The Quaternary epoch of the history of our globe commences at the close of the Tertiary epoch, and brings the narrative of its revolutions down to our own times. The tranquillity of the globe was only disturbed during this era by certain cataclysms whose sphere was limited and local, and by an interval of cold of very extended duration; the deluges and the glacial period—these are the two most remarkable peculiarities which distinguished this epoch. But the fact which predominates in the Quaternary epoch, and distinguishes it from all other phases of the earth’s history is the appearance of man, the culminating and supreme work of the Creator of the universe. In this last phase of the history of the earth geology recognises three chronological divisions:— 1. The European Deluges. 2. The Glacial Period. 3. The creation of man and subsequent Asiatic Deluge. Before describing the three orders of events which occurred in the Quaternary epoch, we shall present a brief sketch of the organic kingdoms of Nature, namely, of the animals and vegetables which flourished at this date, and the new formations which arose. Lyell, and some other geologists, designate this the Post-Tertiary Epoch, which they divide into two subordinate groups.—1. The Post-Pliocene Period; 2. The Recent or Pleistocene Period. Post-Pliocene Period.In the days of Cuvier the Tertiary formations were considered as a mere chaos of superficial deposits, having no distinct relations to each other. It was reserved for the English geologists, with Sir Charles Lyell at their head, to throw light upon this obscure page of the earth’s history; from the study of fossils, science has not only The same lakes and rivers were at this time occupied, also, by the Hippopotamus, as large and as formidably armed as that now inhabiting the African solitudes; also the two-horned Rhinoceros; and three species of Bos, one of which was hairy and bore a mane. Some Deer of gigantic size, as compared with living species, bounded over the plains. In the same savannahs lived the Reindeer, the Stag, a Horse of small size, the Ass, the Bear, and the Roe, for Mammals had succeeded the Ichthyosauri of a former age. Nevertheless, the epoch had its tyrants also. A Lion, as large as the largest of the Lions of Africa, hunted its prey in the British jungles. Another animal of the feline race, the Machairodus (Fig. 179), was probably the most ferocious and destructive of Carnivora; bands of HyÆnas and a terrible Bear, surpassing in size that of the Rocky Mountains, had established themselves in the caverns; two species of Beaver made their appearance on the scene. Such an assemblage gave rise to all sorts of conjectures. It was generally thought that the dwelling of some beasts of prey had been discovered, which had dragged the carcases of elephants, deer, and others into these caves, to devour them at leisure. Others asked if, in some cases, instinct did not impel sick animals, or animals broken down by old age, to seek such places for the purpose of dying in quiet; while others, again, suggested that these bones might have been engulfed pell-mell in the hole during some ancient inundation. However that may be, the remains discovered in these caves show that all these Mammals existed at the close of the Tertiary epoch, and that they all lived in England. What were the causes which led to their extinction? It was the opinion of Cuvier and the early geologists that the ancient species were destroyed in some great and sudden catastrophe, from which none made their escape. But recent geologists trace their extinction to slow, successive, and determinative action due to local causes, the chief one being the gradual lowering of the temperature. We have seen that at the beginning of the Tertiary epoch, in the older Eocene age, palms, cocoa-nuts, and acacias, resembling those now met with in countries more favoured by the sun, grew in our island. The Miocene flora presents indications of a climate still warm, but less tropical; and the Pliocene period, which follows, contains remains which announce an approach to our present climate. In following the vegetable productions of the Tertiary epoch, the botanist meets with the floras of Africa, South America, and Australia, and finally settles in the flora of temperate Europe. Many circumstances demonstrate this decreasing temperature, until we arrive at what geologists call the glacial period—one of the winters of the ancient world. The Mammoth, the skeleton of which is represented in Fig. 180, surpassed the largest existing Elephants of the tropics in size, for it was from sixteen to eighteen feet in height. The teeth, and the size of the monstrous tusks, much curved, and with a spiral turn outwards, and which were from ten to fifteen feet in length, serve to distinguish the Mammoth from the two Elephants living at the present day, the African and the Indian. The form of its teeth permits of its being distinguished from its ally, the Mastodon; for while the teeth of the latter have rough mammillations on their surface, those of the Mammoth, like those of the living Indian Elephant, have a broad united surface, with regular furrowed lines of large curvature. The teeth of the Mammoth are four in number, like the Elephants, two in each jaw when the animal is adult, its head is elongated, its forehead concave, its jaws curved and truncated in front. It has been an easy task, as we shall see, to recognise the general form and structure of the Mammoth, even to its skin. We know beyond a doubt that it was thickly covered with long shaggy hair, and that a copious mane floated upon its neck and along its back; its trunk resembled that of the Indian Elephant; its body was heavy, with a tail naked to the end, which was covered with thick tufty hair, and its legs were comparatively shorter than those of the latter animal, many of the habits of which it nevertheless possessed. Blumenbach gave it the specific name of Elephas primigenius. In all ages, and in almost all countries, chance discoveries have We might fill volumes with the history of the remains of pretended giants found in ancient tombs. The books, in fact, which exist, formed a voluminous literature in the middle ages—entitled Gigantology. All the facts, more or less real, true or imaginative, may be explained by the accidental discovery of the bones of some of these gigantic animals. We find in works on Gigantology, the history of a pretended giant, discovered in the 4th century, at Trapani in Sicily, of which Boccaccio speaks, and which may be taken for Polyphemus; of another, found in the 16th century, according to Fasellus, near Palermo; others, according to the same author, at Melilli between Leontium and Syracuse, Calatrasi and Petralia, at In 1577, a storm having uprooted an oak near the cloisters of Reyden, in the Canton of Lucerne, in Switzerland, some large bones were exposed to view. Seven years after, the celebrated physician and Professor at Basle, Felix PlÄten, being at Lucerne, examined these bones, and declared they could only be those of a giant. The Council of Lucerne consented to send the bones to Basle for more minute examination, and PlÄten thought himself justified in attributing to the giant a height of nineteen feet. He designed a human skeleton on this scale, and returned the bones with the drawing to Lucerne. In 1706 there only remained of these bones a portion of the scapula and a fragment of the wrist bone; the anatomist Blumenbach, who saw them at the beginning of the century, easily recognised in them the bones of an Elephant. Let us not omit to add, as a complement to this story, that since the sixteenth century, the inhabitants of Lucerne have adopted the image of this fabulous giant as the supporter of the city arms. Spanish history preserves many stories of giants. The supposed tooth of St. Christopher, shown at Valence, in the church dedicated to the saint, was certainly the molar tooth of a fossil Elephant; and in 1789, the canons of St. Vincent carried through the streets in public procession, to procure rain, the pretended arm of a saint, which was nothing more than the femur of an Elephant. In France, in the reign of Charles VII. (1456), some of these bones of imaginary giants appeared in the bed of the RhÔne. A repetition of the phenomenon occurred near Saint-Peirat, opposite Valence, when the Dauphin, afterwards Louis XI., then residing at the latter place, caused the bones to be gathered together and sent to Bourges, where they long remained objects of public curiosity in the interior of the Sainte-Chapelle. In 1564 a similar discovery took place in the same neighbourhood. Two peasants observed on the banks of the RhÔne, along a slope, some great bones sticking out of the ground. They carried them to the neighbouring village, where they were examined by Cassanion, who lived at Valence. It was no doubt apropos to this that Cassanion wrote his treatise “De Gigantibus.” The description given by the author of a tooth sufficed, according to Cuvier, to prove that it belonged to an Elephant; it was a foot in length, and weighed eight pounds. It was also on the banks of the RhÔne, but in Dauphiny, as we have seen, that the In 1663 Otto de Guericke, the illustrious inventor of the air-pump, witnessed the discovery of the bones of an Elephant, buried in the shelly limestone, or Muschelkalk. Along with it were found its enormous tusks, which should have sufficed to establish its zoological origin. Nevertheless they were taken for horns, and the illustrious Leibnitz composed, out of the remains, a strange animal, carrying a horn in the middle of its forehead, and in each jaw a dozen molar teeth a foot long. Having fabricated this fantastic animal, Leibnitz named it also—he called it the fossil unicorn. In his “ProtogÆa,” a work remarkable besides as the first attempt at a theory of the earth, Leibnitz gave the description and a drawing of this imaginary animal. During more than thirty years the unicorn of Leibnitz was universally accepted throughout Germany; and nothing less than the discovery of the entire skeleton of the Mammoth in the valley of the Unstrut was required to produce a change of opinion. This skeleton was at once recognised by Tinzel, librarian to the Duke of Saxe-Gotha, as that of an Elephant, and was established as such; not, however, without a keen controversy with adversaries of all kinds. In 1700 a soldier of WÜrtemberg accidentally observed some bones showing themselves projecting out of the earth, in an argillaceous soil, near the city of Canstadt, not far from the banks of the Necker. Having addressed a report to the reigning Duke, the latter caused the place to be excavated, which occupied nearly six months. A veritable cemetery of elephants was discovered, in which were not less than sixty tusks. Those which were entire were preserved; the fragments were abandoned to the court physician, and they became a mere vulgar medicine. In the last century the fossil bones of bears, which were abundant in Germany, were administered in that country medicinally, as an absorbent, astringent, and sudorific. It was then called by the German doctors the Ebur fossile, or Unicornu fossile, Licorn fossil. The magnificent tusks of the Mammoth found at Canstadt helped to combat fever and colic. What an intelligent man this court physician of WÜrtemberg must have been! Numerous discoveries like those we have quoted distinguished the 18th century; but the progress of science has now rendered such mistakes as we have had to relate impossible. These bones were at length universally recognised as belonging to an Elephant, but erudition now intervened, and helped to obscure a subject which was otherwise perfectly clear. Some learned pedant declared that the bones found in Italy and France were the remains of the Elephants But the best reply that can be made to this strange objection raised by the learned, is to show how extensively these fossil bones of Elephants are scattered, not in Europe only, but over the world—there are few regions of the globe in which their remains are not found. In the north of Europe, in Scandinavia, in Ireland, in Belgium, in Germany, in Central Europe, in Poland, in Middle Russia, in South Russia, in Greece, in Italy, in Africa, in Asia, and, as we have seen, in England. In the New World remains of the Mammoth are also met with. What is most singular is that these remains exist more especially in great numbers in the north of Europe, in the frozen regions of Siberia—regions altogether uninhabitable for the Elephant in our days. “There is not,” says Pallas, “in all Asiatic Russia, from the Don to the extremity of the promontory of Tchutchis, a stream or river, especially of those which flow in the plains, on the banks of which some bones of Elephants and other animals foreign to the climate have not been found. But in the more elevated regions, the primitive and schistose chains, they are wanting, as are marine petrifactions. But in the lower slopes and in the great muddy and sandy plains, above all, in places which are swept by rivers and brooks, they are always found, which proves that we should not the less find them throughout the whole extent of the country if we had the same means of searching for them.” Every year in the season when thaw takes place, the vast rivers which descend to the Frozen Ocean in the north of Siberia sweep down with their waters numerous portions of the banks, and expose to view bones buried in the soil and in the excavations left by the rushing waters. Cuvier gives a long list of places in Russia in which interesting discoveries have been made of Elephants’ bones; and it is certainly curious that the more we advance towards the north in Russia the more numerous and extensive do the bone depositories New Siberia and the LÄchow Islands off the mouth of the river Lena, are, for the most part, only an agglomeration of sand, ice, and Elephants’ teeth. At every tempest the sea casts ashore new quantities of mammoths’ tusks, and the inhabitants of Siberia carry on a profitable commerce in this fossil ivory. Every year, during the summer, innumerable fishermen’s barks direct their course towards this isle of bones; and, during winter, immense caravans take the same route, all the convoys drawn by dogs, returning charged with the tusks of the Mammoth, each weighing from 150 to 200 pounds. The fossil ivory thus withdrawn from the frozen north is imported into China and Europe, where it is employed for the same purposes as ordinary ivory, which is furnished, as we know, by the existing Elephant and Hippopotamus of Africa and Asia. The Isle of Bones has served as a quarry of this valuable material, for export to China, for 500 years; and it has been exported to Europe for upwards of 100. But the supply from these strange diggings apparently remains practically undiminished. What a number of accumulated generations of these bones and tusks does not this profusion imply! It was in Siberia that the fossil Elephant received the name of the Mammoth, and its tusks that of mammoth horns. The celebrated Russian savant, Pallas, who gave the first systematic description of the Mammoth, asserts that the name is derived from the word mama, which in the Tartar idiom signifies the earth. According to others, the name is derived from behemoth, mentioned in the Book of Job; or from the epithet mahemoth, which the Arabs add to the word “elephant,” to designate one of unusual size. A curious circumstance enough is, that this same legend of an animal living exclusively under ground, exists amongst the Chinese. They call it tien-schu, and we The existence in Russia of the bones and tusks of the Mammoth is sufficiently confirmed by the following extract from an old Russian traveller, Ysbrants Ides, who, in 1692, was sent by Peter the Great as ambassador to the Emperor of China. In the extract which follows, we remark the very surprising fact of the discovery of a head and foot of the Mammoth which had been preserved in ice with all the flesh. “Amongst the hills which are situate north-east of the river Kata,” says the traveller, “the Mammuts’ tongues and legs are found, as they are also particularly on the shores of the river Jenize, Trugan, Mongamsea, Lena, and near Jakutskoi, even as far as the Frozen Ocean. In the spring, when the ice of this river breaks, it is driven in such vast quantities and with such force by the high swollen waters, that it frequently carries very high banks before it, and breaks off the tops of hills, which, falling down, discover these animals whole, or their teeth only, almost frozen to the earth, which thaw by degrees. I had a person with me who had annually gone out in search of these bones; he told it to me as a real truth, that he and his companions found the head of one of these animals, which was discovered by the fall of such a frozen piece of earth. As soon as he opened it, he found the greatest part of the flesh rotten, but it was not without difficulty that they broke out his teeth, which were placed in the fore-part of his mouth, as those of the Elephants are; they also took some bones out of his head, and afterwards came to his fore-foot, which they cut off, and carried part of it to the city of Trugan, the circumference of it being as large as “Concerning this animal there are very different reports. The heathens of Jakuti, Tungusi, and Ostiacki, say that they continually, or at least, by reason of the very hard frosts, mostly live under ground, where they go backwards and forwards; to confirm which they tell us, that they have often seen the earth heaved up when one of these beasts was upon the march, and after he was passed, the place sink in, and thereby make a deep pit. They further believe, that if this animal comes so near to the surface of the frozen earth as to smell the air, he immediately dies, which they say is the reason that several of them are found dead on the high banks of the river, where they unawares came out of the ground. “This is the opinion of the Infidels concerning these beasts, which are never seen. “But the old Siberian Russians affirm, that the Mammuth is very like the Elephant, with this difference only, that the teeth of the former are firmer, and not so straight as those of the latter. They also are of opinion that there were Elephants in this country before the Deluge, when this climate was warmer, and that their drowned bodies, floating on