90] and Miocene clay is found interstratified with bands of imperfect coal at Bovey Tracey. The vegetation which distinguished the period is a mixture of the vegetable forms peculiar to the burning climate of the present tropical Africa, with such as now grow in temperate Europe, such as Palms, Bamboos, various kinds of Laurels, CombretaceÆ (Terminalia), with the grand Leguminales of warm countries (as Phaseolites, Erythrina, Bauhinia, Mimosites, Acacia); ApocyneÆ analogous to the genera of our tropical regions; a Rubiacea altogether tropical (Steinhauera) mingle with some Maples, Walnut-trees, Beeches, Elms, Oaks, and Wych-elms, genera now confined to temperate and even cold countries.

Besides these, there were, during the Miocene period, mosses, mushrooms, charas, fig-trees, plane-trees, poplars, and evergreens. “During the second period of the Tertiary epoch,” says Lecoq, “the AlgÆ and marine Monocotyledons were less abundant than in the preceding age; the Ferns also diminished, the mass of Conifers were reduced, and the Palms multiplied in species. Some of those cited in the preceding period seem still to belong to this, and the magnificent Flabellaria, with the fine Phoenicites, which we see now for the first time, gave animation to the landscape. Among the Conifers some new genera appear; among them we distinguish Podocarpens, a southern form of vegetation of the present age. Almost all the arborescent families have their representatives in the forests of this period, where for the first time types so different are united. The waters are covered with NymphÆa ArithnÆa (Brongniart); and with Myriophyllites capillifolius (Unger); Culmites animalis (Brongniart); and C. Goepperti (Munster), spring up in profusion upon their banks, and the grand Bambusinites sepultana throws the shadow of its long articulated stem across them. Some analogous species occupy the banks of the great rivers of the New World; one Umbellifera is even indicated, by Unger, in the Pimpinellites zizioides.

Of this period date some beds of lignite resulting from the accumulation, for ages, of all these different trees. It seems that arborescent vegetation had then attained its apogee. Some Smilacites interlaced like the wild vines with these grand plants, which fell on the ground where they grew, from decay; some parts of the earth, even now, exhibit these grand scenes of vegetation. They have been described by travellers who have traversed the tropical regions, where Nature often displays the utmost luxury, under the screen of clouds which does not allow the rays of the sun to reach the earth. M. D’Orbigny cites an interesting instance which is much to the point. “I have reached a zone,” he says (speaking of Rio Chapura in South America), “where it rains regularly all the year round. We can scarcely perceive the rays of the sun, at intervals, through the screen of clouds which almost constantly veils it. This circumstance, added to the heat, gives an extraordinary development to the vegetation. The wild vines fall on all sides, in garlands, from the loftiest branches of trees whose summits are lost in the clouds.”

The fossil species of this period, to the number of 133, begin to resemble those which enrich our landscapes. Already tropical plants are associated with the vegetables of temperate climates; but they are not yet the same as existing species. Oaks grow side by side with Palms, the Birch with Bamboos, Elms with Laurels, the Maples are united to the CombretaceÆ, to the Leguminales, and to the tropical RubiaceÆ. The forms of the species, belonging to temperate climates, are rather American than European.

The luxuriance and diversity of the Miocene flora has been employed by a German savant in identifying and classifying the Middle Tertiary or Miocene strata of Switzerland. We are indebted to Professor Heer, of Zurich, for the restoration of more than 900 species of plants, which he classified and illustrated in his “Flora Tertiaria HelvetiÆ.” In order to appreciate the value of the learned Professor’s undertaking, it is only necessary to remark that, where Cuvier had to study the position and character of a bone, the botanist had to study the outline, nervation, and microscopic structure of a leaf. Like the great French naturalist, he had to construct a new science at the very outset of his great work.

Fig. 158

Fig. 158.—Andrias Scheuchzeri.

The Miocene formations of Switzerland are called Molasse (from the French mol, soft), a term which is applied to a soft, incoherent, greenish sandstone, occupying the country between the Alps and the Jura, and they may be divided into lower, middle, and upper Miocene; the middle one is marine, the other two being fresh-water formations. The upper fresh-water Molasse is best seen at Œningen, in the Rhine valley, where, according to Sir Roderick Murchison, it ranges ten miles east and west from Berlingen, on the right bank, to Waugen and to Œningen, near Stein, on the left bank. In this formation Professor Heer enumerates twenty-one beds. No. 1, a bluish-grey marl seven feet thick, without organic remains, resting on No. 2, limestone, with fossil plants, including leaves of poplar, cinnamon, and pond-weed (Potamogeton). No. 3, bituminous rock, with Mastodon angustidens. No. 5, two or three inches thick, containing fossil Fishes. No. 9, the stone in which the skeleton of the great Salamander Andrias Scheuchzeri (Fig. 158) was found. Below this, other strata with Fishes, Tortoises, the great Salamander, as before, with fresh-water Mussels, and plants. In No. 16, Sir R. Murchison obtained the fossil fox of Œningen, Galacynus Œningensis (Owen). In these beds Professor Heer had, as early as 1859, determined 475 species of fossil plants, and 900 insects.

The plants of the Swiss Miocene period have been obtained from a country not one-fifth the size of Switzerland, yet such an abundance of species, which Heer reckons at 3,000, does not exist in any area of equal extent in Europe. It exceeds in variety, he considers, after making every allowance for all not having existed at the same time, and from other considerations, the Southern American forests, and rivals such tropical countries as Jamaica and Brazil. European plants occupy a secondary place, while the evergreen Oaks, Maples, Poplars, and Plane-trees, Robinias, and Taxodiums of America and the smaller Atlantic islands, occupy such an important place in the fossil flora that Unger was induced to suggest the hypothesis, that, in the Miocene period the present basin of the Atlantic was dry land—and this hypothesis has been ably advocated by Heer.


The terrestrial animals which lived in the Miocene period were Mammals, Birds, and Reptiles. Many new Mammals had appeared since the preceding period; among others, Apes, Cheiropteras (Bats), Carnivora, Marsupials, Rodents, Dogs. Among the first we find Pithecus antiquus and Mesopithecus; the Bats, Dogs, and Coati inhabited Brazil and Guiana; the Rats North America; the Genettes, the Marmots, the Squirrels, and Opossums having some affinity to the Opossums of America. Thrushes, Sparrows, Storks, Flamingoes, and Crows, represent the class Birds. Among the Reptiles appear several Snakes, Frogs, and Salamanders. The lakes and rivers were inhabited by Perches and Shad. But it is among the Mammals that we must seek for the most interesting species of animals of this period. They are both numerous and remarkable for their dimensions and peculiarities of form; but the species which appeared in the Miocene period, as in those which preceded it, are now only known by their fossil remains and bones.

The Dinotherium (Fig. 159), one of the most remarkable of these animals, is the largest terrestrial Mammal which has ever lived. For a long time we possessed only very imperfect portions of the skeleton of this animal, upon the evidence of which Cuvier was induced erroneously to place it among the Tapirs. The discovery of a lower jaw, nearly perfect, armed with defensive tusks descending from its lower jaw, demonstrated that this hitherto mysterious animal was the type of an altogether new and singular genus. Nevertheless, as it was known that there were some animals of the ancient world in which both jaws were armed, it was thought for some time that such was the case with the Dinotherium. But in 1836, a head, nearly entire, was found in the already celebrated beds at Eppelsheim, in the Grand Duchy of Hesse Darmstadt. In 1837 this fine fragment was carried to Paris, and exposed to public view. It was nearly a yard and a half long, and above a yard wide. The defences, it was found, were enormous, and were carried at the anterior extremity of the lower maxillary bone, and much curved inwards, as in the Morse. The molar teeth were in many respects analogous to those of the Tapir, and the great suborbital apertures, joined to the form of the nasal bone, rendered the existence of a proboscis or trunk very probable. But the most remarkable bone belonging to the Dinotherium which has yet been found is an omoplate or scapula, which by its form reminds us of that of the Mole.

