Fragments of Science.

Previous

The New Zealand Experiment in Woman Suffrage.—The right of suffrage was given to all the women of New Zealand in 1893 without any concerted action or aggressive demonstrations on their part by the free, almost unsolicited, vote of the men. The general election took place in November of the same year, and is described in the Saturday Review as having been a warm contest, with several questions on which public opinion was sharply divided; but "on the whole, the women took matters wonderfully coolly. They flocked in thousands to the public meetings, where, by common consent, the front seats were given up to them." Contrary to expectation, they displayed little emotion, and even had to be "coached" to make a pretense of enthusiasm. "Polling day was awaited with dread by the electioneering agents and returning officers, with doubt by veteran politicians, and with pleasurable excitement by the women." They all voted, and "what did it all lead to?" "It left things very much as they were.... Gradually but irresistibly the conviction forced itself upon the New Zealand mind that the women knowing little and caring as little about political details, had voted almost always with the men of their family and class. Sharing to the full the prejudices, hopes, and interests of their fathers, brothers, husbands, and lovers, they had cheerfully doubled the voting power of these. Where, as in the case of schoolmistresses and factory girls, they had some special bond of union other than domestic they had voted very much as schoolmasters and male trade-unionists had voted.... With one accord colonists ceased to be afraid of what the suffrage might do, and began instead to complain of it for not doing more. Only here and there careful observers note that groups of women are studying politics, and foresee that, as years go by, these will supply a new and intelligent force with distinct and logically reasoned aims of its own."

The Metric System (a Letter to the London Times).—Sir: I see that on Wednesday next, the 22d inst., the President of the Board of Trade is to receive a deputation from the Decimal Associations and others to urge on the Government, not merely the adoption of the decimal system of notation, but the compulsory application within two years of the metric system of weights and measures in its entirety. I have been hoping to see a letter in the Times from some person of importance calling attention to this deputation. I fervently trusted I should notice one from your correspondent, Mr. Herbert Spencer, who, a year or so back, contributed a series of thoroughly well-thought-out and logical articles, exposing the fallacy of the metric system; but if any such letter has appeared I have, unfortunately, missed it. I believe this agitation to be largely due to scientific professors who have been brought up on foreign books, and have found it too much trouble to convert foreign measurements into English; further, due to the promptings of a number of foreign merchants, forming (happily, or unhappily) now so large a portion of our traders-men who, also, do not wish to take the trouble of converting foreign weights and measures into English. As regards the suggestion, made time after time, that the metric system is one giving the greatest simplicity to calculations, I say unhesitatingly, from very considerable experience, that it is one absolutely subversive of mental arithmetic, and I appeal to anybody who has ever had the misfortune to wait at the guichet of a French railway station while the clerk inside has been calculating the total amount to be paid for two first-class and one second-class from "A" to "B" with a piece of chalk, or pencil and paper, to compare the speed and the certainty of this process with the answer that he would get at Euston, or at any such station in Great Britain, and say which system shows by results the advantages in point of time and in accuracy. The French themselves, as has been pointed out on more than one occasion, find the metric system too irksome, and they evade it. According to the metric system, one of its great merits is that you can state every required quantity by multiples or submultiples of ten—metre, 1; decimetre, 0.1; centimetre, 0.01; millimetre, 0.001. But no Frenchman thinks of expressing himself in this way. Instead of 0.01, he says cm. 1. For a millimetre, he says mm. 1. When he comes to large weights, does he not commonly abjure the 1,000 kilos and write one tonne? When he comes to domestic weights the kilogramme is found too large; the half of this, the practical equivalent of the pound, is wanted. He ought to write 500 grammes. He does not. He abjures his decimals, and writes one half kilo. But I feel I must not take up your space by multiplying instances, so well known to many who have studied the subject, of the unbearable burden of the decimal plus metrical system compulsorily carried out. I well know the value of decimals, and the indispensable need of their use in many circumstances; but I object to being compelled to use them when they are not needed and are in the way. I find it easier to state seven eighths, and to deal with it mentally, than to put it into the form of .875. I do not wish to be restricted by law in the use of my tools. What would be thought of the law which compelled a shipwright on all occasions to use a chisel, and never to employ the adze. I, with, I believe, every upholder of English weights and measures, and of the use of fractions, am quite willing that the metric system should be made legal in its entirety throughout Great Britain; but we are not willing that the useful weights and measures which we can employ with so great facility and accuracy should be made illegal. Let the two exist together, and experience will prove which is the one preferred by the community. I am, sir, your obedient servant,