the surface of the water of that flood, were at last washed and forced into subterranean cavities; but that after this universal deluge, the air, which before was warm, was changed to cold, and that these bones have lain frozen in the earth ever since, and so are preserved from putrefaction till they thaw, and come to light, which is no very unreasonable conjecture, though it is not absolutely necessary that this climate should have been warmer before the Flood, since the carcases of the drowned elephants were very likely to float from other places several hundred miles distant to this country in the great deluge which covered the surface of the whole earth. Some of these teeth, which doubtless have lain the whole summer on the shore, are entirely black and broken, and can never be restored to their former condition. But those which are found in good case, are as good as ivory, and are accordingly transported to all parts of Muscovy, where they are used to make combs, and all other such-like things, instead of ivory. “The above-mentioned person also told me that he once found two teeth in one head that weighed above twelve Russian pounds, which amount to four hundred German pounds; so that these animals must of necessity be very large, though a great many lesser teeth are found. By all that I could gather from the heathens, no person ever saw one of these beasts alive, or can give any account of It is possible this recital may seem suspicious to some readers. We have ourselves felt some difficulty in believing that this head and foot were taken from the ice, with the flesh and skin, when we consider that the animal to which they belonged has been extinct probably more than ten thousand years. But the assertion of Ysbrants Ides is confirmed by respectable testimony of more recent date. In 1800, a Russian naturalist, Gabriel Sarytschew, travelled in northern Siberia. Having arrived in the neighbourhood of the Frozen Ocean, he found upon the banks of the Alasoeia, which discharges itself into this sea, the entire body of a Mammoth enveloped in a mass of ice. The body was in a complete state of preservation, for the permanent contact of the ice had kept out the air and prevented decomposition. It is well known that at zero and below it, animal substances will not putrefy, so that in our households we can preserve all kinds of animal food as long as we can surround them with ice; and this is precisely what happened to the Mammoth found by Gabriel Sarytschew in the ice of the Alasoeia. The rolling waters had disengaged the mass of ice which had imprisoned the monstrous pachyderm for thousands of years. The body, in a complete state of preservation and covered with its flesh as well as its entire hide, to which long hairs adhered in certain places, found itself, again, nearly erect on its four feet. The Russian naturalist Adams, in 1806, made a discovery quite as extraordinary as the preceding. We borrow his account from a paper by Dr. Tilesius in the “Memoirs of the Imperial Academy of Sciences of St. Petersburg” (vol. v.). In 1799, a Tungusian chief, Ossip Schumachoff, while seeking for mammoth-horns on the banks of the lake Oncoul, perceived among the blocks of ice a shapeless mass, not at all resembling the large pieces of floating wood which are commonly found there. The following year he noticed that this mass was more disengaged from the blocks of ice, and had two projecting parts, but he was still unable to make out what it could be. Towards the end of the following summer one entire side of the animal and one of his tusks were quite free from the ice. But the succeeding summer of 1802, which was less warm and more windy than common, caused the Mammoth to remain buried in the ice, which had scarcely melted at all. At length, towards the end of the fifth year (1803), the ice between the earth and the Mammoth having melted faster than the rest, the plane of its support became inclined; and this enormous mass fell by its own weight on a bank Mr. Adams took every care to collect all that remained of this unique specimen of an ancient creation, and forwarded the parts to St. Petersburg, a distance of 11,000 versts (7,330 miles). He succeeded in re-purchasing what he believed to be the tusks at Jakutsk, and the Emperor of Russia, who became the owner of this precious relic, paid him 8,000 roubles. The skeleton is deposited in the Museum of the Academy of St. Petersburg, and the skin still remains attached to the head and the feet. “We have yet to find,” says Cuvier, “any individual equal to it.” In 1860 a great number of bones of the Mammoth, with remains of HyÆna, Horse, Reindeer, Rhinoceros-megarhinus, and Bison, were found in Belgium in digging a canal at Lierre, in the province of Antwerp. An entire skeleton of a young Mammoth, eleven feet six inches high (to the shoulder), has been reconstructed from these remains by M. Dupont, and is now placed in the Royal Museum of Natural History in Brussels. In Cuvier’s great work on fossil bones, he gives a long and minute enumeration of the various regions of Germany, France, Italy, and other countries, which have furnished in our days bones or tusks of the Mammoth. We venture to quote two of these descriptions:—“In October, 1816,” he says, “there was discovered at Seilberg, near Canstadt, in WÜrtemberg, near which some remarkable discoveries were made in 1700, a very remarkable deposit, which the king, Frederick I., caused to be excavated, and its contents collected with the greatest care. We are even assured that the visit which the prince, in his ardour for all that was great, paid to this spot, aggravated the malady of which he died a few days after. An officer, Herr Natter, commenced some excavations, and in four-and-twenty hours discovered twenty-one teeth or fragments of teeth of elephant, mixed with a great number of bones. The king having ordered him to continue the excavations, on the second day they came upon a group of thirteen tusks heaped close upon each other, and along with them some molar teeth, lying as if they had been packed artificially. It was on this discovery that the king caused himself to be transported thither, and ordered all the surrounding soil to be dug up, and every object to be carefully preserved in its original position. The largest of the tusks, though it had lost its points and its roots, was still eight feet long and one foot in diameter. Many isolated tusks were also found, with a quantity of molar teeth, from two inches to a foot in length, some still adhering to the jaws. All these fragments were better preserved than those of 1700, which was attributed to the depth of the bed, and, perhaps, to the nature of the soil. The tusks were generally much curved. In the same deposit some bones of Horses and Stags were found, together with a quantity of teeth of the Rhinoceros, and others which were thought to belong to a Bear, and one specimen which was attributed to the Tapir. The place where this discovery was made is named Seilberg; it is about 600 paces from the city of Canstadt, but on the opposite side of the Necker. But of all parts of Europe, that in which they are found in greatest numbers is the valley of the Upper Arno. We find there a perfect cemetery of Elephants. These bones were at one time so common in this valley, that the peasantry employed them, indiscriminately with stones, in constructing walls and houses. Since they have learned their value, however, they reserve them for sale to travellers. The bones and tusks of the Mammoth are met with in America as well as in the Old World, scattered through Canada, Oregon, and the Northern States as far south as the Gulf of Mexico. Cuvier enumerates several places on that continent where their remains are met with, mingled with those of the Mastodon. The Russian Lieutenant Kotzebue found them on the north coast of America, in the cliffs of frozen mud in Eschsholtz Bay, within Behring’s Strait, and in other distant parts of the shores of the Arctic Seas, where they were so common that the sailors burnt many pieces in their fires. It is very strange that the East Indies, that is, one of the only two regions which is now the home of the Elephant, should be almost the only country in which the fossil bones of these animals have not been discovered. In short, from the preceding enumeration, it appears that, during the geological period whose history we are recording the gigantic Mammoth inhabited most regions of the globe. Now-a-days, the only climates which are suited for the existing race of Elephants are those of Africa and India, that is to say, tropical countries; from which we must draw the conclusions to which so many other inferences lead, that, at the epoch in which these animals lived, the temperature of the earth was much higher than in our days; or, more probably, the extinct race of Elephants must have been adapted for living in a colder climate than that which they now require. Among the antediluvian Carnivora, one of the most formidable seems to have been the Ursus spelÆus, or Cave-bear (Fig. 183). This species must have been a fifth, if not a fourth, larger than the Brown Bear of our days. It was also more squat: some of the skeletons we possess are from nine to ten feet long, and only about six feet high. The U. spelÆus abounded in England, France, Belgium, At the same time with the Ursus spelÆus another Carnivore, the Felis spelÆus, or Cave-lion, lived in Europe. This animal is specifically identical with the living Lion of Asia and Africa: but since in these early times he had not to contend with the hunter for food, he was, on the whole, considerably larger than any Lion now existing on the earth. The HyÆnas of our age consist of two species, the striped and the spotted HyÆnas. The last presents considerable conformity in its structure with that of the Post-pliocene period, which Cuvier designates under the name of the fossil Spotted HyÆna. It seems to have been only a little larger than the existing species. Fig. 184 represents the head of the HyÆna spelÆa, whose remains, with those of others, were found in the caves of Kirkdale and Kent’s Hole; the remains of about 300 being found in the former. Dr. Buckland satisfied himself, from the quantity of their dung, that the HyÆnas had lived there. In the cave were found remains of the ox, young elephant, rhinoceros, horse, bear, wolf, hare, water-rat, and several birds. All the bones present an appearance of having been broken and gnawed by the teeth of the HyÆnas, and they occur confusedly mixed in loam or mud, or dispersed through the crust of stalagmite which covered the contents of the cave. The Oxen of the period, if not identical with, were at least very near to our living species. There were three species: the Bison priscus, B. primigenius, and B. Pallasii; the first with slender legs, with convex frontal, broader than it was high, and differing but slightly from the Aurochs, except in being taller and by having larger horns. The remains of Bison priscus are found in England, France, Italy, Germany, Russia, and America. Bison primigenius was, according to Cuvier, the source of our domestic cattle. The Bos Pallasii is found in America and in Siberia, and resembles in many respects the Musk-ox of Canada. Where these great Mammals are found we generally discover the fossil remains of several species of Deer. The palÆontological The skeleton of the Cervus megaceros is found in the deposits of calcareous tufa, which underlie the immense peat moss of Ireland; sometimes in the turf itself, as near the Curragh in Kildare; in which position they sometimes occur in little mounds piled up in a small space, and nearly always in the same attitude, the head aloft, the neck stretched out, the horns reversed and thrown downwards towards the back, as if the animal, suddenly immersed into marshy ground, had been under the necessity of throwing up its head in search of respirable air. In the Geological Cabinet of the Sorbonne, at Paris, there is a magnificent skeleton of Cervus megaceros; another belongs to the College of Surgeons in London; and there is a third at Vienna. The most remarkable creatures of the period, however, were the great Edentates—the Glyptodon, the gigantic Megatherium, the Mylodon and the Megalonyx. The order of Edentates is more particularly characterised by the absence of teeth in the fore part of the mouth. The masticating apparatus of the Edentates consists only of molars, the incisors and canine teeth being, with a few exceptions, absent altogether, as the animals composing this order feed chiefly on insects or the tender leaves of plants. The Armadillo, Anteater and Pangolin, are the living examples of the order. We may add, as still further characteristics, largely developed claws at the extremities of the toes. The order seems thus to establish itself as a zoological link in the chain between the hoofed Mammals and the The Glyptodon, which appears during the Quaternary period, belonged to the family of Armadilloes, and their most remarkable feature was the presence of a hard, scaly shell, or coat of mail six feet in length, and composed of numerous segments, which covered the entire upper service of the animal from the head to the tail. It was, in short, a mammiferous animal, which appears to have been enclosed in a shell like that of a Turtle; it resembled in many respects the Dasypus or Anteater, and had sixteen teeth in each jaw. These teeth were channelled laterally with two broad and deep grooves, which divided the surface of the molars into three parts, whence it was named the Glyptodon. The hind feet were broad and massive, and evidently designed to support a vast incumbent mass; it presented phalanges armed with short thick and depressed nails or claws. The animal was, as we have said, enveloped in, and protected by, a cuirass, or solid carapace, composed of plates which, seen from beneath, appeared to be hexagonal and united by denticulated sutures: above they represented double rosettes. The habitat of Glyptodon clavipes was the pampas of Buenos Ayres, and the banks of an affluent of the Rio Santo, near Monte Video; specimens have been found not less than nine feet in length. The tesselated carapace of the Glyptodon was long thought to belong to the Megatherium; but Professor Owen shows, from the anatomical structure of the two animals, that the cuirass belonged to one of them only, namely, the Glyptodon. The Schistopleuron does not differ essentially from the Glyptodon, but is supposed to have been a different species of the same genus; the chief difference between the two animals being in the structure of the tail, which is massive in the first and in the other composed of half a score of rings. In other respects the organisation and habits are similar, both being herbivorous, and feeding on roots and vegetables. Fig. 185 represents the Schistopleuron typus restored, and as it appeared when alive. Some of the fossil Tortoises discovered in the sub-Himalayan beds possessed a carapace twelve feet long by six feet in breadth, which must have corresponded to an animal from eighteen to twenty feet in length; and the bones of the legs were as massive as those of the Rhinoceros. The Megatherium, or Animal of Paraguay, as it was called, is, at first view, the oddest and most remarkable animal we have yet had “Nature made them and then broke the die.” If we cast a glance at the skeleton figured on the opposite page (Plate XXVII.), which was found in Paraguay, at Buenos Ayres, in 1788, and which is now placed, in a perfect state of preservation, in the Museum of Natural History in Madrid, it is impossible to avoid being struck with its unusually heavy form, at once awkward as a whole, and ponderous in most of its parts. It is allied to the existing genus of Sloths, which Buffon tells us is “of all the animal creation that which has received the most vicious organisation—a being to which Nature has forbidden all enjoyment; which has only been created for hardships and misery.” This notion of the romantic Buffon is, however, altogether incorrect. An attentive examination of the Animal of The English reader is chiefly indebted to the zeal and energy of Sir Woodbine Parish for the materials from which our naturalists have been enabled to re-construct the history of the Megatherium. The remains collected by him were found in the river Salado, which runs through the flat alluvial plains called Pampas to the south of the city of Buenos Ayres. A succession of three unusually dry seasons had lowered the waters to such a degree as to expose part of the pelvis to view, as the skeleton stood upright in the mud forming the bed of the river. Further inquiries led to the discovery of the remains of two other skeletons near the place where the first had been found; and with them an immense shell or carapace was met with, most of the bones associated with which crumbled to pieces on exposure to the air. The osseous structure of this enormous animal, as furnished by Mr. Clift, an eminent anatomist of the day, and under whose superintendence the skeleton was drawn, must have exceeded fourteen feet in length, and upwards of eight feet in height. The deeply shaded parts of the figure show the portions which are deficient in the Madrid skeleton. Cuvier pointed out that the skull very much resembled that of the Sloths, but that the rest of the skeleton bore relationship, partly to the Sloths, and partly to the Anteaters. The large bones, which descend from the zygomatic arch along the cheek-bones, would furnish a powerful means of attaching the The jaw and dental apparatus cannot be exactly stated, because the number of teeth in the lower jaw is not known. The upper jaw, Professor Owen has shown, contained five molars on each side; and from comparison and analogy with the Scelidotherium it may be conjectured that the Megatherium had four on each side of the lower jaw. Being without incisors or canines, the structure of its eighteen molars proves that it was not carnivorous: they each resemble the composite molars of the Elephant. The solidity and size of the pelvis must have been enormous; its immense iliac bones are nearly at right angles with the vertebral column; their external edges are distant more than a yard and a half from each other when the animal is standing. The femur is three times the thickness of the thigh-bone of the Elephant, and the many peculiarities of structure in this