Fig. 159

Fig. 159.—Dinotherium.

This colossus of the ancient world, respecting which there has been so much argument, somewhat approaches the Mastodon; it seems to announce the appearance of the Elephant; but its dimensions were infinitely greater than those of existing Elephants, and superior even to those of the Mastodon and of the Mammoth, both fossil Elephants, the remains of which we shall have to describe presently.

Fig. 160

Fig. 160.—Teeth of Mastodon.

From its kind of life, and its frugal regimen, this Pachyderm scarcely merited the formidable name of Dinotherium which has been bestowed on it by naturalists (from de????, terrible, ??????, animal). Its size was, no doubt, frightful enough, but its habits seem to have been peaceful. It is supposed to have inhabited fresh-water lakes, or the mouths of great rivers and the marshes bordering their banks by preference. Herbivorous, like the Elephant, it employed its proboscis probably in seizing the plants which hung suspended over the waters, or floated on their surface. We know that the elephants are very partial to the roots of herbaceous plants which grow in flooded plains. The Dinotherium appears to have been organised to satisfy the same tastes. With the powerful natural mattock which Nature had supplied him for penetrating the soil, he would be able to tear from the bed of the river, or lake, feculent roots like those of the NymphÆa, or even much harder ones, for which the mode of articulation of the jaws, and the powerful muscles intended to move them, as well as the large surface of the teeth, so well calculated for grinding, were evidently intended (Fig. 160).


The Mastodon was, to all appearance, very nearly of the size and form of our Elephant—his body, however, being somewhat longer, while his limbs, on the contrary, were a little thicker. He had tusks, and very probably a trunk, and is chiefly distinguished from the existing Elephant by the form of his molar teeth, which form the most distinctive character in his organisation. These teeth are nearly rectangular, and present on the surface of their crown great conical tuberosities, with rounded points disposed in pairs to the number of four or five, according to the species. Their form is very distinct, and may be easily recognised. They do not bear any resemblance to those of the carnivora, but are like those of herbivorous animals, and particularly those of the Hippopotamus. The molar teeth are at first sharp and pointed, but when the conical points are ground down by mastication, they assume the appearance presented in Fig. 161. When, from continued grinding, the conical teat-like points are more deeply worn, they begin to assume the appearance shown in Fig. 160. In Fig. 162 we represent the head and lower jaw of the Miocene Mastodon; from which it will appear that the animal had two projecting tusks in the lower jaw, corresponding with two of much larger dimensions which projected from the upper jaw.

Fig. 161

Fig. 161.—Molar teeth of Mastodon, worn.

It was only towards the middle of the last century that the Mastodon first attracted attention in Europe. About the year 1705, it is true, some bones of this animal had been found at Albany, now the capital of New York, but the discovery attracted little attention. In 1739, a French officer, M. de Longueil, traversed the virgin forests bordering the great river Ohio, in order to reach the great river Mississippi, and the savages who escorted him accidentally discovered on the borders of a marsh various bones, some of which seemed to be those of unknown animals. In this turfy marsh, which the natives designated the Great Salt Lake, in consequence of the many streams charged with salt which lose themselves in it, herds of wild ruminants still seek its banks, attracted by the salt—for which they have a great fondness—such being the reason probably which had caused the accumulation, at this point, of the remains of so large a number of quadrupeds belonging to these remote ages in the history of the globe. M. de Longueil carried some of these bones with him, and, on his return to France, he presented them to Daubenton and Buffon; they consisted of a femur, one extremity of a tusk, and three molar teeth. Daubenton, after mature examination, declared the teeth to be those of a Hippopotamus; the tusk and the gigantic femur, according to his report, belonged to an Elephant; so that they were not even considered to be parts of one and the same animal. Buffon did not share this opinion, and he was not long in converting Daubenton, as well as other French naturalists, to his views. Buffon declared that the bones belonged to an Elephant, whose race had lived only in the primitive ages of the globe. It was then, only, that the fundamental notion of extinct species of animals, exclusively peculiar to ancient ages of the world, began to be entertained for the first time by naturalists—a notion which laid dormant during nearly a century, before it bore the admirable fruits which have since so enriched the natural sciences and philosophy.

Fig. 162

Fig. 162.—Head of the Mastodon of the Miocene period.
A, B, the whole head; C, lower jaw.

Buffon gave the fossil the name of the Animal or Elephant of the Ohio, but he deceived himself as to its size, believing it to be from six to eight times the size of our existing Elephant; an estimate which he was led to make by an erroneous notion with regard to the number of the Elephant’s teeth. The Animal of the Ohio had only four molars, while Buffon imagined that it might have as many as sixteen, confounding the germs, or supplementary teeth, which exist in the young animal, with the permanent teeth of the adult individual. In reality, however, the Mastodon was not much larger than the existing species of African Elephant.

The discovery of this animal had produced a great impression in Europe. Becoming masters of Canada by the peace of 1763, the English sought eagerly for more of these precious remains. The geographer Croghan traversed anew the region of the Great Salt Lake, pointed out by De Longueil, and found there some bones of the same nature. In 1767 he forwarded many cases to London, addressing them to divers naturalists. Collinson, among others, the friend and correspondent of Franklin, who had his share in this consignment, took the opportunity of sending a molar tooth to Buffon.

Fig. 163

Fig. 163.—Skeleton of Mastodon giganteus.

It was not, however, till 1801 that the remains of the perfect skeleton were discovered. An American naturalist, named Peale, was fortunate enough to get together two nearly complete skeletons of this important animal. Having been apprised that many large bones had been found in the marly clay on the banks of the Hudson, near Newburg, in the State of New York, Mr. Peale proceeded to that locality. In the spring of 1801 a considerable part of one skeleton was found by the farmer who had dug it out of the ground, but, unfortunately, it was much mutilated by his awkwardness, and by the precipitancy of the workmen. Having purchased these fragments, Mr. Peale sent them on to Philadelphia.

Fig. 164

Fig. 164.—Mastodon restored.

In a marsh, situated five leagues west of the Hudson, the same gentleman discovered, six months after, a second skeleton of the Mastodon, consisting of a perfect jaw and a great number of bones. With the bones thus collected, the naturalist managed to construct two nearly complete skeletons. One of these still remains in the Museum of Philadelphia; the other was sent to London, where it was exhibited publicly.

Fig. 165

Fig. 165.—Molar tooth of Mastodon.

Discoveries nearly analogous to these followed, the most curious of which was made in this manner by Mr. Barton, a Professor of the University of Pennsylvania. At a depth of six feet in the ground, and under a great bank of chalk, bones of the Mastodon were found sufficient to form a skeleton. One of the teeth found weighed about seventeen pounds (Fig. 165); but the circumstance which made this discovery the more remarkable was, that in the middle of the bones, and enveloped in a kind of sac which was probably the stomach of the animal, a mass of vegetable matter was discovered, partly bruised, and composed of small leaves and branches, among which a species of rush has been recognised which is yet common in Virginia. We cannot doubt that these were the undigested remains of the food, which the animal had browsed on just before its death.

The aboriginal natives of North America called the Mastodon the father of the ox. A French officer named Fabri wrote thus to Buffon in 1748. The natives of Canada and Louisiana, where these remains are abundant, speak of the Mastodon as a fantastic creature which mingles in all their traditions and in their ancient national songs. Here is one of these songs, which Fabri heard in Canada: “When the great Manitou descended to the earth, in order to satisfy himself that the creatures he had created were happy, he interrogated all the animals. The bison replied that he would be quite contented with his fate in the grassy meadows, where the grass reached his belly, if he were not also compelled to keep his eyes constantly turned towards the mountains to catch the first sight of the father of oxen, as he descended, with fury, to devour him and his companions.”