Frederick Bramwell.
5 Great George Street, Westminster, S. W.,
March 18, 1899.

P. S.—Very probably the old stalking-horses will be trotted out on Wednesday, and the President of the Board of Trade will be told of the confusion created by the existence of mere local weights and measures. I believe that if those who cite these anomalies were asked to give instances at various dates it would be found that these local weights and measures were dying out. In any event they are illegal, and are not obligatory upon anybody. Every man can claim to deal according to the standards of length, of weights, and of capacity. Most certainly the introduction of the metric system would largely add to the use of illegal weights and measures, not only locally, but generally. If the inquiry were made in France, even no farther off than Boulogne, it would be found that, in the markets there, dealings are frequently carried out on a local system unconnected with the metric.—F. B.

Variations in African Religious Ideas.—Miss Kingsley observes, in her West African Studies, that when you are traveling from district to district you can not fail to be struck by the difference in character of the native religions you are studying, and that no wandering student of the subject in western Africa can avoid recognizing the existence of at least four distinct forms of development of the fetich idea. They have every one of them the same underlying idea, and yet they differ. "And I believe," Miss Kingsley says, "much of the confusion which is supposed to exist in African religious ideas is a confusion only existing in the minds of cabinet ethnologists from a want of recognition of the fact of the existence of these schools. For example, suppose you take a few facts from Ellis and a few from Bastian and mix, and call the mixture West African religion. You do much the same sort of thing as if you took bits from Mr. Spurgeon's works and from those of some eminent Jesuit and of a sound Greek churchman and mixed them, and labeled it European religion. The bits would be all right by themselves, but the mixture would be a quaint affair." Of the four main schools of fetich predicated by Miss Kingsley, the Tshi and Ewe school (Ellis's school) is mainly concerned with the preservation of life; the Calabar school with attempting to enable the soul successfully to pass through death; the Mpongwe school with the attainment of material prosperity; and the school of Nkissi with the worship of the mystery of the power of evil.

A Natural History Society as a School.—Among the agencies employed by the Boston Society of Natural History for making itself a vehicle of instruction to the public has been the employment of an educated man and teacher as guide to the museum, who should also give lectures there. The salary of this officer has heretofore been provided by the bounty of Miss Harriet E. Freeman, but she has been obliged to discontinue her contribution, and the curator is now seeking other means of maintaining a suitably qualified assistant. The "guide," Mr. A. W. Grabau, delivered a course of lectures in April and May, 1897, on "The Surface of the Earth: Its Rocks, Soil, and Scenery," in which special attention was given to the scenery in New England; and, whenever it was practicable, excursions were made to localities which could be used as illustrations. A similar course, delivered in 1896, resulted in the formation during the summer of the same year of a class of thirty persons, summer residents of Kennebunkport, Maine, who were under Mr. Grabau's daily instruction for two weeks. The awakening of interest in local scenery further led to his giving lectures in Belmont and Arlington, and he thereby became instrumental in a movement intended to preserve the local frontal bowlder moraine on Arlington Heights—a valuable geological movement. A course of lectures on the Animals of the Shores of New England was given by Mr. Grabau to a class of from forty to seventy-five persons, in the Teachers' School of Science, with excursions on Wednesday and Saturday afternoons. In a similar fall course attention was given specially to the study of animals in their various habitats. A course by Mr. Grabau on the use of the microscope and the preparation of specimens was followed by ten days' laboratory work in Limekilns Bay, Maine. One of the results of a winter course on zoÖlogy, to a class of twenty teachers, was the formation of the Hale House Natural History Club, in connection with which field meetings are held, classes for children are formed, and papers upon elementary subjects are read and discussed. Other courses of lectures are mentioned in the report of the curator of the society—the field lessons in geology, by Professor Barton, with a winter course in historical geology; the course of Dr. R. W. Greenleaf, on the elementary structure and function of the parts of flowering plants; the course of the curator (Alpheus Hyatt), on elementary zoÖlogy; and the lectures on geography, by Prof. W. M. Davis.