bone appear to have been intended to give solidity to the whole frame, by means of its short and massive proportions. The two bones of the leg are, like the femur, short, thick, and solid; presenting proportions which we only meet with in the Armadilloes and Anteaters; burrowing animals with which, as we have said, its two extremities seem to connect it. The anatomical organisation of these members denotes heavy, slow, and powerful locomotion, but solid and admirable combinations for supporting the weight of an enormous sedentary creature; a sort of excavating machine, slow of motion but of incalculable power for its own purposes. In short, the Megatherium exceeded in dimensions all existing Edentates. It had the head and shoulders of the Sloth, the feet and legs combined the characteristics of the Anteaters and Sloths, of enormous size, since it was at least twelve feet long when full grown, its feet armed with gigantic claws, and its tail at once a means of supporting its huge body and an instrument of defence. An animal built with such massive proportions could evidently neither creep nor run; its walk would be excessively slow. But what necessity was there for rapid movement in a being only The immediate cause of the extinction of the Megatherium is, probably, to be found in causes which are still in operation in South America. The period between the years 1827 and 1830 is called Like the Megatherium, the Mylodon closely resembled the Sloth, and it belonged exclusively to the New World. Smaller than the Megatherium, it differed from it chiefly in the form of the teeth. These organs presented only molars with smooth surfaces, indicating that the animal fed on vegetables, probably the leaves and tender buds of trees. As the Mylodon presents at once hoofs and claws on each foot, it has been thought that it formed the link between the hoofed, or ungulated animals and the Edentates. Three species are known, which lived in the pampas of Buenos Ayres. In consequence of some hints given by the illustrious Washington, Mr. Jefferson, one of his successors as President of the United States, discovered, in a cavern of Western Virginia, the bones of a species of gigantic Sloth, which he pronounced to be the remains of some carnivorous animal. They consisted of a femur, a humerus, an ulna, and three claws, with half a dozen other bones of the foot. These bones Mr. Jefferson believed to be analogous to those of the lion. Cuvier saw at once the true analogies of the animal. The bones were the remains of a species of gigantic Sloth; the complete skeleton of which was subsequently discovered in the Mississippi, in such a perfect state of preservation that the cartilages, still adhering The country in which the Megatherium has been found is described by Mr. Darwin as belonging to the great Pampean formation, which consists partly of a reddish clay and in part of a highly calcareous marly rock. Near the coast there are some plains formed from the The remains on which our knowledge of the Scelidotherium is The lower jaw-bone of Mylodon, which Mr. Darwin discovered at the base of the cliff called Punta Alta, in Northern Patagonia, had the teeth entire on both sides; they are implanted in deep sockets, and only about one-sixth of the last molar projects above the alveolus, but the proportion of the exposed part increases gradually in the inner teeth (Fig. 191). “The habits of life of these Megatheroid animals were a complete puzzle to naturalists, until Professor Owen solved the problem with remarkable ingenuity. The teeth indicate, by their simple structure, that these Megatheroid animals lived on vegetable food, and probably on the leaves and small twigs of trees; their ponderous forms and great strong curved claws seem so little adapted for locomotion, that some eminent naturalists have actually believed that, like the Sloths, to which they are intimately related, they subsisted by climbing back downwards, on trees, and feeding on the leaves. It was a bold, not to say preposterous idea to conceive even antediluvian trees with branches strong enough to bear animals as large as elephants. Professor Owen, with far more probability, Two gigantic birds seem to have lived in New Zealand during the Quaternary epoch. The Dinornis, which, if we may judge from the tibia, which is upwards of three feet long, and from its eggs, which are much larger than those of the Ostrich, must have been of most extraordinary size for a bird. In Fig. 192 an attempt is made to restore this fearfully great bird, the Dinornis. As to the Epiornis, its eggs only have been found. On the opposite page (Plate XXVIII.) an attempt is made to represent the appearance of Europe during the epoch we have under consideration. The Bear is seated at the mouth of its den—the cave (thus reminding us of the origin of its name of Ursus spelÆus), where it gnaws the bones of the Elephant. Above the cavern the HyÆna spelÆa looks out, with savage eye, for the moment when it will be prudent to dispute possession of these remains with its formidable rival. The great Wood-stag, with other great animals of the epoch, occupies the farthest shore of a small lake, where some small hills rise out of a valley crowned with the trees and shrubs of the period. Mountains, recently upheaved, rise on the distant horizon, covered with a mantle of frozen snow, reminding us that the glacial period is approaching, and has already begun to manifest itself. All these fossil bones, belonging to the great Mammalia which we have been describing, are found in the Quaternary formation; but the most abundant of all are those of the Elephant and the Horse. The extreme profusion of the bones of the Mammoth, crowded into the more recently formed deposits of the globe, is only surpassed by the prodigious quantity of the bones of the Horse which are buried in the same beds. The singular abundance of the remains of these two animals proves that, during the Quaternary epoch, the earth gave nourishment to immense herds of the Horse and the Elephant. It is probable that from one pole to the other, from the equator to the two extremities of the axis of the globe, the earth must have formed a vast and boundless prairie, while an immense carpet of verdure covered its whole surface; and such abundant pastures would be absolutely necessary to sustain these prodigious numbers of herbivorous animals of great size. The mind can scarcely realise the immense and verdant plains of this earlier world, animated by the presence of an infinity of such Nevertheless, all was not quiet and tranquil in the landscapes of the ancient world. Voracious and formidable carnivorous animals waged a bloody war on the inoffensive herds. The Tiger, the Lion, and the ferocious HyÆna; the Bear, and the Jackal, there selected their prey. On the opposite page an endeavour is made to represent the great animals among the Edentates which inhabited the American plains during the Quaternary epoch (Plate XXIX). We observe there the Glyptodon, the Megatherium, the Mylodon, and, along with them, the Mastodon. A small Ape (the Orthopithecus), which first appeared in the Miocene period, occupies the branch of a tree in the landscape. The vegetation is that of tropical America at the present time. The deposits of this age, which are of later date than the Crag, and of earlier date than the Boulder Clay, with its fragments of rocks frequently transported from great distances, are classed under the term “pre-glacial.” After the deposition of the Forest Bed, which is seen overlying the Crag for miles between high and low-water mark, on the shore west of Cromer, in Norfolk, there was a general reduction of temperature, and a period of intense cold, known as the “glacial period,” seems to have set in, during which a great part of what is now the British Islands was covered with a thick coating of ice, and probably united with the Continent. At this time England south of the Bristol Channel (the estuary of the Severn), and the Thames, appears to have been above water. The northern part of the country, and the high-ground generally of Britain and Ireland were covered with gliding glaciers, by whose grinding action the whole surface became moulded and worn into its present shape, while the floating icebergs which broke off at the sea-side from these glaciers, conveyed away and dropped on the bed of the sea those fragments of rocks and the gravel and other earthy materials which are now generally recognised as glacial accumulations. In all directions, however, proofs are being gradually obtained that, about this period, movements of submersion under the sea were in progress, all north of the Thames. EUROPEAN DELUGES.The Tertiary formations, in many parts of Europe, of more or less extent, are covered by an accumulation of heterogeneous deposits, filling up the valleys, and composed of very various materials, consisting mostly of fragments of the neighbouring rocks. The erosions which we remark at the bottoms of the hills, and which have greatly enlarged already existing valleys; the mounds of gravel accumulated at one point, and which is formed of rolled materials, that is to say, of fragments of rocks worn smooth and round by continual friction during a long period, in which they have been transported from one point to another—all these signs indicate that these denudations of the soil, these displacements and transport of very heavy bodies to great distances, are due to the violent and sudden action of large currents of water. An immense wave has been thrown suddenly on the surface of the earth, making great ravages in its passage, furrowing the earth and driving before it dÉbris of all sorts in its disorderly course. Geologists give the name of diluvium to a formation thus removed and scattered, which, from its heterogeneous nature, brings under our eyes, as it were, the rapid passage of an impetuous torrent—a phenomenon which is commonly designated as a deluge. To what cause are we to attribute these sudden and apparently temporary invasions of the earth’s surface by rapid currents of water? In all probability to the upheaval of some vast extent of dry land, to the formation of some mountain or mountain-range in the neighbourhood of the sea, or even in the bed of the sea itself. The land suddenly elevated by an upward movement of the terrestrial crust, or by the formation of ridges and furrows at the surface, has, by its reaction, violently agitated the waters, that is to say, the more mobile portion of the globe. By this new impulse the waters have been thrown with great violence over the earth, inundating the plains and valleys, and for the moment covering the soil with their furious waves, mingled with the earth, sand, and mud, of which the devastated districts have been There have been, doubtless, during the epochs anterior to the Quaternary period of which we write, many deluges such as we are considering. Mountains and chains of mountains, through all the ages we have been describing, were formed by upheaval of the crust into ridges, where it was too elastic or too thick to be fractured. Each of these subterranean commotions would be provocative of momentary irruptions of the waves. But the visible testimony to this phenomenon—the living proofs of this denudation, of this tearing away of the soil, are found nowhere so strikingly as in the beds superimposed, far and near, upon the Tertiary formations, and which bear the geological name of diluvium. This term was long employed to designate what is now better known as the “boulder” formation, a glacial deposit which is abundant in Europe north of the 50th, and in America north of the 40th, parallel, and re-appearing again in the southern hemisphere; but altogether absent in tropical regions. It consists of sand and clay, sometimes stratified, mixed with rounded and angular fragments of rock, generally derived from the same district; and their origin has generally been ascribed to a series of diluvial waves raised by hurricanes, earthquakes, or the sudden upheaval of land from the bed of the sea, which had swept over continents, carrying with them vast masses of mud and heavy stones, and forcing these stones over rocky surfaces so as to polish and impress them with furrows and striÆ. Other circumstances occurred, however, to establish a connection between this formation and the glacial drift. The size and number of the erratic blocks increase as we travel towards the Arctic regions; some intimate association exists, therefore, between this formation and the accumulations of ice and snow which characterise the approaching glacial period. As we have already stated at the beginning of this chapter, there is very distinct evidence of two successive deluges in our hemisphere during the Quaternary epoch. The two may be distinguished as the European Deluge and the Asiatic. The two European deluges occurred prior to the appearance of man; the Asiatic deluge The first occurred in the north of Europe, where it was produced by the upheaval of the mountains of Norway. Commencing in Scandinavia, the wave spread and carried its ravages into those regions which now constitute Sweden, Norway, European Russia, and the north of Germany, sweeping before it all the loose soil on the surface, and covering the whole of Scandinavia—all the plains and valleys of Northern Europe—with a mantle of transported soil. As the regions in the midst of which this great mountainous upheaval occurred—as the seas surrounding these vast spaces were partly frozen and covered with ice, from their elevation and neighbourhood to the pole—the wave which swept these countries carried along with it enormous masses of ice. The shock, produced by the collision of these several solid blocks of frozen water, would only contribute to increase the extent and intensity of the ravages occasioned by this violent cataclysm, which is represented in Plate XXX. The physical proof of this deluge of the north of Europe exists in the accumulation of unstratified deposits which covers all the plains and low grounds of Northern Europe. On and in this deposit are found numerous blocks which have received the characteristic and significant name of erratic blocks, and which are frequently of considerable size. These become more characteristic as we ascend to higher latitudes, as in Norway, Sweden, and Denmark, the southern borders of the Baltic, and in the British Islands generally, in all of which countries deposits of marine fossil shells occur, which prove the submergence of large areas of Scandinavia, of the British Isles, and other regions during parts of the glacial period. Some of these rocks, characterised as erratic, are of very considerable volume; such, for instance, is the granite block which forms the pedestal of the statue of Peter the Great at St. Petersburg. This block was found in the interior of Russia, where the whole formation is Permian, and its presence there can only be explained by supposing it to have been transported by some vast iceberg, carried by a diluvial current. This hypothesis alone enables us to account for another block of granite, weighing about 340 tons, which was found on the sandy plains in the north of Prussia, an immense model of which was made for the Berlin Museum. The last of these erratic blocks deposited in Germany covers the grave of King Gustavus Adolphus, of Sweden, killed at the battle of Lutzen, in 1632. He was interred beneath the These erratic blocks which are met with in the plains of Russia, Poland, and Prussia, and in the eastern parts of England, are composed of rocks entirely foreign to the region where they are found. They belong to the primary rocks of Norway; they have been transported to their present sites, protected by a covering of ice, by the waters of the northern deluge. How vast must have been the impulsive force which could carry such enormous masses across the Baltic, and so far inland as the places where they have been deposited for the surprise of the geologist or the contemplation of the thoughtful! The second European deluge is supposed to have been the result of the formation and upheaval of the Alps. It has filled with dÉbris and transported material the valleys of France, Germany, and Italy over a circumference which has the Alps for its centre. The proofs of a great convulsion at a comparatively recent geological date are numerous. The Alps may be from eighty to 100 miles across, and the probabilities are that their existence is due, as Sir Charles Lyell supposes, to a succession of unequal movements of upheaval and subsidence; that the Alpine region had been exposed for countless ages to the action of rain and rivers, and that the larger valleys were of pre-glacial times, is highly probable. In the eastern part of the chain some of the Primary fossiliferous rocks, as well as Oolitic and Cretaceous rocks, and even Tertiary deposits, are observable; but in the central Alps these disappear, and more recent rocks, in some places even Eocene strata, graduate into metamorphic rocks, in which Oolitic, Cretaceous, and Eocene strata have been altered into granular marble, gneiss, and other metamorphic schists; showing that eruptions continued after the deposit of the Middle Eocene formations. Again, in the Swiss and Savoy Alps, Oolitic and Cretaceous formations have been elevated to the height of 12,000 feet, and Eocene strata 10,000 feet above the level of the sea; while in the Rothal, in the Bernese Alps, occurs a mass of gneiss 1,000 feet thick between two strata containing Oolitic fossils. Besides these proofs of recent upheaval, we can trace effects of two different kinds, resulting from the powerful action of masses of water violently displaced by this gigantic upheaval. At first broad tracks have been hollowed out by the diluvial waves, which have, at these points, formed deep valleys. Afterwards these valleys have been filled up by materials derived from the mountain and transported into the valley, these materials consisting of rounded pebbles, argillaceous As we leave the little city of Muret, three successive levels will be observed on the left bank of the Garonne. The lowest of the three is that of the valley, properly so called; while the loftiest corresponds to the plateau of Saint-Gaudens. These three levels are distinctly marked in the Toulousean country, which illustrates the diluvial phenomena in a remarkable fashion. The city of Toulouse reposes upon a