The Cheyenne Indians have a tradition that these great animals lived in former times, conjointly with a race of men whose size was proportionate to their own, but that the Great Being destroyed both by repeated strokes of his terrible thunderbolts.

The native Indians of Virginia had another legend. As these gigantic Elephants destroyed all other animals specially created to supply the wants of the Indians, God, the thunderer, destroyed them; a single one only succeeded in escaping. It was “the great male, which presented its head to the thunderbolts and shook them off as they fell; but being at length wounded in the side, he took to flight towards the great lakes, where he remains hidden to this day.” All these simple fictions prove, at least, that the Mastodon has lived upon the earth at some not very distant period. We shall see, in fact, that it was contemporaneous with the Mammoth, which, it is now supposed, may have been co-existent with the earlier races of mankind, or only preceded a little the appearance of man.

Buffon, as we have said, gave to this great fossil animal the name of the Elephant of the Ohio; it has also been called the Mammoth of the Ohio. In England it was received with astonishment. Dr. Hunter showed clearly enough, from the thigh-bone and the teeth, that it was no Elephant; but having heard of the existence of the Siberian Mammoth, he at once came to the conclusion that they were bones of that animal. He then declared the teeth to be carnivorous, and the idea of a carnivorous elephant became one of the wonders of the day. Cuvier at once dissipated the clouds of doubt which surrounded the subject, pointing out the osteological differences between the several species, and giving to the American animal the appropriate name of Mastodon (from ast??, a teat, and ?d???, a tooth), or teat-like-toothed animal.

Many bones of the Mastodon have been found in America since that time, but remains are rarely met with in Europe, except as fragments—as the portion of a jaw-bone discovered in the Red Crag near Norwich, which Professor Owen has named Mastodon angustidens. It was even thought, for a long time, with Cuvier, that the Mastodon belonged exclusively to the New World; but the discovery of many of the bones mixed with those of the Mammoth, (Elephas primigenius) has dispelled that opinion. Bones of Mastodon have been found in great numbers in the Val d’Arno. In 1858 a magnificent skeleton was discovered at Turin.

The form of the teeth of the Mastodon shows that it fed, like the Elephant, on the roots and succulent parts of vegetables; and this is confirmed by the curious discovery made in America by Barton. It lived, no doubt, on the banks of rivers and on moist and marshy lands. Besides the great Mastodon of which we have spoken, there existed a Mastodon one-third smaller than the Elephant, and which inhabited nearly all Europe.

There are some curious historical facts in connection with the remains of the Mastodon which ought not to be passed over in silence. On the 11th of January, 1613, the workmen in a sand-pit situated near the Castle of Chaumont, in Dauphiny, between the cities of Montricourt and Saint-Antoine, on the left bank of the RhÔne, found some bones, many of which were broken up by them. These bones belonged to some great fossil Mammal, but the existence of such animals was at that time wholly unknown. Informed of the discovery, a country surgeon named Mazuyer purchased the bones, and gave out that he had himself discovered them in a tomb, thirty feet long by fifteen broad, built of bricks, upon which he found the inscription Teutobocchus Rex. He added that, in the same tomb, he found half a hundred medals bearing the effigy of Marius. This Teutobocchus was a barbarian king, who invaded Gaul at the head of the Cimbri, and who was vanquished near AquÆ SextiÆ (Aix in Provence) by Marius, who carried him to Rome to grace his triumphal procession. In the notice which he published in confirmation of this story, Mazuyer reminded the public that, according to the testimony of Roman authors, the head of the Teuton king exceeded in dimensions all the trophies borne upon the lances in the triumph. The skeleton which he exhibited was five-and-twenty feet in length and ten broad.

Mazuyer showed the skeleton of the pretended Teutobocchus in all the cities of France and Germany, and also to Louis XIII., who took great interest in contemplating this marvel. It gave rise to a long controversy, or rather an interminable dispute, in which the anatomist Riolan distinguished himself—arguing against Habicot, a physician, whose name is all but forgotten. Riolan attempted to prove that the bones of the pretended king were those of an Elephant. Numerous pamphlets were exchanged by the two adversaries, in support of their respective opinions. We learn also from Gassendi, that a Jesuit of Tournon, named Jacques Tissot, was the author of the notice published by Mazuyer. Gassendi also proves that the pretended medals of Marius were forgeries, on the ground that they bore Gothic characters. It seems very strange that these bones, which are still preserved in the cases of the Museum of Natural History in Paris, where anybody may see them, should ever have been mistaken, for a single moment, for human remains. The skeleton of Teutobocchus remained at Bordeaux till 1832, when it was sent to the Museum of Natural History in Paris, where M. de Blainville declared that it belonged to a Mastodon.

Fig. 166

Fig. 166.—Skeleton of Mesopithecus.

The Apes made their appearance at this period. In the ossiferous beds of Sansan M. Lartet discovered the Dryopithecus, as well as Pithecus antiquus, but only in imperfect fragments. M. Albert Gaudry was more fortunate: in the Miocene rocks of Pikermi, in Greece, he discovered the entire skeleton of Mesopithecus, which we present here (Fig. 166), together with the same animal restored (Fig. 167). In its general organisation it resembles the dog-faced baboon or ape, a piece of information which has guided the artist in the restoration of the animal.

Fig. 167

Fig. 167.—Mesopithecus restored. One-fifth natural size.


The seas of the Miocene period were inhabited by great numbers of beings altogether unknown in earlier formations; we may mention no less than ninety marine genera which appear here for the first time, and some of which have lived down to our epoch. Among these, the molluscous Gasteropods, such as Conus, Turbinella, Ranella, Murex (Fig. 169), and Dolium are the most abundant; with many Lamellibranchiata.

Fig. 168

Fig. 168.—Cerithium plicatum.

Fig. 169

Fig. 169.—Murex Turonensis.

Fig. 170

Fig. 170.—Ostrea longirostris. One quarter natural size.
Living form.

The Foraminifera are also represented by new genera, among which are the Bolivina, Polystomella, and Dentritina.

Plate XXIV

XXIV.—Ideal Landscape of the Miocene Period.

Finally, the Crustaceans include the genera Pagurus (or the Hermit crabs); Astacus. (the lobster); and Portunus (or paddling crabs). Of the first, it is doubtful if any fossil species have been found; of the last, species have been discovered bearing some resemblance to Podophthalmus vigil, as P. Defrancii, which only differs from it in the absence of the sharp spines which terminate the lateral angles of the carapace in the former; while Portunus leucodon (Desmarest) bears some analogy to Lupea.


Fig. 171

Fig. 171.—Podophthalmus vigil.

An ideal landscape of the Miocene period, which is given on the opposite page (Plate XXIV.), represents the Dinotherium lying in the marshy grass, the Rhinoceros, the Mastodon, and an Ape of great size, the Dryopithecus, hanging from the branches of a tree. The products of the vegetable kingdom are, for the greater part, analogous to those of the present time. They are remarkable for their abundance, and for their graceful and serried vegetation; and still remind us in some respects, of the vegetation of the Carboniferous period. It is, in fact, a continuation of the characteristics of that period, and from the same cause, namely, the submersion of land under marshy waters, which has given birth to a sort of coal which is often found in the Miocene formation, and which we call lignite. This imperfect coal does not quite resemble that of the Carboniferous, or true Coal-measure period, because it is of much more recent date, and because it has not been subjected to the same internal heat, accompanied by the same pressure of superincumbent strata, which produced the older coal-beds of the Primary epoch.

Fig. 172

Fig. 172.—Lupea pelagica.