Glacier Water.—An analysis of two samples of water from the Illecilliwaet Glacier, in British Columbia, was recently made by F. T. Shutt and A. T. Charron. The water was collected a few feet from the glacier's irregular face, about a mile and a half from the glacier station on the Canadian Pacific Railway. The following is abstracted from an account in the Chemical News:

The authors go on to say: "From the above data we may unhesitatingly conclude that the glacier water is one of great organic purity. The samples are not identical, due no doubt to the fact that they were collected twelve days apart, and probably from different parts of the foot of the glacier. Both analyses, however, show that, judged by the standards used in the diagnosis of ordinary potable waters, it is a water possessing a high degree of purity, and one perfectly wholesome and eminently suited for drinking and household purposes. As received, both samples were quite murky, almost milky, in appearance. On allowing them to stand, perfect subsidence took place, leaving the supernatant water colorless and brilliant. A microscopic examination of the sediment showed it to consist of very fine rock matter, chiefly fragments of quartzite.

Protection of Plants and Birds in France and Italy.—Organized efforts for the protection of native plants and birds from further destruction are multiplying in Europe. Botanical stations for Alpine plants have been established at several places in France and Switzerland, and now Italy has come into line with the association Pro Mortibus, which, founded in July, 1897, has already more than five hundred adherents. Italy is probably the country where work of this kind is most needed, for nowhere else is the destruction, particularly of birds, so systematically, persistently, and industriously carried on. Pro Mortibus will also interest itself in the preservation and replantation of the forests. Among other efforts looking in a similar direction, M. J. Corcelli tells in La Nature of the establishment of shelters in connection with the schools in Saxony where birds are fed in the winter, and of lessons given to the children inculcating regard for them. A great deal has been accomplished in France without much noise in rewooding the devastated slopes of the mountains and erecting efficient safeguards against ravage by torrents—largely by restraining the torrents at their sources; and the Alpine forests of the country, M. Corcelli says, "are again rising from their ashes." Reserves of Alpine plants have been established by the Belfort section of the French Alpine Club on the Ballon of Alsace; the central section is creating an extensive botanical garden in the Vosges, to serve as a place of refuge and propagation and multiplication of species threatened with extinction. The city of Annecy, in Savoy, has recently voted the money required for establishing a similar garden on the verdant ridges of the Semnoz. Two local societies in Italy are engaged in a similar work, one of which has established the garden museum Chamousia on the slopes of the Saint Bernard, where plants from the Pyrenees and the Himalaya are also collected. Switzerland is not behind either of these countries in this work.