slight eminence of diluvial formation. The flat diluvial plateau contrasts strongly with the rounded hills of Gascony and Languedoc. They are essentially constituted of a bed of gravel, formed of rounded or oval pebbles, and again covered with sandy and earthy deposits. The pebbles are principally quartzose, brown or black externally, mixed with portions of hard “Old Red” and New Red Sandstone. The soft earth which accompanies the pebbles and gravel is a mixture of argillaceous sand of a red or yellow colour, caused by the oxide of iron which enters into its composition. In the valley, properly so called, we find the pebbles again associated with other minerals which are rare at the higher levels. Some teeth of the Mammoth, and Rhinoceros tichorhinus, have been found at several points on the borders of this valley. The small valleys, tributary to the principal valley, would appear to have been excavated secondarily, partly out of diluvial deposits, and their alluvium, essentially earthy, has been formed at the expense of the Tertiary formation, and even of the diluvium itself. Among other celebrated sites, the diluvial formation is largely developed in Sicily. The ancient temple of the Parthenon at Athens is built on an eminence formed of diluvial earth. In the valley of the Rhine, in Alsace, and in many isolated parts of Europe, a particular sort of diluvium forms thick beds; it consists of a yellowish-grey mud, composed of argillaceous matter mixed with carbonate of lime, quartzose and micaceous sand, and oxide of iron. This mud, termed by geologists loess, attains in some places considerable thickness. It is recognisable in the neighbourhood of Paris. It rises a little both on the right and left, above the base of the mountains of the Black Forest and of the Vosges; and forms thick beds on the banks of the Rhine. The fossils contained in diluvial deposits consist, generally, of terrestrial, lacustrine, or fluviatile shells, for the most part belonging We have already noticed the caverns in which such extraordinary accumulations of animal remains were discovered: it will not be out of place to give here a rÉsumÉ of the state of our knowledge concerning bone-caves and bone-breccias. The bone-caves are not simply cavities hollowed out of the rock; they generally consist of numerous chambers or caverns communicating with each other by narrow passages (often of considerable length) which can only be traversed by creeping. One in Mexico extends several leagues. Perhaps the most remarkable in Europe is that of Gailenreuth in Franconia. The Harz mountains contain many fine caverns; among others, those of Scharrfeld and Baumann’s Hohl, in which many bones of HyÆna, Bears, and Lions have been found together. The Kirkdale Cave, so well known from the description given of it by Dr. Buckland, lying about twenty-five miles north-north-east of York, was the burial-place, as we have stated, of at least 300 HyÆnas belonging to individuals of different ages; besides containing some other remains, mostly teeth (those of the HyÆna excepted) belonging to ruminating animals. Buckland states that the bones of all the other animals, those of the HyÆnas not excepted, were gnawed. He also noticed a partial polish and wearing away to a considerable depth of one side of many of the best preserved specimens of teeth and bones, which can only be accounted for by referring the partial destruction to the continual treading of the HyÆnas, and the rubbing of their skin on the side that lay uppermost at the bottom of the den. From these facts it would appear probable that the Cave at Kirkdale was, “during a long succession of years, inhabited as a den by HyÆnas, and that they dragged into its recesses the other animal bodies, whose remains are found mixed indiscriminately with their own.” The interior walls of the bone-caves are, in general, rounded off, and furrowed, presenting many traces of the erosive action of water, characteristics which frequently escape observation because the walls are covered with the calcareous deposit called stalactite or stalagmite—that is, with carbonate of lime, resulting from the deposition left by infiltrating water, through the overlying limestone, into the interior of the cavern. The formation of the stalactite, with which many of the bones were incrusted in the Cave of Gailenreuth, is thus described by Liebig. The limestone over the cavern is covered with a rich soil, in which the vegetable matter is continually decaying. This mould, or humus, being acted on by moisture and air, evolves carbonic acid, which is dissolved by rain. The rain-water thus impregnated, permeating the porous limestone, dissolves a portion of it, and afterwards, when the excess of carbonic acid evaporates in the caverns, parts with the calcareous matter, and forms stalactite—the stalactites being the pendent masses of carbonate of lime, which hang in picturesque forms either in continuous sheets, giving the cave and its sides the appearance of being hung with drapery, or like icicles suspended from the roof of the cave, through which the water percolates; while those formed on the surface of the floor form stalagmite. These calcareous products ornament the walls of these gloomy caverns in a most brilliant and picturesque manner. Under a covering of stalagmite, the floor of the cave frequently presents deposits of mud and gravel. It is in excavating this soil that the bones of antediluvian animals, mixed with shells, fragments of rocks, and rolled pebbles, are discovered. The distribution of these bones in the middle of the gravelly argillaceous mud is as irregular as possible. The skeletons are rarely entire; the bones do not even occur in their natural positions. The bones of small Rodents are found accumulated in the crania of great Carnivora. The teeth of Bears, HyÆnas, and Rhinoceros are cemented with the jaw-bones of Ruminants. The bones are very often polished and rounded, as if they had been transported from great distances; others are fissured; others, nevertheless, are scarcely altered. Their state of preservation varies with their position in the cave. We ought to note, in order to make this explanation complete, that some geologists consider that these caves served as a refuge for sick and wounded animals. It is certain that we see, in our own days, some animals, when attacked by sickness, seek refuge in the fissures of rocks, or in the hollows of trunks of trees, where they die; to this natural impulse it may, probably, be ascribed that the skeletons of animals are so rarely found in forests or plains. We may conclude, then, that besides the more general mode in which these caverns were filled with bones, the two other causes which we have enumerated may have been in operation; that is to say, they were the habitual sojourn of carnivorous and destructive animals, and they became the retreat of sick animals on some particular occasions. What was the origin of these caves? How have these immense excavations been produced? Nearly all these caves occur in limestone rocks, particularly in the Jurassic and Carboniferous formations, which present many vast subterranean caverns. At the same But there are other modes than the above of accounting, in a more satisfactory manner, for the existence of these caves. According to Sir Charles Lyell, there was a time when (as now) limestone rocks were dissolved, and when the carbonate of lime was carried away gradually by springs from the interior of the earth; that another era occurred, when engulfed rivers or occasional floods swept organic and inorganic dÉbris into the subterranean hollows previously formed; finally, there were changes, in which engulfed rivers were turned into new channels, and springs dried up, after which the cave-mud, breccia, gravel, and fossil bones were left in the position in which they are now discovered. “We know,” says that eminent geologist, The most celebrated of these bone-caves are those of Gailenreuth, in Franconia; of Nabenstein, and of Brumberg, in the same country; the caves on the banks of the Meuse, near LiÈge, of which the late Dr. Schmerling examined forty; of Yorkshire, Devonshire, Somersetshire, and Derbyshire, in England; also several in Sicily, at Palermo, and Syracuse; in France at HÉrault, in the CÉvennes, and Franche ComtÉ; and in the New World, in Kentucky and Virginia. The ossiferous breccia differs from the bone-caves only in form. The most remarkable of them are seen at Cette, Antibes, and Nice, on the shores of Italy; and in the isles of Corsica, Malta, and Sardinia. Nearly the same bones are found in the breccia which we find in But the breccia is not confined to Europe. We meet with it in all parts of the globe; and recent discoveries in Australia indicate a formation corresponding exactly to the ossiferous breccia of the Mediterranean, in which an ochreous-reddish cement binds together fragments of rocks and bones, among which we find four species of Kangaroos. GLACIAL PERIOD.The two cataclysms, of which we have spoken, surprised Europe at the moment of the development of an important creation. The whole scope of animated Nature, the evolution of animals, was suddenly arrested in that part of our hemisphere over which these gigantic convulsions spread, followed by the brief but sudden submersion of entire continents. Organic life had scarcely recovered from the violent shock, when a second, and perhaps severer blow assailed it. The northern and central parts of Europe, the vast countries which extend from Scandinavia to the Mediterranean and the Danube, were visited by a period of sudden and severe cold: the temperature of the polar regions seized them. The plains of Europe, but now ornamented by the luxurious vegetation developed by the heat of a burning climate, the boundless pastures on which herds of great Elephants, the active Horse, the robust Hippopotamus, and great Carnivorous animals grazed and roamed, became covered with a mantle of ice and snow. To what cause are we to attribute a phenomenon so unforeseen, and exercising itself with such intensity? In the present state of our knowledge no certain explanation of the event can be given. Did the central planet, the sun, which was long supposed to distribute light and heat to the earth, lose during this period its calorific powers? This explanation is insufficient, since at this period the solar heat is not supposed to have greatly influenced the earth’s temperature. Were the marine currents, such as the Gulf Stream, which carries the Atlantic Ocean towards the north and west of Europe, warming and raising its temperature, suddenly turned in the contrary direction? No such hypothesis is sufficient to explain either the cataclysms or the glacial phenomena; and we need not hesitate to confess our ignorance of this strange, this mysterious, episode in the history of the globe. There have been attempts, and very ingenious ones too, to explain these phenomena, of which we shall give a brief summary, “Quite recently,” adds M. Martins, “a learned French mathematician, M. J. AdhÉmar, has taken up the same idea; but, dismissing the more problematical elements of the concussion with comets as untenable, he seeks to explain the deluges by the laws of gravitation and celestial mechanics, and his theory has been supported by very competent writers. It is this: We know that our planet is influenced by two essential movements—one of rotation on its axis, which it accomplishes in twenty-four hours; the other of translation, which it accomplishes in a little more than 3651/4 days. But besides these great and perceptible movements, the earth has a third, and even a fourth movement, with one of which we need not occupy ourselves; it is that designated nutation by astronomers. It changes periodically, but within very restricted limits, the inclination of the terrestrial axis to the plane of the ecliptic by a slight oscillation, the duration of which is only eighteen hours, and its influence upon the relative length of day and night almost inappreciable. The other movement is that on which M. AdhÉmar’s theory is founded. “We know that the curve described by the earth in its annual revolution round the sun is not a circle, but an ellipse; that is, a slightly elongated circle, sometimes called a circle of two centres, one of which is occupied by the sun. This curve is called the ecliptic. “Thus placed, it is evident that if the terrestrial axis remained always parallel to itself, the equinoctial line would always pass through the same point on the surface of the globe. But it is not absolutely thus. The parallelism of the axis of the earth is changed slowly, very slowly, by a movement which Arago ingeniously compares to the varying inclination of a top when about to cease spinning. This movement has the effect of making the equinoctial points on the surface of the earth retrograde towards the east from year to year, in such a manner that at the end of 25,800 years according to some astronomers, but 21,000 years according to AdhÉmar, the equinoctial point has literally made a circuit of the globe, and has returned to the same position which it occupied at the beginning of this immense period, which has been called the ‘great year.’ It is this retrograde evolution, in which the terrestrial axis describes round its own centre that revolution round a double conic surface, which is known as the precession of the equinoxes. It was observed 2,000 years ago by Hipparchus; its cause was discovered by Newton; and its complete evolution explained by D’Alembert and Laplace. “Now, we know that the consequence of the inclination of the terrestrial axis with the plane of the ecliptic is— “1. That the seasons are inverse to the two hemispheres—that is “2. When the earth approaches nearest to the sun, our hemisphere has its autumn and winter; and the regions near the pole, receiving none of the solar rays, are plunged into darkness, approaching that of night, during six months of the year. “3. When the earth is most distant from the sun, when much the greater half of the ecliptic intervenes between it and the focus of light and heat, the pole, being then turned towards this focus, constantly receives its rays, and the rest of the northern hemisphere enjoys its long days of spring and summer. “Bearing in mind that, in going from the equinox of spring to the autumnal equinox of our hemisphere, the earth traverses a much longer curve than it does on its return; bearing in mind, also, the accelerated movement it experiences in its approach to the sun from the attraction, which increases in inverse proportion to the square of its distance, we arrive at the conclusion that our summer should be longer and our winter shorter than the summer and winter of our antipodes; and this is actually the case by about eight days. “I say actually, because, if we now look at the effects of the precession of the equinoxes, we shall see that in a time equal to half of the grand year, whether it be 12,900 or 10,500 years, the conditions will be reversed; the terrestrial axis, and consequently the poles, will have accomplished the half of their bi-conical revolution round the centre of the earth. It will then be the northern hemisphere which will have the summers shorter and the winters longer, and the southern hemisphere exactly the reverse. In the year 1248 before the Christian era, according to M. AdhÉmar, the north pole attained its maximum summer duration. Since then—that is to say for the last 3,112 years—it has begun to decrease, and this will continue to the year 7388 of our era before it attains its maximum winter duration. “But the reader may ask, fatigued perhaps by these abstract considerations, What is there here in common with the deluges? “The grand year is here divided, for each hemisphere, into two great seasons, which De Jouvencel calls the great summer and winter, which will each, according to M. AdhÉmar, be 10,500 years. “During the whole of this period one of the poles has constantly had shorter winters and longer summers than the other. It follows that the pole which experiences the long winter undergoes a gradual and continuous cooling, in consequence of which the quantities of ice and snow, which melt during the summer, are more than compensated Such is a brief statement of the hypothesis which AdhÉmar has very ingeniously worked out. How far it explains the mysterious phenomena which we have under consideration we shall not attempt to say, our concern being with the effects. Does the evidence of upward and downward movements of the surface in Tertiary times explain the great change? For if the cooling which preceded and succeeded the two European deluges still remains an unsolved problem, its effects are perfectly appreciable. The intense cold which visited the northern and central parts of Europe resulted in the annihilation of organic life in those countries. All the watercourses, the rivers and streams, the seas and lakes, were frozen. As Agassiz says in his first work on “Glaciers”: “A vast mantle of ice and snow covered the plains, the valleys, and the seas. All the springs were dried up; the rivers ceased to flow. To the movements of a numerous and animated creation succeeded the silence of death.” Great numbers of animals perished from cold. The Elephant and Rhinoceros perished by thousands in the midst of their grazing grounds, which became transformed into fields of ice and snow. It is then that these two species disappeared, and seem to have been effaced from creation. Other animals were overwhelmed, without their race having been always entirely annihilated. The How can we accept the idea that the plains, but yesterday smiling and fertile, were formerly covered, and that for a very long period, with an immense sheet of ice and snow? To satisfy the reader that the proof of this can be established on sufficient evidence, it is necessary to direct his attention to certain parts of Europe. It is essential to visit, at least in idea, a country where glacial phenomena still exist, and to prove that the phenomena, now confined to those countries, were spread, during geological times, over spaces infinitely vaster. We shall choose for our illustration, and as an example, the glaciers of the Alps. We shall show that the glaciers of Switzerland and Savoy have not always been restricted to their present limits; that they are, so to speak, only miniature resemblances of the gigantic