The lignites, which we find in the Miocene, as in the Eocene period, constitute, however, a combustible which is worked and utilised in many countries, especially in Germany, where it is made in many places to serve in place of coal. These beds sometimes attain a thickness of above twenty yards, but in the environs of Paris they form beds of a few inches only, which alternate with clays and sands. We cannot doubt that lignites, like true coal, are the remains of the buried forests of an ancient world; in fact, the substance of the woods of our forests, often in a state perfectly recognisable, is frequently found in the lignite beds; and the studies of modern botanists have demonstrated, that the species of which the lignites are formed, belong to a vegetation closely resembling that of Europe in the present day.

Another very curious substance is found with the lignite—yellow amber. It is the mineralised resin, which flowed from certain extinct pine-trees of the Tertiary epoch; the waves of the Baltic Sea, washing the amber out of the deposits of sand and clay in which it lies buried, this substance, being very little heavier than water, is thrown by the waves upon the shore. For ages the Baltic coast has supplied commerce with amber. The Phoenicians ascended its banks to collect this beautiful fossil resin, which is now chiefly found between Dantzic and Memel, where it is a government monopoly in the hands of contractors, who are protected by a law making it theft to gather or conceal it.

Amber,[91] while it has lost none of its former commercial value, is, besides, of much palÆontological interest; fossil insects, and other extraneous bodies, are often found enclosed in the nodules, where they have been preserved in all their original colouring and integrity of form. As the poet says—

“The things themselves are neither rich nor rare,
The wonder’s how the devil they got there.”

The natural aromatic qualities of the amber combined with exclusion of air, &c., have embalmed them, and thus transmitted to our times the smaller beings and the most delicate organisms of earlier ages.

The Miocene rocks, of marine origin, are very imperfectly represented in the Paris basin, and their composition changes with the localities. They are divided into two groups of beds: 1. Molasse, or soft clay; 2. Faluns, or shelly marl.

In the Paris basin the Molasse presents, at its base, quartzose sands of great thickness, sometimes pure, sometimes a little argillaceous or micaceous. They include beds of sandstone (with some limestone), which are worked in the quarries of Fontainebleau, d’Orsay, and Montmorency, for paving-stone for the streets of Paris and the neighbouring towns. This last formation is altogether marine. To these sands and sandstones succeeds a fresh-water deposit, formed of a whitish and partly siliceous limestone, which forms the ground of the plateau of La Beauce, between the valleys of the Seine and the Loire: this is called the Calcaire de la Beauce. It is there mixed with a reddish and more or less sandy clay, containing small blocks of burrh-stone used for millstones, easily recognised by their yellow-ochreous colour, and the numerous cavities or hollows with which their texture is honeycombed.

This grit, or silex meulier, is much used in Paris for the arches of cellars, underground conduits, sewers, &c.

The Faluns in the Paris basin consist of divers beds formed of shells and Corals, almost entirely broken up. In many parts of the country, and especially in the environs of Tours and Bordeaux, they are dug out for manuring the land. To the Falun series belong the fresh-water marl, limestone, and sand, which composed the celebrated mound of Sansan, near Auch, in the Department of Gers, in which M. Lartet found a considerable number of bones of Turtles, Birds, and especially Mammals, such as Mastodon and Dinotherium, together with a species of long-armed ape, which he named Pithecus antiquus, from the circumstance of its affording the earliest instance of the discovery of the remains of the quadrumana, or monkey-tribe, in Europe. Isolated masses of Faluns occur, also, near the mouth of the Loire and to the south of Tours, and in Brittany.

Fig. 173

Fig. 173.—Caryophylla cyathus.

PLIOCENE PERIOD.

This last period of the Tertiary epoch was marked, in some parts of Europe, by great movements of the terrestrial crust, always due to the same cause—namely, the continual and gradual cooling of the globe. This leads us to recall what we have repeatedly stated, that this cooling, during which the outer zone of the fluid mass passed to the solid state, produced irregularities and inequalities in the external surface, sometimes accompanied by fractures through which the semi-fluid or pasty matter poured itself; leading afterwards to the upheaval of mountain ranges through these gaping chasms. Thus, during the Pliocene period, many mountains and mountain-chains were formed in Europe by basaltic and volcanic eruptions. These upheavals were preceded by sudden and irregular movements of the elastic mass of the crust—by earthquakes, in short—phenomena which have been already sufficiently explained.


In order to understand the nature of the vegetation of the period, as compared with that with which we are familiar, let us listen to M. Lecoq: “Arrived, finally,” says that author, “at the last period which preceded our own epoch—the epoch in which the temperate zones were still embellished by tropical forms of vegetation, which were, however, slowly declining, driven out as it were by a cooling climate and by the invasion of more vigorous species—great terrestrial commotions took place: mountains are covered with eternal snow; continents now take their present forms; but many great lakes, now dried up, still existed; great rivers flowed majestically through smiling countries, whose surface man had not yet come to modify.

“Two hundred and twelve species compose this rich flora, in which the Ferns of the earlier ages of the world are scarcely indicated, where the Palms seem to have quite disappeared, and we see forms much more like those which are constantly under our observation. The Culmites arundinaceus (Unger) abounds near the water, where also grows the Cyperites tertiarius (Unger), where floats Dotamogeton geniculatus (Braun), and where we see submerged Isoctites Brunnii (Unger). Great Conifers still form the forests. This fine family has, as we have seen, passed through every epoch, and still presents us with its elegant forms and persistent evergreen foliage; Taxodites, Thuyoxylum, Abietites, Pinites, Eleoxylon, and Taxites being still the forms most abundant in these old natural forests.

“The predominating character of this period is the abundance of the group of the AmentaceÆ; whilst the Conifers are thirty-two in number, of the other we reckon fifty-two species, among which are many European genera, such as Alnus; Quercus, the oak; Salix, the willow; Fagus, the beech; Betula, the birch, &c.

“The following families constitute the arborescent flora of the period besides those already mentioned:—BalsaminaceÆ, LauraceÆ, ThymelÆaceÆ, SantalaceÆ, CornaceÆ, MyrtaceÆ, CalycanthaceÆ, PomaceÆ, RosaceÆ, AmygdaleÆ, LeguminosÆ, AnacardiaceÆ, JuglandaceÆ, RhamnaceÆ, CelastrinaceÆ, SapindaceÆ, MeliaceÆ, AceraceÆ, TiliaceÆ, MagnoliaceÆ, CapparidaceÆ, SapoteaceÆ, StyracaceÆ, OleaceÆ, JuncaceÆ, EricaceÆ.

“In all these families great numbers of European genera are found, often even more abundant in species than now. Thus, as Brongniart observes, in this flora we reckon fourteen species of Maple; three species of Oak; and these species proceed from two or three very circumscribed localities, which would not probably, at the present time, represent in a radius of several leagues more than three or four species of these genera.”

An important difference distinguishes the Pliocene flora, as compared with those of preceding epochs, it is the absence of the family of Palms in the European flora, as noted by Lecoq, which forms such an essential botanical feature in the Miocene period. We mention this, because, in spite of the general analogy which exists between the vegetation of the Pliocene period and that of temperate regions in the present day, it does not appear that there is a single species of the former period absolutely identical with any one now growing in Europe. Thus, the European vegetation, even at the most recent geological epoch, differs specifically from the vegetation of our age, although a general resemblance is observable between the two.

Fig. 174

Fig. 174.—Skeleton of the Mastodon of Turin.

The terrestrial animals of the Pliocene period present us with a great number of creatures alike remarkable from their proportions and from their structure. The Mammals and the batrachian Reptiles are alike deserving of our attention in this epoch. Among the former the Mastodon, which makes its first appearance in the Miocene formations, continues to be found, but becomes extinct apparently before we reach the upper beds. Others present themselves of genera totally unknown till now, some of them, such as the Hippopotamus, the Camel, the Horse, the Ox, and the Deer, surviving to the present day. The fossil horse, of all animals, is perhaps that which presents the greatest resemblance to existing individuals; but it was small, not exceeding the ass in size.