Tortoise Shell.—The following interesting account of the tortoise-shell industry is taken from Nature: The tortoise shell of commerce is obtained from the horny superficial plates overlying the bony case of the great majority of tortoises and turtles. Turtles differ from tortoises in the heart-shaped form of the upper half of the shell, and the conversion of the limbs into paddles adapted for swimming. The upper part of the shell carries a median row of five large superficial horny plates, flanked on either side by a row of four or five still larger flat plates; these thirteen or fifteen large plates affording some of the most valuable commercial tortoise shell in the particular species whose shell is in most demand. On the front and hind edges of the upper bony shell and the portion connecting the latter with the plastron, or lower shell, are a series of smaller horny plates, generally twenty-four in number, which are sharply bent in the middle and are known in the trade as "hoof." The under surface of the shell of a turtle carries six pairs of large, more or less flat, horny plates, for which the trade term, derived from their uniform color, is "yellow belly." In value they sometimes exceed all but the very finest of the large upper plates, generally known simply as "shell." Of the host of land and fresh-water tortoises, most of which are of comparatively small size, the horny plates (which, by the way, are altogether wanting in the so-called soft tortoises of tropical rivers), on account of their thinness and opacity, are now of no commercial value, at least in England. Moreover, it is by no means all species of marine turtles which yield commercial tortoise shell. Of these marine turtles, exclusive of the great leathery turtle, there are three well-marked and perfectly distinct types, severally represented by the green or edible turtle, the hawksbill, and the loggerhead. The hawksbill furnishes the most valuable shell. The largest and best plates, which are in the middle of the back, are about a quarter of an inch thick in the center, and measure about thirteen by eight inches, their weight being from about half a pound each to as much as one pound. The length of the carapace (the upper shell) in the hawksbill is about forty-two inches. It is found in all tropical and subtropical seas. From a dead turtle the plates of tortoise shell can be readily detached by beating. The highest price realized during 1898 in the London market was about 112s. 6d. (about $28) a pound for the very best selected shell. It is stated that 76,760 pounds of hawksbill shell were sold in London in 1898. The shell is very readily workable, being made partially plastic by immersion in hot water.

Poison in Wild Cherry Leaves.—Instances having been brought to the notice of the directory of the New Hampshire College Agricultural Experiment Station of cattle presumably fatally poisoned by prussic acid from eating wild cherry leaves, the subject has been investigated by Fred W. Morse and Charles D. Howard. Five species of wild cherry grow in New Hampshire, of which the red cherry and the horse plum are not regarded as dangerous, and the dwarf cherry has not been examined, but is strongly suspected. The wild black cherry is the most noxious species, and the chokecherry is not far behind it. The poisonous principle in these cherries is hydrocyanic or prussic acid, which, however, does not exist in the leaves as such, but is derived from the amygdalin they contain. The popular opinion that only the wilted leaves are specially dangerous is not borne out. The authors found both wilted and fresh leaves poisonous, and the dried leaves worthy to be regarded with suspicion. Vigorous, succulent leaves from young shoots, which are the ones most likely to be eaten by cattle, are far more poisonous than the leaves from a mature tree or stunted shrub. The largest amounts of prussic acid were derived from leaves wilted in bright sunlight to about seventy-five per cent their original weight, or till they began to appear slightly limp and lose their gloss. Leaves wilted in the dark were much less dangerous.

Dr. Brinton's Contributions to American Linguistics.—At the suggestion of the late James Constantine Pilling, Dr. D. G. Brinton has prepared an analytical survey of his contributions in the field of American linguistics, which have now extended over forty years. The list includes seventy-one titles of books and papers, of which sixteen are classed as general articles and works. The first four of these are occupied with the inquiry whether the native American languages, as a group, have peculiar morphological traits that justify their classification as one of the great divisions of human speech. Dr. Brinton finds a feature—incorporation—which, under the form polysynthesis, is present in a marked degree in nearly all of them. Another paper shows that the various alleged affiliations between American and Asiatic tongues are wholly unfounded, and another pleads for more attention to American languages. A volume of nearly four hundred pages—The American Race—was the first attempt at a systematic classification of all the tribes of North, Central, and South America on the basis of language. It defines seventy-nine linguistic stocks in North America and sixty-one in South America, pertaining to nearly sixteen hundred tribes. Other volumes in the list include writings, preferably on secular subjects, by natives in their own languages. One contains a list of native American authors, and notices some of their works. Another vindicates the claim of native American poetry to recognition. These works were followed by the Library of Aboriginal American Literature, of which eight considerable volumes were published, each containing a work wholly of native inspiration, in a native tongue, with a translation, notes, etc. Fourteen other publications relate to North American languages north of Mexico, thirty-two to Mexican and Central American languages, and ten to South American and Antillean languages. Many of these articles were collected in 1890 and published in a volume entitled Essays of an Americanist. It was arranged in four parts, relating respectively to Ethnology and ArchÆology, Mythology and Folklore, Graphic Systems and Literature, and Linguistics. The value of Dr. Brinton's labors will be realized by all persons who know how rapidly things purely native American are passing away.