glaciers of times past; and that they formerly extended over all the great plains which extend from the foot of the chain of the Alps. To establish these proofs we must enter upon some consideration of existing glaciers, upon their mode of formation, and their peculiar phenomena. The snow which, during the whole year, falls upon the mountains, does not melt, but maintains its solid state, when the elevation exceeds the height of 9,000 feet or thereabouts. Where the snow accumulates to a great thickness, in the valleys, or in the deep fissures in the ground, it hardens under the influence of the pressure resulting from the incumbent weight. But it always happens that a certain quantity of water, resulting from the momentary thawing of the superficial portions, traverses its substance, and this forms a crystalline mass of ice, with a granular structure, which the Swiss naturalists designate nÉvÉ. From the successive melting and freezing caused by the heat by day and the cold by night, and the infiltration of air and water into its interstices, the nÉvÉ is slowly transformed into a homogeneous azure mass of ice, full of an infinite number of little air-bubbles—this was what was formerly called glace bulleuse (bubble-ice). Finally, these masses, becoming completely frozen, water replaces the bubbles of air. Then the transformation is complete; the ice is homogeneous, and presents those beautiful azure tints so much admired by the tourist who traverses the magnificent glaciers of Switzerland and Savoy. Such is the origin of, and such is the mode in which the glaciers Under the joint influence of the slope, the weight of the frozen mass, and the melting of the parts which touch the earth, the glacier thus always tends downwards; but from the effects of a more genial temperature, the lower extremity melting rapidly, has a tendency to recede. It is the difference between these two actions which constitutes the real progressive movement of the glacier. The friction exercised by the glacier upon the bottom and sides of the valley, ought necessarily to leave its traces on the rocks with which it may happen to be in contact. Over all the places where a glacier has passed, in fact, we remark that the rocks are polished, levelled, rounded, and, as it is termed, moutonnÉes. These rocks present, besides, striations or scratches, running in the direction of the motion of the glacier, which have been produced by hard and angular fragments of stones imbedded in the ice, and which leave their marks on the hardest rocks under the irresistible pressure of the heavy-descending mass of ice. In a work of great merit, which we have before quoted, M. Charles Martins explains the physical mechanism by which granite rocks borne onwards in the progressive movements of a glacier, have scratched, scored, and rounded the softer rocks which the glacier has encountered in its descent. “The friction,” says M. Martins, “which the glacier exercises upon the bottom and upon the walls, is too considerable not to leave its traces upon the rocks with which it may be in contact; but its action varies according to the mineralogical nature of the rocks, and the configuration of the ground they cover. If we penetrate between the soil and the bottom of the glacier, taking advantage of the ice-caverns which sometimes open at its edge or extremity, we creep over a bed of pebbles and fine sand saturated with water. If we remove this bed, we soon perceive that the underlying rock is levelled, polished, ground down by friction, and covered with rectilinear striÆ, resembling sometimes small grooves, more frequently perfectly straight scratches, as though they had been produced by means of a graver, or even a very fine needle. The mechanism by which these striÆ have been produced is that which industry employs to polish stones and metals. We rub the metallic surface with a fine powder called emery, until we give it a brilliancy which proceeds from the reflection of the light from an “The sharpness and depth of the striÆ or scratches depend on many circumstances: if the rock acted upon is calcareous, and the emery is represented by pebbles and sand derived from harder rocks, such as gneiss, granite, or protogine, the scratches are very marked. This we can verify at the foot of the glaciers of Rosenlaui, and of the Grindenwald in the Canton of Berne. On the contrary, if the rock is gneissic, granitic, or serpentinous, that is to say, very hard, the scratches will be less deep and less marked, as may be seen in the glaciers of the Aar, of Zermatt, and Chamounix. The polish will be the same in both cases, and it is often as perfect as in marble polished for architectural purposes. “The scratches engraved upon the rocks which confine these glaciers are generally horizontal or parallel to the surface. Sometimes, owing to the contractions of the valley, these striÆ are nearly vertical. This, however, need not surprise us. Forced onwards by the superincumbent weight, the glacier squeezes itself through the narrow part, its bulk expanding upwards, in which case the flanks of the mountain which barred its passage are marked vertically. This is admirably seen near the ChÂlets of Stieregg, a narrow defile which the lower glacier of the Grindenwald has to clear before it discharges itself into the valley of the same name. Upon the right bank of the glacier the scratches are inclined at an angle of 45° to the horizon. Upon the left bank the glacier rises sometimes quite up to the neighbouring forest, carrying with it great clods of earth charged with rhododendrons and clumps of alder, birches, and firs. The more tender or foliated rocks were broken up and demolished by the prodigious force of the glacier; the harder rocks offered more “In recapitulation, the considerable pressure of a glacier, joined to its movement of progression, acts at once upon the bottom and flanks of the valley which it traverses: it polishes all the rocks which may be too hard to be demolished by it, and frequently impresses upon them a peculiar and characteristic form. In destroying all the asperities and inequalities of these rocks, it levels their surfaces and rounds them on the sides pointing up the stream, whilst in the opposite direction, or down the stream, they sometimes preserve their abrupt, unequal, and rugged surface. We must comprehend, in short, that the force of the glacier acts principally on the side which is towards the circle whence it descends, in the same way that the piles of a bridge are more damaged up-stream, than down, by the icebergs which the river brings down during the winter. Seen from a distance, a group of rocks thus rounded and polished reminds us of the appearance of a flock of sheep: hence the name roches moutonnÉes given them by the Swiss naturalists.” Another phenomenon which plays an important part in existing glaciers, and in those, also, which formerly covered Switzerland, is found in the fragments of rock, often of enormous size, which have been transported and deposited during their movement of progression. The peaks of the Alps are exposed to continual degradations. Formed of granitic rocks—rocks eminently alterable under the action of air and water, they become disintegrated and often fall in fragments more or less voluminous. “The masses of snow,” continues Martins, “which hang upon the Alps during winter, the rain which infiltrates between their beds during summer, the sudden action of torrents of water, and more slowly, but yet more powerfully, the chemical affinities, degrade, disintegrate, and decompose the hardest rocks. The dÉbris thus produced falls from the summits into the circles occupied by the glaciers with a great crash, accompanied by frightful noises and great clouds of dust. Even in the middle of summer I have seen these avalanches of stone precipitated from the highest ridges of the Schreckhorn, forming upon the immaculate snow a long black train, consisting of enormous blocks and an immense Thus, the action of aqueous infiltrations followed by frost, the chemical decomposition which granite undergoes under the influence of a moist atmosphere, degrade and disintegrate the rocks which constitute the mountains enclosing the glacier. Blocks, sometimes of very considerable dimensions, often fall at the foot of these mountains on to the surface of the glacier. Were it immovable the dÉbris would accumulate at its base, and would form there a mass of ruins heaped up without order. But the slow progression, the continuous displacement of the glacier, lead, in the distribution of these blocks, to a certain kind of arrangement: the blocks falling upon its surface participate in its movement, and advance with it. But other downfalls take place daily, and the new dÉbris following the first, the whole form a line along the outer edge of the glacier. These regular trains of rocks bear the name of “moraines.” When the rocks fall from two mountains, and on each edge of the glacier, and two parallel lines of dÉbris are formed, they are called lateral moraines. There are also median moraines, which are formed when two glaciers are confluent, in such a manner that the lateral moraine, on the right of the one, trends towards the left-hand one of the other. Finally, those moraines are frontal, or terminal, which repose, not upon the glacier, but at its point of termination in the valleys, and which are due to the accumulation of blocks fallen from the terminal escarpments of glaciers there arrested by some obstacle. In Plate XXXI. we have represented an actual Swiss glacier, in which are united the physical and geological peculiarities belonging to these enormous masses of frozen water: the moraines here are lateral, that is to say, formed of a double line of dÉbris. Transported slowly on the surface of the glacier, all the blocks from the mountain preserve their original forms unaltered; the sharpness of their edges is never altered by their gentle transport and almost imperceptible motion. Atmospheric agency only can affect or destroy these rocks when formed of hard resisting material. They Thus, huge blocks transported to great distances from their true geological beds, that is, erratic blocks, to use the proper technical term, rounded (moutonnÉes), polished, and scratched surfaces, moraines; finally, pebbles, ground, polished, rounded, or worn into smooth surfaces, are all physical effects of glaciers in motion, and their presence alone affords sufficient proof to the naturalist that a glacier formerly existed in the locality where he finds them. The reader will now comprehend how it is possible to recognise, in our days, the existence of ancient glaciers in different parts of the world. Above all, wherever we may find both erratic blocks and moraines, and observe, at the same time, indications of rocks having been polished and striated in the same direction, we may pronounce with certainty as to the existence of a glacier during geological times. Let us take some instances. At Pravolta, in the Alps, going towards Monte Santo-Primo, upon a calcareous rock, we find the mass of granite represented in Fig. 196. This erratic block exists, with thousands of others, on the slopes of the mountain. It is about fifty feet long, nearly forty feet broad, and five-and-twenty in height; and all its edges and angles are perfect. Some parallel striÆ occur along the neighbouring rocks. All this clearly demonstrates that a glacier existed, in former times, in this part of the Alps, where none appear at the present time. It is a glacier, then, which has transported and deposited here this enormous block, weighing nearly 2,000 tons. In the Jura Mountains, on the hill of FourviÈres, a limestone eminence at Lyons, blocks of granite are found, evidently derived from the Alps, and transported there by the Swiss glaciers. The particular mode of transport is represented theoretically in Fig. 197. A represents, for example, the summit of the Alps, B the Jura Every day traces, more or less recognisable, are found on the Alps The fragments of rocks transported by the ice-sea which occupied all the Swiss plain follow, in northerly direction, the course of the valley of the Rhine. On the other hand, the glacier of the RhÔne, after reaching the plain of Switzerland, turned off obliquely towards the south, received the glacier of the Arve, then that of the IsÈre, passed between the Jura and the mountains of the Grande-Chartreuse, spread over La Bresse, then nearly all Dauphiny, and terminated in the neighbourhood of Lyons. Upon the southern flank of the Alps, the ancient glaciers, according to M. de Mortillet’s map, occupied all the great valleys from that of the Dora, on the west, to that of the Tagliamento, on the east. “The glacier of the Dora” says de Mortillet, whose text we greatly abridge, “debouched into the valley of the Po, close to Turin. That of the Dora-BaltÉa entered the plain of IvrÉa, where it has left a magnificent semicircle of hills, which formed its terminal moraine. That of the Toce discharged itself into Lake Maggiore, against the glacier of the Tessin, and then threw itself into the valley of Lake Orta, at the southern extremity of which its terminal moraines were situated. That of the Tessin filled the basin of Lake Maggiore, and established itself between Lugano and VarÈse. That of the Adda filled the basin of Lake Como, and established itself between Mendrizio and Lecco, thus describing a vast semicircle. That of the Oglio terminated a little beyond Lake Iseo. That of the Adige, finding no passage through the narrow valley of Roveredo, where the valley became very narrow, took another course, and filled the immense valley of the Lake of Garda. At Novi it has left a magnificent moraine, of which Dante speaks in his ‘Inferno.’ That of the Brenta extended over the plain of that commune. The Drave and the Tagliamento had also their glaciers. Finally, glaciers occupied all the valleys of the Austrian and Bavarian Alps.” Similar traces of the existence of ancient glaciers occur in many other European countries. In the Pyrenees, in Corsica, the Vosges, the Jura, &c., extensive ranges of country have been covered, in But the phenomenon of the glacial extension which we have examined in the Alps was not confined to Central Europe. The same traces of their ancient existence are observed in all the north of Europe, in Russia, Iceland, Norway, Prussia, the British Islands, part of Germany, in the north, and even in some parts of the south, of Spain. In England, erratic blocks of granite are found which were derived from the mountains of Norway. It is evident that these blocks were borne by a glacier which extended from the north pole to England. In this manner they crossed the Baltic and the North Seas. In Prussia similar traces are observable. Thus, during the Quaternary epoch, glaciers which are now limited to the Polar regions, or to mountainous countries of considerable altitude, extended very far beyond their present known limits; and, taken in connection with the deluge of the north, and the vast amount of organic life which they destroyed, they form, perhaps, the most striking and mysterious of all geological phenomena. M. Edouard Collomb, to whom we owe much of our knowledge of ancient glaciers, furnishes the following note explanatory of a map of Ancient Glaciers which he has prepared:— “The area occupied by the ancient Quaternary glaciers may be divided into two orographical regions:—1. The region of the north, from lat. 52° or 55° up to the North Pole. 2. The region of Central Europe and part of the south. “The region of the north which has been covered by the ancient glaciers comprehends all the Scandinavian peninsula, Sweden, Norway, and a part of Western Russia, extending from the Niemen on the north in a curve which passed near the sources of the Dnieper and the Volga, and thence took a direction towards the shores of the glacial ocean. This region comprehends Iceland, Scotland, Ireland, the isles dependent on them, and, finally, a great part of England. “This region is bounded, on all its sides, by a wide zone from 2° to 5° in breadth, over which is recognised the existence of erratic blocks of the north: it includes the middle region of Russia in Europe, Poland, a part of Prussia, and Denmark; losing itself in Holland on the Zuider Zee, it cut into the northern part of England, and we find a shred of it in France, upon the borders of the Cotentin. “The ancient glaciers of Central Europe consisted, first, of the “In the Pyrenees, the ancient glaciers have occupied all the principal valleys of this chain, both on the French and Spanish sides, especially the valleys of the centre, which comprehend those of Luchon, Aude, BarÉges, Cauterets, and Ossun. In the Cantabrian chain, an extension of the Pyrenees, the existence of ancient glaciers has also been recognised. “In the Vosges and the Black Forest they covered all the southern parts of these mountains. In the Vosges, the principal traces are found in the valleys of Saint-Amarin, Giromagny, Munster, the Moselle, &c. “In the Carpathians and the Caucasus the existence of ancient glaciers of great extent has also been observed. “In the Sierra Nevada, in the south of Spain, mountains upwards of 11,000 feet high, the valleys which descend from the Picacho de Veleta and Mulhacen have been covered with ancient glaciers during the Quaternary epoch.” There is no reason to doubt that at this epoch all the British islands, at least all north of the Thames, were covered by glaciers in their higher parts. “Those,” says Professor Ramsay, “who know the Highlands of Scotland, will remember that, though the weather has had a powerful influence upon them, rendering them in places rugged, jagged, and cliffy, yet, notwithstanding, their general outlines are often remarkably rounded and flowing; and when the valleys are examined in detail, you find in their bottoms and on the sides of the hills that the mammillated structure prevails. This rounded form is known, by those who study glaciers, by the name of roches moutonnÉes, given to them by the Swiss writers. These mammillated forms are exceedingly common in many British valleys, and not only so, but the very same kind of grooving and striation, so characteristic of the rocks in the Swiss valleys, also marks those of the Highlands of Scotland, of Cumberland, and Wales. Considering all these things, geologists, led by Agassiz some five or six and twenty