The Mastodon, which we have considered in our description of the preceding period, still existed in Pliocene times; in Fig. 174 the species living in this latter age is represented—it is called the Mastodon of Turin. As we see, it has only two projecting tusks or defences in the upper jaw, instead of four, like the American species, which is described in page 343. Other species belonging to this period are not uncommon; the portion of an upper jaw-bone with a tooth which was found in the Norwich Crag at Postwick, near Norwich, Dr. Falconer has shown to be a Pliocene species, first observed in Auvergne, and named by Messrs. Croizet and Jobert, its discoverers, Mastodon Arvernensis.

The Hippopotamus, Tapir, and Camel, which appear during the Pliocene period, present no peculiar characteristics to arrest our attention.

The Apes begin to abound in species; the Stags were already numerous.

Fig. 175.—Head of Rhinoceros tichorhinus, partly restored under the direction of Eugene Deslongchamps.

The Rhinoceros, which made its appearance in the Miocene period, appears in greater numbers in the Pliocene deposits. The species peculiar to the Tertiary epoch is R. tichorhinus, which is descriptive of the bony partition which separated its two nostrils, an anatomical arrangement which is not found in our existing species. Two horns surmount the nose of this animal, as represented in Fig. 175. Two living species, namely, the Rhinoceros of Africa and Sumatra, have two horns, but they are much smaller than those of R. tichorhinus. The existing Indian Rhinoceros has only one horn.

The body of R. tichorhinus was covered with very thick hair, and its skin was without the rough and callous scales which we remark on the skin of the living African species.

Contemporaneously with this gigantic species there existed a dwarf species about the size of our Hog; and along with it several intermediate species, whose bones are found in sufficient numbers to enable us to reconstruct the skeleton. The curvature of the nasal bone of the fossil Rhinoceros and its gigantic horn have given rise to many tales and popular legends. The famous bird, the Roc, which played so great a part in the fabulous myths of the people of Asia, originated in the discovery in the bosom of the earth of the cranium and horns of a fossil Rhinoceros. The famous dragons of western tradition have a similar origin.

In the city of Klagenfurth, in Carinthia, is a fountain on which is sculptured the head of a monstrous dragon with six feet, and a head surmounted by a stout horn. According to the popular tradition still prevalent at Klagenfurth, this dragon lived in a cave, whence it issued from time to time to frighten and ravage the country. A bold cavalier kills the dragon, paying with his life for this proof of his courage. It is the same legend which is current in every country, from that of the valiant St. George and the Dragon and of St. Martha, who nearly about the same age conquered the fabulous Tarasque of the city of Languedoc, which bears the name of Tarascon.

But at Klagenfurth the popular legend has happily found a mouth-piece—the head of the pretended dragon, killed by the valorous knight, is preserved in the HÔtel de Ville, and this head has furnished the sculptor for his fountain with a model for the head of his statue. Herr Unger, of Vienna, recognised at a glance the cranium of the fossil Rhinoceros; its discovery in some cave had probably originated the fable of the knight and the dragon. And all legends are capable of some such explanation when we can trace them back to their sources, and reason upon the circumstances on which they are founded.

The traveller Pallas gives a very interesting account of a Rhinoceros tichorhinus which he saw, with his own eyes, taken out of the ice in which its skin, hair, and flesh had been preserved. It was in December, 1771, that the body of the Rhinoceros was observed buried in the frozen sand upon the banks of the Viloui, a river which discharges itself into the Lena below Yakutsk, in Siberia, in 64° north latitude. “I ought to speak,” the learned naturalist says, “of an interesting discovery which I owe to the Chevalier de Bril. Some Yakouts hunting this winter near the Viloui found the body of a large unknown animal. The Sieur Ivan Argounof, inspector of the Zimovic, had sent on to Irkutsk the head and a fore and hind foot of the animal, all very well preserved.” The Sieur Argounof, in his report, states that the animal was half buried in the sand; it measured as it lay three ells and three-quarters Russian in length, and he estimated its height at three and a half; the animal, still retaining its flesh, was covered with skin which resembled tanned leather; but it was so decomposed that he could only remove the fore and hind foot and the head, which he sent to Irkutsk, where Pallas saw them. “They appeared to me at first glance,” he says, “to belong to a Rhinoceros; the head especially was quite recognisable, since it was covered with its leathery skin, and the skin had preserved all its external characters, and many short hairs. The eyelids had even escaped total decay, and in the cranium here and there, under the skin, I perceived some matter which was evidently the remains of putrefied flesh. I also remarked in the feet the remains of the tendons and cartilages where the skin had been removed. The head was without its horn, and the feet without hoofs. The place of the horn, and the raised skin which had surrounded it, and the division which existed in both the hind and fore feet, were evident proofs of its being a Rhinoceros. In a dissertation addressed to the Academy of St. Petersburg, I have given a full account of this singular discovery. I give there reasons which prove that a Rhinoceros had penetrated nearly to the Lena, in the most northern regions, and which have led to the discovery of the remains of other strange animals in Siberia. I shall confine myself here to a description of the country where these curious remains were found, and to the cause of their long preservation.

“The country watered by the Viloui is mountainous; all the stratification of these mountains is horizontal. The beds consist of selenitic and calcareous schists and beds of clay, mixed with numerous beds of pyrites. On the banks of the Viloui we meet with coal much broken; probably coal-beds exist higher up near to the river. The brook KemtendoÏ skirts a mountain entirely formed of selenite or crystallised sulphate of lime and of rock-salt, and this mountain of alabaster is more than 300 versts (about 200 miles), in ascending the Viloui, from the place where the Rhinoceros was found. Opposite to the place we see, near the river, a low hill, about a hundred feet high, which, though sandy, contains some beds of millstone. The body of the Rhinoceros had been buried in coarse gravelly sand near this hill, and the nature of the soil, which is always frozen, had preserved it. The soil near the Viloui never thaws to a great depth, for, although the rays of the sun soften the soil to the depth of two yards in the more elevated sandy places, in the valleys, where the soil is half sand and half clay, it remains frozen at the end of summer half an ell below the surface. Without this intense cold the skin of the animal and many parts of it would long since have perished. The animal could only have been transported from some southern country to the frozen north at the epoch of the Deluge, for the most ancient chronicles speak of no changes of the globe more recent, to which we could attribute the deposit of these remains and of the bones of elephants which are found dispersed all over Siberia.”[92]

In this extract the author refers to a memoir previously published by himself, in the “Commentarii” of the Academy of St. Petersburg. This memoir, written in Latin, and entitled “Upon some Animals of Siberia,” has never been translated. After some general considerations, the author thus relates the circumstances attending the discovery of the fossil Rhinoceros, with some official documents affirming their correctness, and the manner in which the facts were brought under his notice by the Governor of Irkutsk, General Bril: “The skin and tendons of the head and feet still preserved considerable flexibility, imbued as it were with humidity from the earth; but the flesh exhaled a fetid ammoniacal odour, resembling that of a latrine. Compelled to cross the BaÏkal Lake before the ice broke up, I could neither draw up a sufficiently careful description nor make sketches of the parts of the animal; but I made them place the remains, without leaving Irkutsk, upon a furnace, with orders that after my departure they should be dried by slow degrees and with the greatest care, continuing the process for some time, because the viscous matter which incessantly oozed out could only be dissipated by great heat. It happened, unfortunately, that during the operation the posterior part of the upper thigh and the foot were burnt in the overheated furnace, and they were thrown away; the head and the extremity of the hind foot only remained intact and undamaged by the process of drying. The odour of the softer parts, which still contained viscous matter in their interior, was changed by the desiccation into one resembling that of flesh decomposed in the sun.