Metallic Alloys of Rich Colors.—A remarkable alloy of gold seventy-eight parts and aluminum twenty-two parts, discovered by Messrs. Roberts-Austen and Hunt, has a characteristic purple color which can not be imitated; for if the designated proportions of the constituents are varied from, the base is entirely changed. The compound lacks somewhat in the qualities of resistance and malleability. The color is abnormal in that it partakes of none of the color features of its constituents, as is the case in most combinations of metals. Thus, the colors of copper alloyed with zinc or tin pass gradually from red to white, according to the proportions of the constituent metals. In the union of two metals of white or bluish-white color, like zinc, tin, silver, and aluminum, the color of the alloys is not perceptibly different from that of the components—that is, it continues white. The purple of the gold aluminum alloy is not, however, the only exception to this rule. Aluminum gives highly colored compounds with several other metals, even when the second metal is clearly white. In the experiments of Charles Marcot, of Geneva, in alloying aluminum with platinum, palladium, nickel, and cobalt, combination took place abruptly at red heat, with the development of an intense temperature and a partial combination of the aluminum; and when platinum is the second metal, an explosion is liable to occur. An alloy of seventy-two parts of platinum and twenty-eight of aluminum had a bright golden or yellow color, which varied under slight changes in the proportions of the elements to violet green or coppery red. The alloy is hard and brittle and of crystalline structure. The yellow form is stable, while the other forms decompose in a short time. An alloy of seventy-two parts palladium and twenty-eight aluminum is of fine coppery rose color, crystalline texture, hard and brittle, and suffers no change with time. An alloy of from seventy-five to eighty parts cobalt and twenty to twenty-five aluminum is straw-yellow, inclining to brown; when just formed it is externally hard and scratches glass, but is easily broken with a hammer, and falls to a powder in a few days. An alloy of eighty-two parts nickel and eighteen aluminum has a pronounced straw-yellow color, is as hard as tempered steel, and resists the blow of a hammer. The fracture, close-grained, is that of steel or bell metal. It is susceptible of a fine polish, is stable, and keeps its color. Though interesting on account of their colors, these alloys, except that of nickel, are not suitable for any use.

The Chemistry of Sausages.—The Lancet is authority for the following: "The composition of the sausage is not only complex, but it is often obscure. It is supposed to be a compound of minced beef and pork. Abroad, however, the sausage is compounded of a much wider range of substances. These include brains, liver, and horseflesh. Occasionally they do not contain meat at all, but only bread tinged with red oxide of iron and mixed with a varying proportion of fat. Horseflesh is rich in glycogen, and this fact enables its presence in sausage meat to be detected with some amount of certainty. The test, which depends on a color reaction, with iodine has recently been more carefully studied and with more satisfactory results, so that the presence of five per cent of horseflesh can be detected. At present there is no legal provision for a standard in regard to the composition of sausages, but clearly there ought to be. Limitations should be laid down as to the amount of bread used, as to the actual proportion of meat substances present, and as to the coloring matters added to give an attractive appearance of fresh meat. Sausages are extremely liable to undergo decomposition and become poisonous, owing to the elaboration of toxic substances during the putrefactive process. Bad or rancid fat is very liable to alter the character of a sausage for the worse. Thus in some instances the use of rancid lard has rendered the sausage after a time quite phosphorescent, an appearance which indicates, of course, an undesirable change. The smoked sausage is a much safer article of diet than the unsmoked, since the curing process preserves the meat substance against decomposition by reason of the empyreumatic bodies present in the wood smoke which is used for this purpose."