years ago, have by degrees come to the conclusion, that a very large part of our island was, during the glacial period, covered, or nearly covered, with a thick Whoever traverses England, observing its features with attention, will remark in certain places traces of the action of ice in this era. Some of the mountains present on one side a naked rock, and on the other a gentle slope, smiling and verdant, giving a character more or less abrupt, bold, and striking, to the landscape. Considerable portions of dry land were formerly covered by a bluish clay, which contained many fragments of rock or “boulders” torn from the old Cumbrian mountains; from the Pennine chain; from the moraines of the north of England; and from the Chalk hills—hence called “boulder” clay—present themselves here and there, broken, worn, and ground up by the action of water and ice. These erratic blocks or “boulders” have clearly been detached from the parent rock by violence, and often transported to considerable distances. They have been carried, not only across plains, but over the tops of mountains; some of them being found 130 miles from the parent rocks. We even find, as already hinted, some rocks of which no prototypes have been found nearer than Norway. There is, then, little room for doubting the fact of an extensive system of glaciers having covered the land, although the proofs have only been gathered laboriously and by slow degrees in a long series of years. In 1840 Agassiz visited Scotland, and his eye, accustomed to glaciers in his native mountains, speedily detected their signs. Dr. Buckland became a zealous advocate of the same views. North Wales was soon recognised as an independent centre of a system which radiated from lofty Snowdon, through seven valleys, carrying with them large stones and grooving the rocks in their passage. In the pass of Llanberis there are all the common proofs of the valley having been filled with glacier ice. “When the country was under water,” says Professor Ramsay, “the drift was deposited which more or less filled up many of the Welsh valleys. When the land had risen again to a considerable height, the glaciers increased in size: although they never reached the immense magnitude which they attained in the earlier portion of the icy epoch. Still they became so large that such a valley as the Pass of Llanberis was a second time occupied by ice, which ploughed out the drift that more or less covered the valley. By degrees, however, as we approach nearer our own days, the climate slowly ameliorated, and the glaciers began to decline, till, growing less and less, they crept up and up; and here “In short, they were let down upon the surface of these rocks so quietly and so softly, that there they will lie, until an earthquake shakes them down, or until the wasting of the rock on which they rest precipitates them to a lower level.” It was the opinion of Agassiz, after visiting Scotland, that the Grampians had been covered by a vast thickness of ice, whence erratic blocks had been dispersed in all directions as from a centre; other geologists after a time adopted the opinion—Mr. Robert Chambers going so far as to maintain, in 1848, that Scotland had been at one time moulded by ice. Mr. T. F. Jamieson followed in the same track, adducing many new facts to prove that the Grampians once sent down glaciers in all directions towards the sea. “The glacial grooves,” he says, “radiate outward from the central heights towards all points of the compass, although they do not strictly conform to the actual shape and contour of the minor valleys and ridges.” But the most interesting part of Mr. Jamieson’s investigations is undoubtedly the ingenious manner in which he has worked out Agassiz’ assertion that Glenroy, whose remarkable “Parallel Roads” have puzzled so many investigators, was once the basin of a frozen lake. Glenroy is one of the many romantic glens of Lochaber, at the head of the Spey, near to the Great Glen, or the valley of the Caledonian Canal, which stretches obliquely across the country in a northwesterly direction from Loch LinnhÈ to Loch Ness, leaving Loch Arkaig, Loch Aich, Glen Garry, and many a highland loch besides, on the left, and Glen Spean, in which Loch Treig, running due north and south, has its mouth, on the south. Glenroy opens into it from the north, while Glen Gluoy opens into the Great Glen opposite Loch Arkaig. Mr. Jamieson commenced his investigations at the mouth of Loch Arkaig, which is about a mile from the lake itself. Here he found the gneiss ground down as if by ice coming from the east. On the hill, north of the lake, the gneiss, though much worn and weathered, still exhibited well-marked striÆ, directed up and down the valley. Other markings showed that the Glen Arkaig glacier not only blocked up Glen Gluoy, but the mouth of Glen Spean, which lies two miles or so north of it on the opposite side. A glacier crossing from Loch Treig, and protruding across Glen Spean, would cut off Glens Glaibu and Makoul, when the water in Glenroy could only escape over the Col into Strathspey, when the first level would be marked. Now let the Glen Treig glacier shrink a little, so as to let out water to the level of the second line by the outline at Makoul, and the theory is complete. When the first and greatest glacier gave way, Glenroy would be nearly in its present state. The glacier, on issuing from the gorge at the end of Loch Treig, would dilate immensely, the right flank spreading over a rough expanse of syenite, the neighbouring hills being mica-schists, with veins of porphyry. Now the syenite breaks into large cuboidal blocks of immense size. These have been swept before the advancing glacier along with other dÉbris, and deposited in a semicircle of mounds having a sweep of several miles, forming circular bands which mark the edges of the glacier as it shrunk from time to time under the influence of a milder climate. This moraine, which was all that was wanting to complete the theory laid down by Agassiz, is found on the pony-road leading from the mouth of Loch Treig towards Badenoch. A mile or so brings the traveller to the summit-level of the road, and beyond the hill a low moor stretches away to the bottom of the plain. Here, slanting across the slope of the hill towards Loch Treig, two lines of moraine stretch across the road. At first they consist of mica-schists and bits of porphyry, but blocks of syenite soon become intermingled. Outside these are older hillocks, rising in some places sixty and seventy feet high, forming narrow steep-sided mounds, with blocks fourteen The present aspect of Glenroy is that of an upper and lower glen opening up from the larger Glen Spean. The head-waters of Lochaber In Scotland, and in Northern England and Wales, there is distinct evidence that the Glacial Epoch commenced with an era of continental ice, the land being but slightly lower than at present, and possibly at the same level, during which period the Scottish hills received their rounded outlines, and scratched and smoothed rock-surfaces; and the plains and valleys became filled with the stiff clay, with angular scratched stones, known as the “Till,” which deposit is believed by Messrs. Geikie, Jamieson, and Croll to be a moraine profonde, the product of a vast ice-sheet. In Wales, Professor Ramsay has described the whole of the valleys of the Snowdonian range as filled with enormous glaciers, the level of the surface of the ice filling the Pass of Llanberis, rising 500 feet above the present watershed at Gorphwysfa. In the Lake District of Cumberland and Westmorland, Mr. De Rance has shown that a vast series of glaciers, or small ice-sheets, filled all the valleys, radiating out in all directions from the larger mountains, which formed centres of dispersion, the ice actually pushing over many of the lesser watersheds, and scooping out the great rock-basins in which lie the lakes Windermere, Ullswater, Thirlmere, Coniston Water, and Wastwater, the bottoms of which are nearly all below the sea-level. The whole of this district, he has shown, experienced a second glaciation, after the period of great submergence, in which valley-glaciers scooped out the marine drift, and left their moraines In Wales, also, valley-glaciers existed after the submergence beneath the Glacial sea. Thus in Cwm-llafar, under the brow of Carnedd Dafydd, and Carnedd Llewelyn, Professor Ramsay has shown that a narrow glacier, about two miles in length, has ploughed out a long narrow hollow in the drift (which “forms a succession of terraces, the result of marine denudation, during pauses in the re-elevation of its submersion) to a depth of more than 2,000 feet.” The proofs of this great submergence, succeeding the era of “land-ice,” are constantly accumulating. Since 1863, when Professor Hull first divided the thick glacial deposits of Eastern Lancashire and Cheshire into an Upper Boulder Clay, and Lower Boulder Clay divided by a Middle Sand and Gravel, the whole of which are of marine origin, these subdivisions have been found to hold good, by himself and Mr. A. H. Green, over 600 square miles of country around Manchester, Bolton, and Congleton; by Mr. De Rance over another 600 square miles, around Liverpool, Preston, Blackpool, Blackburn, and Lancaster, and also in the low country lying between the Cumberland and Welsh mountains and the sea. In Ireland, also, the same triplex arrangement appears to exist. Professors Harkness and Hull have identified the “Limestone and Manure Gravels” of the central plain, as referable to the “Middle Sand and Gravel,” and the “Lower Boulder Clay” rests on a glaciated rock-surface along the coasts of Antrim and Down, and is overlain by sand, which, in 1832, was discovered by Dr. Scouler to be shell-bearing. At Kingstown the three deposits are seen resting on a moutonnÉed surface of granite, scored from the N.N.W. In Lancashire and on the coast of North Wales, between Llandudno and Rhyl, Mr. De Rance has shown that these deposits often lie upon the denuded and eroded surface of another clay, of older date, which he believes to be the product of land-ice, the remnant of the moraine profonde, and the equivalent of the Scotch “Till.” He also shows that the Lower Boulder Clay never rises above an elevation of fifty or eighty feet above the sea-level; and that the Middle Sand and Shingle rests directly upon the rock, or on the surface of this old Till. Near Manchester the Lower Boulder Clay occasionally rests upon an old bed of sand and gravel. It is extremely local, but its presence has been recorded in several sections by Mr. Edward Binney, who Most of the erratic pebbles and boulders in the Lancashire clays are more or less scratched and scored, many of them (though quite rounded) in so many directions that Mr. De Rance believes the Cumberland and Westmoreland hills to have been surrounded by an ice-belt, which, occasionally thawing during summer or warm episodes, admitted “breaker action” on the gradually subsiding coast, wearing the fragments of rocks brought down by rivers or by glaciers into pebbles that, with the return of the cold, became covered with the “ice-belt,” which, lifted by the tides, rolled and dinted the pebbles one against another, and gradually allowed them to be impressed into its mass, with which they eventually floated away. The Middle Sands and Shingles in England have also afforded a great number of shells of mollusca. At Macclesfield they have been described by Messrs. Prestwich and Darbishire as occurring at an elevation of 1,100 to 1,200 feet above the level of the sea. Among other proofs of glacial action and submersion in Wales may be mentioned the case of Moel Tryfaen, a hill 1,400 feet high, lying to the westward of Caernarvon Bay, and six or seven miles from Caernarvon. Mr. Joshua Trimmer had observed stratified drift near the summit of this mountain, from which he obtained some marine shells; but doubts were entertained as to their age until 1863, when a deep and extensive cutting was made in search of slates. In this cutting a stratified mass of loose sand and gravel was laid open near the summit, thirty-five feet thick, containing shells, some entire, but mostly in fragments. Sir Charles Lyell examined the cutting, and obtained twenty species of shells, and in the lower beds of the drift, “large heavy boulders of far-transported rocks, glacially polished and scratched on more than one side:” underneath the whole, the edges of vertical slates were exposed to view, exhibiting “unequivocal marks of prolonged glaciation.” The shells belonged to species still living in British or more northern seas. From the gravels of the Severn Valley, described by Mr. Maw, thirty-five forms of mollusca have been identified by Mr. Gwyn Jeffreys. In Eastern Yorkshire, Mr. Searles V. Wood, Jun., has divided the glacial deposits into “Purple Clay without Chalk,” “Purple Clay with Chalk,” and “Chalky Clay,” the whole being later than his “Middle Glacial Sands and Gravel,” which, in East Anglia, are overlain by the “Chalky Clay,” and rest unconformably upon the “Contorted Drift” of Norfolk, the Cromer Till, and the Forest Bed. His three Yorkshire clays are, however, considered by most northern geologists to be the representatives of the “Upper Boulder Clay” west of the Pennine Chain, the “Chalky Clay” having been formed before the country had sufficiently subsided to allow the sandstones and marls, furnishing the red colouring matter, to have suffered denudation; while the “Purple Clay without Chalk, and with Shap Granite,” was deposited when all the chalk was mainly beneath the sea, and the granite from Shap Fell, which had been broken up by breaker-action during the Middle Sand era, was floated across the passes of the Pennine Chain and southwards and northwards. A solitary pebble of Shap granite has been found by Mr. De Rance at Hoylake, in Cheshire; and many of Criffel Granite, in that county, and on the coast of North Wales, by Mr. Mackintosh, who has also traced the flow of this granite in the low country lying north and south of the Cumberland mountains. At Bridlington, in Yorkshire, occurs a deposit at the base of the “Purple Clay,” with a truly Arctic fauna. Out of seventy forms of mollusca recorded by Mr. S. V. Wood, Jun., nineteen are unknown to the Crag—of these thirteen are purely arctic, and two not known as living. Shells have been found in the Upper Boulder Clay of Lancashire, at Hollingworth Reservoir, near Mottram, by Messrs. Binney, Bateman, and Prestwich, at an elevation of 568 feet above the sea, consisting of Fusus Bamffius, Purpura lapillus, Turritilla terebra, and Cardium edule. The clay is described by Mr. Binney as sandy, and brown-coloured, with pebbles of granite and greenstone, some rounded and some angular. All the above shells, as well as Tellina Balthica, have been found in the Upper Clay of Preston, Garstang, Blackpool, and Llandudno, by Mr. De Rance, who has also found all the above species (with the exception of Fusus), as well as Psammobia ferroensis, and the siliceous spiculÆ of marine sponges, in the Lower Boulder Clay of West Lancashire. He has described the ordinary red Boulder Clay of Lancashire as extending continuously through Cheshire and Staffordshire into Warwickshire, The Rev. O. Fisher, F.G.S., has paid much attention to the superficial covering usually described as “heading,” or “drift,” as well as to the contour of the surface, in districts composed of the softer strata, and has published his views in various papers in the Journal of the Geological Society and in the Geological Magazine. He thinks that the contour of the surface cannot be ascribed entirely to the action of rain and rivers, but that the changes in the ancient contour since produced by those changes can be easily distinguished. He finds the covering beds to consist of two members—a lower one, entirely destitute of organic remains, and generally unstratified, which has often been forcibly indented into the bed beneath it, sometimes exhibiting slickenside at the junction. There is evidence of this lower member having been pushed or dragged over the surface, from higher to lower levels, in a plastic condition; on which account he has named it “The Trail.” The upper member of the covering beds consists of soil derived from the lower one, by weathering. It contains, here and there, the remains of the land-shells which lived in the locality at a period antecedent to cultivation. It is “The Warp” of Mr. Trimmer. Neither of these accumulations occur on low flats, where the surface has been modified since the recent period. They both alike pass below high-water mark, and have been noticed beneath estuarine deposits. Mr. Fisher is of opinion that land-ice has been instrumental in forming the contour of the surface, and that the trail is the remnant of its moraine profonde. And he has given reasons The phenomena which so powerfully affected our hemisphere present themselves, in a much grander manner, in the New World. In proving that glaciers covered part of Europe during a certain period, that they extended from the North Pole to Northern Italy and the Danube, we have sufficiently established the reality of this glacial period, which we must consider as a curious episode, as well as certain, in the history of the earth. Such masses of ice could only have covered the earth when the temperature of the air was lowered at least some degrees below zero. But organic life is incompatible with such a temperature; and to this cause must we attribute the disappearance of certain species of animals and plants—in particular, the Rhinoceros and the Elephant—which, before this sudden and extraordinary cooling of the globe, appear to have limited themselves, in immense herds, to Northern Europe, and chiefly to Siberia, where their remains have been found in such prodigious quantities. How can we explain the glacial period? We have explained M. AdhÉmar’s hypothesis, to which it may be objected that the cold of the glacial period was so general throughout the Polar and temperate regions on both sides of the equator, that mere local changes in the external configuration of our planet and displacement of the centre of gravity scarcely afford adequate causes for so great a revolution in temperature. Sir Charles Lyell, speculating upon the suggestion of Ritter and the discovery of marine shells spread far and wide over the Sahara Desert by Messrs. Escher von