“The Rhinoceros to which the members belonged was neither large for its species nor advanced in age, as the bones of the head attest, yet it was evidently an adult from the comparison made of the size of the cranium as compared with that of others of the same species more aged, which were afterwards found in a fossil state in divers parts of Siberia. The entire length of the head from the upper part of the nape of the neck to the extremity of the denuded bone of the jaw was thirty inches; the horns were not with the head, but we could still see evident vestiges of two horns, the nasal and frontal. The front, unequal and a little protuberant between the orbits, and of a rhomboidal egg-shape, is deficient in the skin, and only covered by a light horny membrane, bristling with straight hairs as hard as horn.

“The skin which covers the greater part of the head is in the dried state, a tenacious, fibrous substance, like curried leather, of a brownish-black on the outside and white in the inside; when burnt, it had the odour of common leather; the mouth, in the place where the lips should have been soft and fleshy, was putrid and much lacerated; the extremities of the maxillary bone were bare. Upon the left side, which had probably been longest exposed to the air, the skin was here and there decomposed and rubbed on the surface; nevertheless, the greater part of the mouth was so well preserved on the right side that the pores, or little holes from which doubtless the hairs had fallen, were still visible all over that side, and even in front. In the right side of the jaw there were still in certain places numerous hairs grouped in tufts, for the most part rubbed down to the roots, and here and there of two or three lines still retaining their full length. They stand erect, are stiff, and of an ashy colour, but with one or two black, and a little stiffer than the others, in each bunch.

“What was most astonishing, however, was the fact that the skin which covered the orbits of the eyes, and formed the eyelids, was so well preserved and so healthy that the openings of the eyelids could be seen, though deformed and scarcely penetrable to the finger; the skin which surrounded the orbits, though desiccated, formed circular furrows. The cavities of the eyes were filled with matter, either argillaceous or animal, such as still occupied a part of the cavity of the cranium. Under the skin the fibres and tendons still remained, and above all the remains of the temporal muscles; finally, in the throat hung some great bundles of muscular fibres. The denuded bones were young and less solid than in other fossil crania of the same species. The bone which gave support to the nasal horn was not yet attached to the vomer; it was unprovided with articulations like the processes of the young bones. The extremities of the jaws preserved no vestige either of teeth or sockets, but they were covered here and there with the remains of the integument. The first molar was distant about four inches from the extreme edge of the jaw.

“The foot which remains to me, and which, if I am not mistaken, belongs to the left hind limb, has not only preserved its skin quite intact and furnished with hairs, or their roots, as well as the tendons and ligaments of the heel in all their strength, but also the skin itself quite whole as far as the bend in the knee. The place of the muscles was filled with black mud. The extremity of the foot is cloven into three angles, the bony parts of which, with the periosteum, still remain here and there; the horny hoofs had been detached. The hairs adhering in many places to the skin were from one to three lines in length, tolerably stiff and ash-coloured. What remains of it proves that the foot was covered with bunches of hair, which hung down.

“We have never, so far as I know, observed so much hair on any rhinoceros which has been brought to Europe in our times, as appears to have been presented by the head and feet we have described. I leave you then to decide if our rhinoceros of the Lena was born or not in the temperate climate of Central Asia. In fact, the rhinoceros, as I gather from the relations of travellers, belongs to the forests of Northern India; and it is likely enough that these animals differ in a more hairy skin from those which live in the burning zones of Africa, just in the same way that other animals of a hotter climate are less warmly covered than those of the same genera in temperate countries.”[93]

Of all fossil ruminants one of the largest and most singular is the Sivatherium, whose remains have been found in the valley of Murkunda, in the Sewalik branch of the Sub-Himalayan Mountains. Its name is taken from that of Siva, the Indian deity worshipped in that part of India.

The Sivatherium giganteum had a body as bulky as that of an ox, and bore a sort of resemblance to the living Elk. It combined in itself the characteristics of different kinds of Herbivores, at the same time that it was marked by individual peculiarities. The massive head possessed four deciduous, hollow horns, like the Prongbuck; two front ones conical, smooth, and rapidly rising to a point, and two hinder ones of larger size, and branched, projected forward above the eyes.[94] Thus it differed from the deer, whose solid horns annually drop off, and from the antelope tribe, sheep and oxen, whose hollow horns are persistent, and resembled only one living ruminant, the prongbuck, in having had hollow horns subject to shedding. Fig. 176 is a representation of the Sivatherium restored, in so far, at least, as it is possible to do so in the case of an animal of which only the cranium and a few other bones have been discovered.

Fig. 176

Fig. 176.—Sivatherium restored.

As if to rival these gigantic Mammals, great numbers of Reptiles seem to have lived in the Pliocene period, although they are no longer of the same importance as in the Secondary epoch. Only one of these, however, need occupy our attention, it is the Salamander. The living Salamanders are amphibious Batrachians, with smooth skins, and rarely attaining the length of twenty inches. The Salamander of the Tertiary epoch had the dimensions of a Crocodile; and its discovery opens a pregnant page in the history of geology. The skeleton of this Reptile was long considered to be that of a human victim of the deluge, and was spoken of as “homo diluvii testis.” It required all the efforts of Camper and Cuvier to eradicate this error from the minds of the learned, and probably in the minds of the vulgar it survived them both.

Upon the left bank of the Rhine, not far from Constance, a little above Stein, and near the village of Œningen, in Switzerland, there are some fine quarries of schistose limestone. In consequence of their varied products these quarries have often been described by naturalists; they are of Tertiary age, and were visited, among others, by Horace de Saussure, by whom they are described in the third volume of his “Voyage dans les Alpes.”

In 1725, a large block of stone was found, incrusted in which a skeleton was discovered, remarkably well preserved; and Scheuchzer, a Swiss naturalist of some celebrity, who added to his scientific pursuits the study of theology, was called upon to give his opinion as to the nature of this relic of ancient times. He thought he recognised in the skeleton that of a man. In 1726 he published a description of these fossil remains in the “Philosophical Transactions” of London; and in 1731 he made it the subject of a special dissertation, entitled “Homo diluvii testis”—Man, a witness of the Deluge. This dissertation was accompanied by an engraving of the skeleton. Scheuchzer returned to the subject in another of his works, “Physica Sacra,” saying: “It is certain that this schist contains the half, or nearly so, of the skeleton of a man; that the substance even of the bones, and, what is more, of the flesh and of parts still softer than the flesh, are there incorporated in the stone; in a word, it is one of the rarest relics which we have of that accursed race which was buried under the waters. The figure shows us the contour of the frontal bone, the orbits with the openings which give passage to the great nerves of the fifth pair. We see there the remains of the brain, of the sphenoidal bone, of the roots of the nose, a notable fragment of the maxillary bone, and some vestiges of the liver.”

And our pious author exclaims, this time taking the lyrical form—

“BetrÜbtes BeingerÜst von einem altem SÜnder
Erweiche, Stein, das Herz der neuen Bosheitskinder!”
“O deplorable skeleton of an accursed ancient,
Mayst thou soften the hearts of the late children of wickedness!”

The reader has before him the fossil of the Œningen schist (Fig. 177). It is obviously impossible to see in this skeleton what the enthusiastic savant wished to perceive. And we can form an idea from this instance, of the errors to which a preconceived idea, blindly followed, may sometimes lead. How a naturalist of such eminence as Scheuchzer could have perceived in this enormous head, and in these upper members, the least resemblance to the osseous parts of a man is incomprehensible!

Fig. 177

Fig. 177.—Andrias Scheuchzeri.

The Pre-Adamite “witness of the deluge” made a great noise in Germany, and no one there dared to dispute the opinion of the Swiss naturalist, under his double authority of theologian and savant. This, probably, is the reason why Gesner in his “TraitÉ des PÉtrifactions,” published in 1758, describes with admiration the fossil of Œningen, which he attributes, with Scheuchzer, to the antediluvian man.