Photographing Papuan Children.—Many savages dislike to have their pictures taken, some being restrained by motives of superstition; but in New Guinea Professor Semon found being photographed a great joke for all the boys and girls. He had much trouble in isolating a single individual, so as not to get thirty or forty persons into his picture instead of the one he wished to immortalize. "Wishing," he says, "to portray one young girl of uncommonly good looks, I separated her from the rest, gave her a favorable position, and adjusted the lens, surrounded all the while by a crowd of people behind and beside me, the children cheering, the women most ardently attentive, the men benevolently smiling. Evidently my subject was proud of the distinction she enjoyed and the attention vouchsafed her. Quite suddenly, however, this simple savage, untaught as she was and innocent of the laws of reticence and prudishness, became convulsed with shame, covered her eyes with her hands, and valiantly resisted every attempt to make her stand forward as before. At the same time I noticed that the hue of her features changed, the brown of her face becoming darker and deeper than before, a phenomenon easily explained by the fact of the blood rising into her head. Had she been a brown girl we would have said that she blushed. At all events, the physiological process was the same as that which forces us to blush." At another time, when the author had got two little girls into position to be photographed, their mothers came up and forbade his taking them that day, but promised to present them on the morrow. On the next day "both the little angels were solemnly brought to meet us nearly smothered in ornaments, their hair decorated with feathers and combs, their ears with tortoise-shell pieces, their little throats surrounded by plates of mother-of-pearl and chains of dingo teeth, legs and arms hung with rings and shells, teeth, and all sorts of network.... Here, again, one may see that mothers are made of the same stuff all over the world, Papuan mammas being equal to any of our peasant women or fine ladies in the point of vanity as far as concerns their children."

Meat Extracts.—An interesting account of the history and preparation of meat extracts was recently given as a lecture before the Society of Arts (English) by Charles R. Valentine. The idea of concentrating the body of an ox into a thimbleful of elixir seems to have been a very old one. Until the work of Justus von Liebig, about fifty years ago, however, little progress of practical value was made toward this end. Liebig macerated finely divided beef in cold water, or in water not above 150° F. The water dissolved from sixteen to twenty-four per cent of the weight of the dry flesh. This infusion was heated, the albumen and red coloring matter of the blood coagulated, and was separated as a flocculent precipitate. The remaining solution has the aromatic taste and all the properties of soup made by boiling the flesh. The infusion was then evaporated at a gentle heat. The residue amounted to about twelve or thirteen per cent of the original (dry) flesh. This is in rough outline the process of meat-extract making. This extract is simply an evaporated beef tea, containing the extractive matters of beef, and in virtue of these possesses medicinal and dietetic properties of value. But it is in no sense a substitute for beef, as the latter's most important food constituent—albumen—it does not contain.

MINOR PARAGRAPHS.

It appears from tables of Some Statistics of Engineering Education, compiled by President M. E. Wadsworth, of the Michigan College of Mines, that such education has been, in the United States, on the whole a thing of comparatively recent date, the oldest school, the Rensselaer Polytechnic Institute, having been established in 1824; the next, the Lawrence and Sheffield Schools, in 1846 and 1847; and the Columbia School in 1863. Civil engineering has led in this country, and has had various periods of advance, as in 1887-'88, and depression, as in 1896-'97. Mechanical engineering progressed till 1886-'87, when the number of students fell off, and the same happened with electrical engineering, "which further suffers a natural reaction from having been greatly overdone." As a rule, most of the schools in the United States seem to run to specialties, one or two of the courses being usually more conspicuous than the others.

The importance of some arrangement by which vessels may be informed of each other's approach in fog and darkness has given rise to many devices; the only one, however, which has as yet proved practical is the fog-horn or siren, and this has many disadvantages. Several fatal collisions at sea during the past year have given rise to renewed interest in the subject, and a number of new methods have been suggested. M. Branley, a French physicist, in a note presented to the French Academy suggests that each vessel be provided with a number of extremely sensitive magnetic receivers, or coherers, and a powerful magnetic transmitter. Periodical signals being made with the transmitter, corresponding impressions would be made upon the receivers of approaching vessels. The principal difficulty with this scheme lies in the fact that the receivers of a vessel will be affected by its own transmitter. There are several methods by which this difficulty may be overcome, however. Different signals may be employed, or the interval between signals may be regularly varied. M. Branley calls attention to the influence of a metallic envelope surrounding a coherer, and shows that when the coherer is thus completely surrounded it is unaffected by the influence of a transmitter. By thus inclosing the receiver on a ship at the instant of the operation of the transmitter of the same vessel, the above difficulty might be avoided.