der Linth, Desor, and Martins—which seem to prove that the African Desert has been under water at a very recent period—infers that the Desert of Sahara constituted formerly a wide marine area, stretching several hundred miles north and south, and east and west. “From this area,” he adds, “the south wind must formerly have absorbed moisture, and must have been still further cooled and saturated with aqueous vapour as it passed over the Mediterranean. When at length it reached the Alps, and, striking them, was driven into the higher and more rarefied regions of the atmosphere, it would part with its watery burthen in the form of snow; so that the same aËrial current which, under the name of the FÖhn, or Sirocco, now plays a leading part with its hot and dry breath, sometimes, even in the depth of winter, in melting the snow and checking the growth of glaciers, must, at the period alluded to, have been the principal feeder of Alpine snow and ice.” CREATION OF MAN AND THE ASIATIC DELUGE.It was only after the glacial period, when the earth had resumed its normal temperature, that man was created. Whence came he? He came from whence originated the first blade of grass which grew upon the burning rocks of the Silurian seas; from whence proceeded the different races of animals which have successively replaced each other upon the globe, gradually, but unceasingly, rising in the scale of perfection. He emanated from the supreme will of the Author of the worlds which constitute the universe. The earth has passed through many phases since the time when—in the words of the Sacred Record—“the earth was without form and void; and darkness was upon the face of the deep. And the Spirit of God moved upon the face of the waters.” We have considered all these phases; we have seen the globe floating in space in a state of gaseous nebulosity, condensing into liquidity, and beginning to solidify at the surface. We have pictured the internal agitations, the disturbances, the partial dislocations to which the earth has been subjected, almost without interruption, while it could not, as yet, resist the force of the waves of the fiery sea imprisoned within its fragile crust. We have seen this envelope acquiring solidity, and the geological cataclysms losing their intensity and frequency in proportion as this solid crust increased in thickness. We have looked on, so to speak, while the work of organic creation was proceeding. We have seen life making its appearance upon the globe; and the first plants and animals springing into existence. We have seen this organic creation multiplying, becoming more complex, and constantly made more perfect with each advance in the progressive phases of the history of the earth. We now arrive at the greatest event of this history, at the crowning of the edifice, si parva licet componere magnis. At the close of the Tertiary epoch, the continents and seas assumed the respective limits which they now present. The disturbances of the ground, the fractures of the earth’s crust, and the volcanic eruptions which are the consequence of them, only occurred at rare God created man. What is man? We might say that man is an intelligent and moral being; but this would give a very imperfect idea of his nature. Franklin says that man is one that can make tools! This is to reproduce a portion of the first proposition, while depreciating it. Aristotle calls man the “wise being,” ???? p???t????. LinnÆus, in his “System of Nature,” after having applied to man the epithet of wise (homo sapiens) writes after this generic title these profound words: Nosce te ipsum. The French naturalist and philosopher, Isidore Geoffroy Saint-Hilaire, says, “The plant lives, the animal lives and feels, man lives, feels, and thinks”—a sentiment which Voltaire had already expressed. “The Eternal Maker,” says the philosopher of Ferney, “has given to man organisation, sentiment, and intelligence; to the animals sentiment, and what we call instinct; to vegetables organisation alone. His power then acts continually upon these three kingdoms.” It is probably the animal which is here depreciated. The animal on many occasions undoubtedly thinks, reasons, deliberates with itself, and acts in virtue of a decision maturely weighed; it is not then reduced to mere sensation. To define exactly the human being, we believe that it is necessary to characterise the nature and extent of his intelligence. In certain cases the intelligence of the animal approaches nearly to that of man, but the latter is endowed with a certain faculty which belongs to him exclusively; in creating him, God has added an entirely new step in the ascending scale of animated beings. This faculty, peculiar to the human race, is abstraction. We will say, then, that man is an intelligent being, gifted with the faculty of comprehending the abstract. It is by this faculty that man is raised to a pre-eminent degree of material and moral power. By it he has subdued the earth to his empire, and by it also his mind rises to the most sublime contemplations. Thanks to this faculty, man has conceived the ideal, and realised poesy. He has conceived the infinite, and created mathematics. (a + b)2 = a2 + 2ab + b2, or the algebraic idea of negative quantities, this belongs to man. It is the greatest privilege of the human being to express and comprehend thoughts like the following: J’Étais seul prÈs des flots, par une nuit d’Étoiles, Pas un nuage aux cieux, sur les mers pas de voiles, Mes yeux plongeaient plus loin que le monde rÉel, Et les vents et les mers, et toute la nature Semblaient interroger dans un confus murmure, Les flots des mers, les feux du ciel. Et les Étoiles d’or, lÉgions infinies, À voix haute, À voix basse, avec mille harmonies Disaient, en inclinant leur couronne de feu; Et les flots bleus, que rien ne gouverne et n’arrÊte: Disaient, en recourbant l’Écume de leur crÊte: “C’est le Seigneur, le Seigneur Dieu!”* Victor Hugo, les Orientales. * Alone with the waves, on a starry night, My thoughts far away in the infinite; On the sea not a sail, not a cloud in the sky, And the wind and the waves with sweet lullaby Seem to question in murmurs of mystery, The fires of heaven, the waves of the sea. And the golden stars of the heavens rose higher, Harmoniously blending their crowns of fire, And the waves which no ruling hand may know, ‘Midst a thousand murmurs, now high, now low, Sing, while curving their foaming crests to the sea, “It is the Lord God! It is He.” The “MÉcanique CÉleste” of Laplace, the “Principia” of Newton, Milton’s “Paradise Lost,” the “Orientales” by Victor Hugo—are the fruits of the faculty of abstraction. In the year 1800, a being, half savage, who lived in the woods, clambered up the trees, slept upon dried leaves, and fled on the approach of men, was brought to a physician named Pinel. Some The learned Dr. Itard has published an interesting history of the savage of Aveyron. “He would sometimes descend,” he writes, “into the garden of the deaf and dumb, and seat himself upon the edge of the fountain, preserving his balance by rocking himself to and fro; after a time his body became quite still, and his face assumed an expression of profound melancholy. He would remain thus for hours—regarding attentively the surface of the water—upon which he would, from time to time, throw blades of grass and dried leaves. At night, when the clear moonlight penetrated into the chamber he occupied, he rarely failed to rise and place himself at the window, where he would remain part of the night, erect, motionless, his neck stretched out, his eyes fixed upon the landscape lit up by the moon, lost in a sort of ecstasy of contemplation.” This being was, undoubtedly, a man. No ape ever exhibited such signs of intelligence, such dreamy manifestations, vague conceptions of the ideal—in other words, that faculty of abstraction which belongs to humanity alone. In order worthily to introduce the new inhabitant who comes to fill the earth with his presence—who brings with him intelligence to comprehend, to admire, to subdue, and to rule the creation (Pl. XXXII.), we require nothing more than the grand and simple language of Moses, whom Bossuet calls “the most ancient of historians, the most sublime of philosophers, the wisest of legislators.” Let us listen to the words of the inspired writer: “And God said, Let us make man in our image, after our likeness: and let them have dominion over the fish of the sea, and over the fowl of the air, and over the cattle, and over all the earth, and over every creeping thing that creepeth upon the earth. So God created man in his own image, in the image of God created he him; male and female created he them.” “And God saw everything that he had made, and, behold, it was very good.” Volumes have been written upon the question of the unity of the human race; that is, whether there were many centres of the creation of man, or whether our race is derived solely from the Adam of Scripture. We think, with many naturalists, that the stock of humanity is unique, and that the different human races, the negroes, and the yellow race, are only the result of the influence of climate We are, it will be seen, far from sharing the opinion of those naturalists who represent man, at the beginning of the existence of his species, as a sort of ape, of hideous face, degraded mien, and covered with hair, inhabiting caves like the bears and lions, and participating in the brutal instincts of those savage animals. The antiquity of man is a question which has largely engaged the attention of geologists, and many ingenious arguments have been hazarded, tending to prove that the human race and the great extinct Mammalia were contemporaneous. The circumstances bearing on the question are usually ranged under three series of facts: 1. The Cave-deposits; 2. Peat and shell mounds; 3. Lacustrine habitations, or Lake dwellings. We have already briefly touched upon the Cave-deposits. In the Kirkdale Cave no remains or other traces of man’s presence seem to have been discovered. But in Kent’s Hole, an unequal deposit of loam and clay, along with broken bones much gnawed, and the teeth of both extinct and living Mammals, implements evidently fashioned by the human hand were found in the following order: in the upper part of the clay, artificially-shaped flints; on the clay rested a layer of stalagmite, in which streaks of burnt charcoal occurred, and charred bones of existing species of animals. Above the stalagmite a stone hatchet, or celt, made of syenite, of more finished appearance, was met with, with articles of bone, round pieces of blue slate and sandstone-grit, pieces of pottery, a number of shells of the mussel, limpet, and oyster, and other remains, Celtic, British, and Roman, of very early date; the lower deposits are those with which we are here more particularly concerned. The Rev. J. MacEnery, the gentleman who explored and described them, ascertained that the flint-instruments occupied a uniform situation intermediate between the stalagmite and the upper surface of the loam, forming a connecting link between both; and his opinion was that the epoch of the introduction of the knives must be dated antecedently to the formation of the stalagmite, from the era of the quiescent settlement of the mud. From this view it would follow that the cave was visited posteriorly to the introduction and subsidence of the loam, and before the formation of the new super-stratum of stalagmite, by men who entered the cave and disturbed the original deposit. Although flints have been found in the loam underlying the regular crust of stalagmite, mingled confusedly with the bones, and unconnected with the evidence of the visits of man—such as the excavation of ovens or pits—Dr. Buckland refused his belief to the statement that the flint-implements were found beneath the stalagmite, and always contended that In 1858 Dr. Falconer heard of the newly-discovered cave at Brixham, on the opposite side of the bay to Torquay, and he took steps to prevent any doubts being entertained with regard to its contents. This cave was composed of several passages, with four entrances, formerly blocked up with breccia and earthy matter; the main opening being ascertained by Mr. Bristow to be seventy-eight feet above the valley, and ninety-five feet above the sea, the cave itself being in some places eight feet wide. The contents of the cave were covered with a layer of stalagmite, from one to fifteen inches thick, on the top of which were found the horns of a Reindeer; under the stalagmite came reddish loam or cave-earth, with pebbles and some angular stones, from two to thirteen feet thick, containing the bones of Elephants, Rhinoceros, Bears, HyÆnas, Felis, Reindeer, Horses, Oxen, and several Rodents; and, lastly, a layer of gravel, and rounded pebbles without fossils, underlaid the cave-earth and formed the lowest deposit. In these beds no human bones were found, but in almost every part of the bone-bed were flint-knives, one of the most perfect being found thirteen feet down in the bone-bed, at its lowest part. The most remarkable fact in connection with this cave was the discovery of an entire left hind-leg of the Cave-bear lying in close proximity to this knife; “not washed in a fossil state out of an older alluvium, and swept afterwards into this cave, so as to be mingled with the flint implements, but having been introduced when clothed in its flesh.” The implement and the Bear’s leg were evidently deposited about the same time, and it only required some approximative estimate of the date of this deposit, to settle the question of the antiquity of man, at least in an affirmative sense. Mr. H. W. Bristow, who was sent by the Committee of the Royal Society to make a plan and drawings of the Brixham Cave, found that its entrance was situated at a height of ninety-five feet above the present level of the sea. In his Report made to the Royal Society, in explanation of the plan and sections, Mr. Bristow stated that, in all probability, at the time the cave was formed, the land was at a lower level to the extent of the observed distance of ninety-five feet, and that its mouth was then situated at or near the level of the sea. The cave consisted of wide galleries or passages running in a The mouth or entrance to the cave originated, in the first instance, in an open joint or fissure in the Devonian limestone, which became widened by water flowing backwards and forwards, and was partly enlarged by the atmospheric water, which percolated through the cracks, fissures, and open joints in the overlying rock. The pebbles, forming the lowest deposit in the cave, were ordinary shingle or beach-gravel, washed in by the waves and tides. The cave-earth was the residual part of the limestone rock, after the calcareous portion had been dissolved and carried away in solution; and the stalactite and stalagmite were derived from the lime deposited from the percolating water. With regard to bone-caves generally, it would seem that, like other such openings, they are most common in limestone rocks, where they have been formed by water, which has dissolved and carried away the calcareous ingredient of the rock. In the case of the Brixham cave, the mode of action of the water could be clearly traced in two ways: first, in widening out the principal passages by the rush of water backwards and forwards from the sea; and, secondly, by the infiltration and percolation of atmospheric water through the overlying rock. In both cases the active agents in producing the cave had taken advantage of a pre-existing fissure or crack, or an open joint, which they gradually enlarged and widened out, until the opening received its final proportions. The cave presented no appearance of ever having been inhabited by man; or of having been the den of HyÆnas or other animals, like Wookey Hole in the Mendips, and some other bone-caves. The most probable supposition is, that the hind quarter of the Bear and other bones which were found in the cave-earth, had been washed into the cave by the sea, in which they were floating about. We draw some inferences of the greatest interest and significance from the Brixham cave and its contents. We learn that this country was, at one time, inhabited by animals which are now extinct, and of whose existence we have not even a tradition; that man, then ignorant of the use of metal, and little better than the brutes, was the contemporary of the animals whose remains were found in the cave, together with a rude flint-implement—the only kind of weapon with which our savage ancestor defended himself against animals scarcely wilder than himself. We also learn that after the cave had been formed and sealed up Lastly, we learn that, at the time the cave was formed, and while the land was inhabited by man, that part of the country was lower by ninety-five feet than it is now; and that this elevation has probably been produced so slowly and so gradually, as to have been imperceptible during the time it was taking place, which extended over a vast interval of time, perhaps over thousands of years. Perhaps it may not be out of place here to describe the mode of formation of bone-caves generally, and the causes which have produced the appearances these now present. Caves in limestone rocks have two principal phases—one of formation, and one of filling up. So long as the water which enters the cavities in the course of formation, and carries off some of the calcareous matter in solution, can find an easy exit, the cavity is continually enlarged; but when, from various causes, the water only enters in small quantities, and does not escape, or only finds its way out slowly, and with difficulty, the lime, instead of being removed, is re-deposited on the walls, roof, sides, and floor of the cavity, in the form of stalactites and stalagmite, and the work of re-filling with solid carbonate of lime then takes place. Encouraged by the Brixham discoveries, a congress of French and English geologists met at Amiens, in order to consider certain evidence, on which it was sought to establish as a fact that man and the Mammoth were formerly contemporaries. The valley of the Somme, between Abbeville and Amiens, is occupied by beds of peat, some twenty or thirty feet deep, resting on a thin bed of clay which covers other beds, of sand and gravel, and itself rests on white Chalk with flints. Bordering the valley, some hills rise