Pierre Camper alone dared to oppose this opinion, which was then universally professed throughout Germany. He went to Œningen in 1787 to examine the celebrated fossil animal; he had no difficulty in detecting the error into which Scheuchzer had fallen. He recognised at once that it was a Reptile; but he deceived himself, nevertheless, as to the family to which it belonged; he took it for a Saurian. “A petrified lizard,” Camper wrote; “could it possibly pass for a man?” It was left to Cuvier to place in its true family the fossil of Œningen; in a memoir on the subject he demonstrated that this skeleton belonged to one of the amphibious batrachians called Salamanders. “Take,” he says in his memoir, “a skeleton of a Salamander and place it alongside the fossil, without allowing yourself to be misled by the difference of size, just as you could easily do in comparing a drawing of the salamander of the natural size with one of the fossil reduced to a sixteenth part of its dimensions, and everything will be explained in the clearest manner.”

“I am even persuaded,” adds the great naturalist, in a subsequent edition of this memoir, “that, if we could re-arrange the fossil and look closer into the details, we should find still more numerous proofs in the articular faces of the vertebrÆ, in those of the jaws, in the vestiges of very small teeth, and even in the labyrinth of the ear.” And he invited the proprietors or depositaries of the precious fossil to proceed to such an examination. Cuvier had the gratification of making, personally, the investigation he suggested. Finding himself at Haarlem, he asked permission of the Director of the Museum to examine the stone which contained the supposed fossil man. The operation was carried on in the presence of the director and another naturalist. A drawing of the skeleton of a Salamander was placed near the fossil by Cuvier, who had the satisfaction of recognising, as the stone was chipped away under the chisel, each of the bones, announced by the drawing, as they made their appearance. In the natural sciences there are few instances of such triumphant results—few demonstrations so satisfactory as this, of the certitude of the methods of observation and induction on which palÆontology is based.


During the Pliocene period Birds of very numerous species, and which still exist, gave animation to the vast solitudes which man had not yet occupied. Vultures and Eagles, among the rapacious birds; and among other genera of birds, gulls, swallows, pies, parroquets, pheasants, jungle-fowl, ducks, &c.


In the marine Pliocene fauna we see, for the first time, aquatic Mammals or Cetaceans—the Dolphin and BalÆna belonging to the period. Very little, however, is known of the fossil species belonging to the two genera. Some bones of Dolphins, found in different parts of France, apprise us, however, that the ancient species differed from those of our days. The same remark may be made respecting the Narwhal. This Cetacean, so remarkable for its long tusk, or tooth, in the form of a horn, has at all times been an object of curiosity.

The Whales, whose remains are found in the Pliocene rocks, differ little from those now living. But the observations geologists have been able to make upon these gigantic remains of the ancient world are too few to allow of any very precise conclusion. It is certain, however, that the fossil differs from the existing Whale in certain characters drawn from the bones of the cranium. The discovery of an enormous fragment of a fossil Whale, made at Paris in 1779, in the cellar of a wine-merchant in the Rue Dauphine, created a great sensation. Science pronounced, without much hesitation, on the true origin of these remains; but the public had some difficulty in comprehending the existence of a whale in the Rue Dauphine. It was in digging some holes in his cellars that the wine-merchant made this interesting discovery. His workmen found, under the pick, an enormous piece of bone buried in a yellow clay. Its complete extraction caused him a great deal of labour, and presented many difficulties. Little interested in making further discoveries, our wine-merchant contented himself with raising, with the help of a chisel, a portion of the monstrous bone. The piece thus detached weighed 227 pounds. It was exhibited in the wine-shop, where large numbers of the curious went to see it. Lamanon, a naturalist of that day, who examined it, conjectured that the bone belonged to the head of a whale. As to the bone itself, it was purchased for the Teyler Museum, at Haarlem, where it still remains.

There exists in the Museum of Natural History in Paris only a copy of the bone of the whale of the Rue Dauphine, which received the name of BalÆnodon Lamanoni. The examination of this figure by Cuvier led him to recognise it as a bone belonging to one of the antediluvian BalÆnÆ, which differed not only from the living species, but from all others known up to this time.

Since the days of Lamanon, other bones of BalÆna have been discovered in the soil in different countries, but the study of these fossils has always left something to be desired. In 1806 a fossil BalÆna was disinterred at Monte-Pulgnasco by M. Cortesi. Another skeleton, seventy-two feet long, was found on the banks of the river Forth, near Alloa, in Scotland. In 1816 many bones of this animal were discovered in a little valley formed by a brook running into the Chiavana, one of the affluents of the Po.

Cuvier has established, among the cetacean fossils, a particular genus, which he designates under the name of Ziphius. The animals to which he gave the name, however, are not identical either with the Whales (BalÆnÆ), the Cachelots or Sperm Whales, or with the Hyperoodons. They hold, in the order of Cetaceans, the place that the PalÆotherium and Anoplotherium occupy among the Pachyderms, or that which the Megatherium and Megalonyx occupy in the order of the Edentates. The Ziphius still lives in the Mediterranean.


Fig. 178

Fig. 178.—Pecten JacobÆus.
(Living species.)

The genera of Mollusca, which distinguish this period from all others, are very numerous. They include the Cardium, PanopÆa, Pecten (Fig. 178), Fusus, Murex, CyprÆa, Voluta, Chenopus, Buccinum, Nassa, and many others.


The Pliocene series prevails over Norfolk, Suffolk, and Essex, where it is popularly known as the Crag. In Essex it rests directly on the London Clay. Near Norwich it rests on the Chalk.

The Pliocene rocks are divided into lower and upper. The Older Pliocene comprises the White or Coralline Crag, including the Red Crag of Suffolk, containing marine shells, of which sixty per cent. are of extinct species. The Newer Pliocene is represented by the Fluvio-marine or Norwich Crag, which last, according to the Rev. Osmond Fisher, is overlaid by Chillesford clay, a very variable and more arctic deposit, often passing suddenly into sands without a trace of clay.

The Norfolk Forest Bed rests upon the Chillesford clay, when that is not denuded.

A ferruginous bed, rich in mammalian remains, and known as the Elephant bed, overlies the Forest Bed, of which it is considered by the Rev. John Gunn to be an upper division.

The Crag, divided into three portions, is a local deposit of limited extent. It consists of variable beds of sand, gravel, and marl; sometimes it is a shelly ferruginous grit, as the Red Crag; at others a soft calcareous rock made up of shells and bryozoa, as the Coralline Crag.

The Coralline Crag, of very limited extent in this country, ranges over about twenty miles between the rivers Stour and Alde, with a breadth of three or four. It consists of two divisions—an upper one, formed chiefly of the remains of Bryozoa, and a lower one of light-coloured sands, with a profusion of shells. The upper division is about thirty-six feet thick at Sudbourne in Suffolk, where it consists of a series of beds almost entirely composed of comminuted shells and remains of Bryozoa, forming a soft building-stone. The lower division is about forty-seven feet thick at Sutton; making the total thickness of the Coralline Crag about eighty-three feet.

Many of the Coralline Crag Mollusca belong to living species; they are supposed to indicate an equable climate free from intense cold—an inference rendered more probable by the prevalence of northern forms of shells, such as Glycimeris, Cyprina, and Astarte. The late Professor Edward Forbes, to whom science is indebted for so many philosophical deductions, points out some remarkable inferences drawn from the fauna of the Pliocene seas.[95] It appears that in the glacial period, which we shall shortly have under consideration, many shells, previously established in the temperate zone, retreated southwards, to avoid an uncongenial climate. The Professor gives a list of fifty which inhabited the British seas while the Coralline and Red Crag were forming, but which are all wanting in the glacial deposits;[96] from which he infers that they migrated at the approach of the glacial period, and returned again northwards, when the temperate climate was restored.[97]

In the Upper or Mammaliferous (or Norwich) Crag, of which there is a good exposure in a pit near the asylum at Thorpe, bones of Mammalia are found with existing species of shells. The greater number of the Mammalian remains have been supposed, until lately, to be extraneous fossils; but they are now considered by Mr. Prestwich as truly contemporaneous. The peculiar mixture of southern forms of life with others of a more northern type lead to the inference that, at this early period, a lowering of temperature began gradually to set in from the period of the Coralline Crag to that of the Forest Bed, which marks the commencement of the Glacial Period.