While we can not collect roses from our gardens in January and maple blossoms from the woods in February, yet, as Prof. W. J. Beal shows in a bulletin of the Michigan Agricultural College Experiment Station, our trees and shrubs in their winter garb furnish excellent lessons for the profitable employment of pupils during many weeks at that season in true botanical study. "Let each member of a class be provided with a branch, a foot or two long, from a sugar maple, and then spend some ten to twenty minutes or more quietly looking at the buds and the bark, with its scars and specks, and then tell what he has discovered, venturing to explain the object or meaning of some of the things he has seen. In a similar manner let each look over a branch of beech and then point out the difference between the two kinds." Opening buds of trees may be obtained at any time during the winter by placing the lower end of the stem in water for a week or two while in the schoolroom.

Eivind Astrup, in his book With Peary near the Pole, gives admiring pictures of the natural innocence of the uncontaminated Eskimos of northern Greenland, where are communities in which "money is unknown, and love of one's neighbor is a fundamental rule of action; where theft is not practiced." All things are held in common, and falsehoods are told only to spare the feelings of the listener. Among the instances of the native kindliness of these people is one where a dog had eaten up a reindeer coat, yet was only remonstrated with by its owner. When the author suggested that a hungry dog should be punished for stealing a piece of blubber, the owner said that it was himself who deserved the thrashing for not having obtained sufficient food for the dog.

The operations of the Illinois State Laboratory of Natural History during 1897 and 1898 were almost wholly connected with the work of the State Entomologist or with that of the Biological Station. The former work related to various insects injurious to crops. The operations of the Biological Station were carried on with more reference to completing a formal report upon the fishes of Illinois. The work is conducted with a view to the acquisition of correct ideas of the relative abundance and local distribution of species, their haunts, habits, regular migrations, and irregular movements, their building times and places, rate of growth, food, diseases, and enemies—and, in short, the whole economy of each kind represented at the station and of the whole assemblage taken together as a community group. Extensive studies of aquatic entomology were made, and a paper on ephemerids and dragon flies is nearly ready for the press. No part of the work of the station, however, attracts more attention among scientific men, or is likely to lead to more interesting and important results, than the plankton work, or the systematic study of the minute forms of plant and animal life suspended in the water. Water analyses have been extensively made in connection with these studies, which, combined with the continuous biological work, will, when generalized, furnish a substantial and authoritative body of knowledge of the conditions of the waters of the middle Illinois previous to the opening of the Chicago drainage canal, useful for comparison with the results of similar studies made after that event. A summer school was conducted, with fifteen pupils, in 1898, and publications were issued.

NOTES.

The Pasteur monument was dedicated at Lille, France, the city in which the subject of the memorial performed his earlier more important researches, April 9th. The ceremony was witnessed by a large assembly, which included many eminent scientific men of France and foreign countries, among whom men engaged in similar researches to Pasteur's were especially represented. The monument, the fruit of a public subscription, represents Pasteur standing on the summit of a column of Soignies stone, holding in his right hand an experimental flask. At the foot of the column a woman presents her child, which has been bitten by a mad dog, for treatment. To the left is a group representing inoculation—a woman, personifying science, injecting serum into a child she holds on her knees. Three bas-reliefs represent respectively Dr. Roux inoculating a sheep for anthrax, Pasteur studying fermentation, and the first antirabic inoculation of the young Joseph Meister, who is held by his mother, wearing the broad-flapped Alsatian bonnet. The statue is in light bronze, and with the gilded bas-reliefs harmonizes well with the gray of the stone. Addresses were made by M. Armand Gautier and M. Duclaux, who said that the improved laboratories now enjoyed by scientific institutions in Paris were largely due to Pasteur's efforts.