with a gentle slope to a height of 200 or 300 feet, and here and there, on their summits, are patches of Tertiary sand and clay, with fossils, and again more extensive layers of loam. The inference from this geological structure is that the river, originally flowing through the Tertiary formation, gradually cut its way through the various strata down to its present level. From the depth of the peat, its lower part lies below the sea-level, and it is supposed that a depression of the region has occurred at some period: again, in land The Quaternary deposits of Moulin-Quignon and the peat-beds of the Somme formerly furnished Cuvier with some of the fossils he described, and in later times chipped flint-implements from the quarries and bogs came into the possession of M. Boucher de Perthes; the statements were received at first not without suspicion—especially on the part of English geologists who were familiar with similar attempts on their own credulity—that some at least of these were manufactured by the workmen of the district. At length, the discovery of a human jaw and tooth in the gravel-pits of St. Acheul, near Amiens, produced a rigorous investigation into the facts, and it seems to have been established to the satisfaction of Mr. Prestwich and his colleagues, that flint-implements and the bones of extinct Mammalia are met with in the same beds, and in situations indicating very great antiquity. In the sloping and irregular deposits overlooking the Somme, the bones of Elephants, Rhinoceros, with land and fresh-water shells of existing species, are found mingled with flint-implements. Shells like those now found in the neighbouring streams and hedge-rows, with the bones of existing quadrupeds, have been obtained from the peat, with flint-tools of more than usual finish, and together with them a few fragments of human bones. Of these reliquiÆ, the Celtic memorials lie below the Gallo-Roman; above them, oaks, alders, and walnut trees occur, sometimes rooted, but no succession of a new growth of trees appear. The theory of the St. Acheul beds is this: they were deposited by fluviatile action, and are probably amongst the oldest deposits in which human remains occur, older than the peat-beds of the Somme—but what is their real age? Before submitting to the reader the very imperfect answer this question admits of, a glance at the previous discoveries, which tended to give confirmation to the observations just narrated, may be useful. Implements of stone and flint have been continually turning up during the last century and a half in all parts of the world. In the The peat-deposits of those countries—of Denmark especially—are formed in hollows and depressions, in the northern drift and Boulder clay, from ten to thirty feet deep. The lower stratum, of two or three feet in thickness, consists of sphagnum, over which lies another growth of peat formed of aquatic and marsh plants. On the edge of the bogs trunks of Scotch firs of large size are found—a tree which has not grown in the Danish islands within historic times, and does not now thrive when planted, although it was evidently indigenous within the human period, since Steenstrup took with his own hands a flint-implement from beneath the trunk of one. The sessile variety of the oak would appear to have succeeded the fir, and is found at a higher level in the peat. Higher up still, the common oak, Quercus robur, is found along with the birch, hazel, and alder. The oak has in its turn been succeeded by the beech. Another source from which numerous relics of early humanity have been taken is the midden-heaps (KjÖkken-mÖdden) found along the Scandinavian coast. These heaps consist of castaway shells mixed with bones of quadrupeds, birds, and fishes, which reveal in some respects the habits of the early races which inhabited the coast. Scattered through these mounds are flint-knives, pieces of pottery, and ashes, but neither bronze nor iron. The knives and hatchets are said to be a degree less rude than those of older date found in the peat. Mounds corresponding to these, Sir Charles Lyell tells us, occur along the American coast, from Massachusetts and Georgia. The bones of the quadrupeds found in these mounds correspond with those of existing species, or species which have existed in historic times. The traces left indicate that the aborigines went to sea in canoes scooped out of a single tree, bringing back deep-sea fishes. Skulls obtained from the peat and from tumuli, and believed to be contemporaneous with the mounds, are small and round, with prominent supra-orbital ridges, somewhat resembling the skulls of Laplanders. The third series of facts (Lake-dwellings, or lacustrine habitations) consisted of the buildings on piles, in lakes, and once common in Asia and Europe. They are first mentioned by Herodotus as being used among the Thracians of PÆonia, in the mountain-lake Prasias, where the natives lived in dwellings built on piles, and connected with the shore by a narrow causeway, by which means they escaped the assaults of Xerxes. Buildings of the same description occupied the Swiss lakes, in the mud of which hundreds of implements, like those found in Denmark, have been dredged up. In Zurich, Moosseedorf near Berne, and Lake Constance, axes, celts, pottery, and canoes made out of single trees, have been found; but of the human frame scarcely a trace has been discovered. One skull dredged up at Meilen, in the Lake of Zurich, was intermediate between the Lapp-like skull of the Danish tumuli and the more recent European type. The age of the different formations in which these records of the human race are found will probably ever remain a mystery. The evidence which would make the implements formed by man contemporaneous with the Mammoth and other great Mammalia would go a great way to prove that man was also pre-glacial. Let us see how that argument stands. At the period when the upper Norwich Crag was deposited, the general level of the British Isles is supposed to have been about 600 feet above its present level, and so connected with the European continent as to have received the elements of its fauna and flora from thence. By some great change, a period of depression occurred, in which With regard to the St. Acheul beds—said to be the most ancient formation in which the productions of human hands have been found—they are confessedly older than the peat-beds, and the time required for the production of other peat-beds of equal thickness has been estimated at 7,000 years. The antiquity of the gravel-beds of St. Acheul may be estimated on two grounds:—1. General elevation above the level of the valley. 2. By estimating the animal-remains found in the gravel-beds, and not in the peat. The first question implies the denudation of the valley below the level of the gravel, or the elevation of the whole plateau. Each of these operations would involve an incalculable time, for want of data. In the second case, judging from the slow rate at which quadrupeds have disappeared in historic times, the extinct Mammoth and other great animals must have occupied many centuries in dying out, for the notion that they died out suddenly from sharp and sudden refrigeration, is not generally admitted. With regard to the three ages of stone, bronze, and iron, M. Morlot has based some calculations upon the condition of the delta of TiniÈre, near Villeneuve, which lead him to assign to the oldest, or stone period, an age of 5,000 to 7,000 years, and to the bronze period from 3,000 to 4,000. We may, then, take leave of this subject with the avowal that, while admitting the probability that an immense lapse of time would be required for the operations described, we are, in a great measure, without reliable data for estimating its actual extent. The Asiatic deluge—of which sacred history has transmitted to us the few particulars we know—was the result of the upheaval of a part of the long chain of mountains which are a prolongation of the Caucasus. The earth opening by one of the fissures made in its crust in course of cooling, an eruption of volcanic matter escaped through the enormous crater so produced. Volumes of watery vapour or steam accompanied the lava discharged from the interior of the globe, which, being first dissipated in clouds and afterwards condensing, 11. “In the six hundredth year of Noah’s life, in the second month, the seventeenth day of the month, the same day were all the fountains of the great deep broken up, and the windows of heaven were opened. 12. “And the rain was upon the earth forty days and forty nights.” 17. “And the flood was forty days upon the earth; and the waters increased, and bare up the ark, and it was lift up above the earth. 18. “And the waters prevailed, and were increased greatly upon the earth; and the ark went upon the face of the waters. 19. “And the waters prevailed exceedingly upon the earth; and all the high hills, that were under the whole heaven, were covered. 20. “Fifteen cubits upward did the waters prevail; and the mountains were covered. 21. “And all flesh died that moved upon the earth, both of fowl, and of cattle, and of beast, and of every creeping thing that creepeth upon the earth, and every man: 22. “All in whose nostrils was the breath of life, of all that was in the dry land, died. 23. “And every living substance was destroyed which was upon the face of the ground, both man, and cattle, and the creeping things, and the fowl of the heaven; and they were destroyed from the earth: and Noah only remained alive, and they that were with him in the ark. 24. “And the waters prevailed upon the earth an hundred and fifty days.” All the particulars of the Biblical narrative here recited are only to be explained by the volcanic and muddy eruption which preceded the formation of mount Ararat. The waters which produced the inundation of these countries proceeded from a volcanic eruption accompanied by enormous volumes of vapour, which in due course became condensed and descended on the earth, inundating the extensive plains which now stretch away from the foot of Ararat. The Nothing occurs, therefore, in the description given by Moses, to hinder us from seeing in the Asiatic deluge a means made use of by God to chastise and punish the human race, then in the infancy of its existence, and which had strayed from the path which he had marked out for it. It seems to establish the countries lying at the foot of the Caucasus as the cradle of the human race; and it seems to establish also the upheaval of a chain of mountains, preceded by an eruption of volcanic mud, which drowned vast territories entirely composed, in these regions, of plains of great extent. Of this deluge many races besides the Jews have preserved a tradition. Moses dates it from 1,500 to 1,800 years before the epoch in which he wrote. Berosus, the Chaldean historian, who wrote at Babylon in the time of Alexander, speaks of a universal deluge, the date of which he places immediately before the reign of Belus, the father of Ninus. The Vedas, or sacred books of the Hindus, supposed to have been composed about the same time as Genesis, that is, about 3,300 years ago, make out that the deluge occurred 1,500 years before their time. The Guebers speak of the same event as having occurred about the same date. Confucius, the celebrated Chinese philosopher and lawgiver, born towards the year 551 before Christ, begins his history of China by speaking of the Emperor named Jas, whom he represents as making the waters flow back, which, being raised to the heavens, washed the feet of the highest mountains, covered the less elevated hills, and inundated the plains. Thus the Biblical deluge (Plate XXXIII.) is confirmed in many respects; but it was local, like all phenomena of A deluge, quite of modern date, conveys a tolerably exact idea of this kind of phenomena. We recall the circumstances the better to comprehend the true nature of the ravages the deluge inflicted upon some Asiatic countries in the Quaternary period. At six days’ journey from the city of Mexico there existed, in 1759, a fertile and well-cultivated district, where grew abundance of rice, maize, and bananas. In the month of June frightful earthquakes shook the ground, and were continued unceasingly for two whole months. On the night of the 28th September the earth was violently convulsed, and a region of many leagues in extent was slowly raised until it attained a height of about 500 feet over a surface of many square leagues. The earth undulated like the waves of the sea in a tempest; thousands of small hills alternately rose and fell, and, finally, an immense gulf opened, from which smoke, fire, red-hot stones and ashes were violently discharged, and darted to prodigious heights. Six mountains emerged from this gaping gulf; among which the volcanic mountain Jorullo rises 2,890 feet above the ancient plain, to the height of 4,265 feet above the sea. At the moment when the earthquake commenced the two rivers Cuitimba and San Pedro flowed backwards, inundating all the plain now occupied by Jorullo; but in the regions which continually rose, a gulf opened and swallowed up the rivers. They reappeared to the west, but at a point very distant from their former beds. This inundation reminds us on a small scale of the phenomena which attended the deluge of Noah. Besides the deposits resulting from the partial deluges which we have described as occurring in Europe and Asia during the Quaternary epoch there were produced in the same period many new formations resulting from the deposition of alluvia thrown down by seas and rivers. These deposits are always few in number, and widely disseminated. Their stratification is as regular as that of any which belong to preceding periods; they are distinguished from those of the Tertiary epoch, with which they are most likely to be confounded, by their situation, which is very frequently upon the shores of the sea, and by the predominance of shells of a species identical with those now living in the adjacent seas. A marine formation of this kind, which, after constituting the coast of Sicily, principally on the side of Girgenti, Syracuse, Catania, and Palermo, occupies the centre of the island, where it rises to the The pampas of South America—which consist of an argillaceous soil of a deep reddish-brown colour, with horizontal beds of marly clay and calcareous tufa, containing shells either actually living now in the Atlantic, or identical with fresh-water shells of the country—ought surely to be considered as a Quaternary deposit, of even greater extent than the preceding. We are now approaching so near to our own age, that we can, as it were, trace the hand of Nature in her works. Professor Ramsay shows, in the Memoirs of the Government Geological Survey, that beds nearly a mile in thickness have been removed by denudation from the summit of the Mendip Hills, and that broad areas in South Wales and the neighbouring counties have been denuded of their higher beds, the materials being transported elsewhere to form newer strata. Now, no combination of causes has been imagined which has not involved submersion during long periods, and subsequent elevation for periods of longer or shorter duration. We can hardly walk any great distance along the coast, either of England or Scotland, without remarking some flat terrace of unequal breadth, and backed by a more or less steep escarpment—upon such a terrace many of the towns along the coast are built. No geologist now doubts that this fine platform, at the base of which is a deposit of loam or sandy gravel, with marine shells, had been, at some period, the line of coast against which the waves of the ocean once broke at high water. At that period the sea rose twenty, and thirty, and some places a hundred feet higher than it does now. The ancient sea-beaches in some places formed terraces of sand and gravel, with littoral shells, some broken, others entire, and corresponding with species in the seas below; in others they form bold projecting promontories or deep bays. In an historical point of view, this coast-line should be very ancient, though it may be only of yesterday in a geological sense—its origin ascending far beyond written tradition. The same proofs of a general and gradual elevation of the country are observable almost everywhere: in the estuary of the Clyde, canoes and other works of art have been exhumed, and assigned to a recent period. Near St. Austell, and at Carnon, in Cornwall, human skulls and other relics have been met with beneath marine strata, in which the bones of whales and still-existing species of land-quadrupeds were imbedded. But in the countries where hard limestone rocks prevail, in the ancient Peloponnesus, along the coast of Argolis and Arcadia, three and even four ranges of ancient sea-cliffs are well preserved, which Messrs. Boblaye and Verlet describe as rising one above the other, at different distances from the present coast, sometimes to the height of 1,000 feet, as if the upheaving force had been suspended for a time, leaving the waves and currents to throw down and shape the successive ranges of lofty cliffs. On the other hand, some well-known historical sites may be adduced as affording evidence of the subsidence of the coast-line of the Mediterranean in times comparatively modern. In the Bay of BaiÆ, the celebrated temple of Serapis, at Puzzuoli, near Naples, which was originally built about 100 feet from the sea, and at or near its present level, exhibits proofs of having gradually sunk nineteen feet, and of a subsequent elevation of the ground on which the temple stands of nearly the same amount. So, also, about half a mile along the sea-shore, and standing at some distance from it, in the sea, there are the remains of buildings and columns which bear the name of the Temples of the Nymphs and of Neptune. The tops of these broken columns are now nearly on a level with the surface of the water, which is about five feet deep. With respect to the littoral deposits of the Quaternary period, they are of very limited extent, except in a few localities. They are found on the western coast of Norway, and on the coasts of England. In France, an extensive bed of Quaternary formation is seen on the shores of the ancient Guienne, and on other parts of the coast, where it is sometimes concealed by trees and shrubs, or by blown sand, as at Dax in the Landes, where a steep bank may be |