The distinction between the Mammaliferous Crag of Norwich and the Red Crag of Suffolk is purely palÆontological, no case of superposition having yet been discovered, and they are now generally considered as contemporaneous. Two Proboscidians abundant during the Crag period were the Mastodon Arvernensis and the Elephas meridionalis. In the Red Crag the Mastodon is stated by the Rev. John Gunn to be more abundant than the Elephant, while in the Norwich beds their proportions are nearly equal.

At or near the base of the Red Crag there is a remarkable accumulation, varying in thickness from a few inches to two feet, of bones, teeth, and phosphatic nodules (called coprolites), which are worked for making superphosphate of lime for agricultural manure.

The foreign equivalents of the older Pliocene are found in the sub-Apennine strata. These rocks are sufficiently remarkable in the county of Suffolk, where they consist of a series of marine beds of quartzose sand, coloured red by ferruginous matter.

At the foot of the Apennine chain, which forms the backbone, as it were, of Italy, throwing out many spurs, the formations on either side, and on both sides of the Adriatic, are Tertiary strata; they form in many cases, low hills lying between the Apennines of Secondary formation and the sea, the strata generally being a light-brown or bluish marl covered with yellow calcareous sand and gravel, with some fossil shells, which, according to Brocchi, are found all over Italy. But this wide range includes some older Tertiary formations, as in the strata of the Superga near Turin, which are Miocene.

The Antwerp Crag, which is of the same age with the Red and Coralline Crag of Suffolk, forms great accumulations upon divers points of Europe: at Antwerp in Belgium, at Carentan and Perpignan, and, we believe, in the basin of the RhÔne, in France. The thickest deposits of this rock consist of clay and sand, alternating with marl and arenaceous limestone. These constitute the sub-Apennine hills, alluded to above as extending on both slopes of the Apennines. This deposit occupies the Upper Val d’Arno, above Florence. Its presence is recognised over a great part of Australia. Finally, the seven hills of Rome are composed, in part, of marine Tertiary rocks belonging to the Pliocene period.

Plate XXV

XXV.—Ideal Landscape of the Pliocene Period.

In Plate XXV. an ideal landscape of the Pliocene period is given under European latitudes. In the background of the picture, a mountain, recently thrown up, reminds us that the period was one of frequent convulsions, in which the land was disturbed and upheaved, and mountains and mountain-ranges made their appearance. The vegetation is nearly identical with the present. We see assembled in the foreground the more important animals of the period—the fossil species, as well as those which have survived to the present time.

At the close of the Pliocene period, and in consequence of the deposits left by the seas of the Tertiary epoch, the continent of Europe was nearly what it is now; few permanent changes have occurred since to disturb its general outline. Although the point does not admit of actual proof, there is strong presumptive evidence that in this period, or in that immediately subsequent to it, the entire European area, with some trifling exceptions, including the Alps and Apennines, emerged from the deep. In Sicily, Newer Pliocene rocks, covering nearly half the surface of the island, have been raised from 2,000 to 3,000 feet above the level of the sea. Fossil shells have been observed at the height of 8,000 feet in the Pyrenees; and, as if to fix the date of upheaval, there are great masses of granite which have penetrated the Lias and the Chalk. Fossil shells of the period are also found at a height of 10,000 feet in the Alps, at 13,000 feet in the Andes, and at 18,000 feet in the Himalayas.In the mountainous regions of the Alps it is always difficult to determine the age of beds, in consequence of the disturbed state of the strata; for instance, the lofty chain of the Swiss Jura consists of many parallel ridges, with intervening longitudinal valleys; the ridges formed of contorted fossiliferous strata, which are extensive in proportion to the number and thickness of the formations which have been exposed on upheaval. The proofs which these regions offer of comparatively recent elevation are numerous. In the central Alps, Cretaceous, Oolitic, Liassic, and Eocene strata are found at the loftiest summits, passing insensibly into metamorphic rocks of granular limestone, and into talcose and mica-schists. In the eastern parts of the chain the older fossiliferous rocks are recognised in similar positions, presenting signs of intense Plutonic action. Oolitic and Cretaceous strata have been raised 12,000 feet, Eocene 10,000, and Miocene 4,000 and 5,000 feet above the level of the sea. Equally striking proofs of recent elevation exist in the Apennines; the celebrated Carrara marble, once supposed—from its crystalline texture and the absence of fossils, and from its resting—1. on talcose schists, 2. on quartz and gneiss—to be very ancient, now turns out to be an altered limestone of the Oolitic series, and the underlying crystalline rocks to be metamorphosed Secondary sandstones and shales. Had all these rocks undergone complete metamorphism, another page in the earth’s history would have been obscured. As it is, the proofs of what we state are found in the gradual approach of the rocks to their unaltered condition as the distance from the intrusive rock increases. This intrusive rock, however, does not always reach the surface, but it exists below at no great depth, and is observed piercing through the talcose gneiss, and passing up into Secondary strata.

At the close of this epoch, therefore, there is every probability that Europe and Asia had pretty nearly attained their present general configuration.


[81] Lyell’s “Elements of Geology,” p. 187.[82] This limestone belongs to the Bembridge beds, and forms part of the Fluvio-marine series. See “Survey Memoir on the Geology of the Isle of Wight,” by H. W. Bristow.[83] Similar beds of Miliolite limestone are found in the Middle Bagshot beds on the coast of Sussex, off Selsey—the only instance in England of the occurrence of such calcareous deposits of Middle Eocene age.—H. W. B.[84] “Elements of Geology,” p. 292.[85] “Memoir of the Geological Survey of Great Britain. The Geology of Middlesex, &c.;” by W. Whitaker, p. 9.[86] Prestwich. Quart. Jour. Geol. Soc., vol. x., p. 448.[87] Detailed sections of the whole of the Tertiary strata of the Isle of Wight have been constructed by Mr. H. W. Bristow from actual measurement of the beds in their regular order of succession, as displayed at Hempstead, Whitecliff Bay, Colwell and Tolland’s Bays, Headon Hill, and Alum Bay. These sections, published by the Geological Survey of Great Britain, show the thickness, mineral character, and organic remains found in each stratum, and are accompanied by a pamphlet in explanation.[88] “Elements of Geology,” p. 300.[89] Ibid., p. 305.[90] Quarterly Journal of Geol. Soc., vol. vii., p. 89.[91] See Bristow’s “Glossary of Mineralogy,” p. 11.[92] “Pallas’s Voyage,” vol. iv., pp. 130-134.[93] “Commentarii AcademiÆ PetersburgicÆ,” p. 3.[94] Dr. James Murie, Geological Magazine, vol. viii., p. 438.[95] Edward Forbes in “Memoirs of the Geological Survey of Great Britain,” vol. i., p. 336.[96] For full information on these deposits the reader is referred to the “Memoirs on the Structure of the Crag-beds of Norfolk and Suffolk,” by J. Prestwich, F.R.S., in the Quart. Jour. Geol. Soc., vol. xxvii., pp. 115, 325, and 452 (1871). Also to the many Papers by the Messrs. Searles Wood published in the Quar. Jour. Geol. Soc., the Ann. Nat. Hist., the Phil. Mag., &c.[97] Lyell’s “Elements of Geology,” p. 203.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page