The minor planet recently discovered by Witt, remarkable as having an orbit that comes within that of Mars, and provisionally known as DQ, has been named Eros. An examination by Professor Pickering and Mrs. Fleming of the Harvard photographs has revealed traces of this body on twelve plates taken in 1893 and 1894, and on four plates of 1896. By the aid of these plates it has been possible to determine its elements with greater accuracy than would otherwise be possible. Its mean distance from the sun is 1.45810, its shortest distance 1.13334, and its greatest distance 1.78286 that of the earth; the eccentricity of its orbit is 0.222729, and its period is 643.10 days. Its synodical period is such that it has three oppositions in seven years. The next opposition will be in the last months of 1900, and will be a moderately favorable one for observation.

The courses in pure science of the New York University include undergraduate, graduate, and summer courses in mathematics, physics, chemistry, geology, and biology, with laboratory privileges and provision for special students and independent work in chemistry. The university last year was attended by 1,717 students in its three faculties and six schools, and 720 non-matriculant students and auditors. A new feature this year is the inauguration of the Charles F. Deems lectureship of philosophy, under an endowment of $15,000 by the American Institute of Christian Philosophy, with Prof. James Iverach, D. D., of the Free Church College, Aberdeen, Scotland, as the first lecturer. A feature of the university organization is the institution of a woman's advisory committee co-operating with the council. A woman's law class is supported by the Woman's Legal Education Society, the purpose of which is to make business women and women in private life acquainted with existing law.

The new Science Building of the City Library, Springfield, Mass., recently completed, is being inaugurated by a Geographical and Geological Exhibition. It includes the best and latest maps, models, globes, charts, relief maps, and photographs, special attention being paid to the most effective modes of teaching. One of the most attractive features of the exhibition is the work from the Springfield public schools.

An ingenious method for thawing out frozen water pipes has been used by Prof. R. W. Wood, of the University of Wisconsin. It consists simply of passing a current of electricity through the pipe. In one case it is said that one hundred and fifty feet of frozen pipe was thawed out in eighteen minutes. The ordinary street current was used, the voltage being reduced to about fifty.

In a summary of inspectors' reports of the Hartford Steam Boiler Inspection and Insurance Company for 1898 it is stated that of 78,349 boilers, inspected both internally and externally, during the year, there were 11,727 dangerous defects discovered and 603 entire boilers were declared unsafe for further use.

The recent death list of men known in science includes the names of Charles Naudin, an eminent French botanist, Dean of the Botanical Section of the Academy of Sciences and author of a book on Hybrids in the Vegetable Kingdom, at Antibes, France, March 19th, aged eighty-four years; Dr. G. W. Leitner, an eminent Orientalist and linguist, Lecturer on Oriental Language at King's College, London, Principal of Lahne College, and Registrar of Punjaub University, where he introduced the use of their own language and literature in teaching Indian students, founder of the Anglo-Indian Institute at Woking, England, and author of works in Education, the Races of Turkey, The Races and Languages of Dardistan, GrÆco-Buddhist Discoveries, and other Oriental subjects, at Bonn, March 24th, in his sixty-ninth year; Dr. Angelo Knorr, Docent in the Veterinary School of Munich, February 22d; Elizabeth Brown, astronomical observer and author of papers on solar phenomena, at Cirencester, England, March 6th; Dr. Wilhelm von MÜller, Professor General Chemistry in the Institute of Technology, Munich; Dr. Friedrich von LÜhmann, mathematician, at Straslund, Prussia; Dr. Charles Fortuun, mineralogist, in London; Alfred Feuilleaubois, author of researches on Fungi, at Fontainebleau, France; Dr. Heinrich Kiefert, a geographer and cartographer whose fame was world-wide, whose maps and atlases are everywhere recognized as authorities, at Berlin, April 21st, aged seventy years; and Prof. Sophus Lie, of the University of Christiania, an eminent mathematician, February 18th, in his fifty-seventh year.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page