The Dread of the Jew. Death of Professor Bunsen.—With the death of Robert Wilhelm Bunsen, at Heidelberg, August 16th, the world loses a student whose name is inseparably connected with nearly all the chemical work that has been done in the last fifty years, for it is safe to say that hardly a discovery has been made or experiment performed to the success of which some process, property, or instrument discovered, invented, or suggested by Bunsen, and usually named after him, has not contributed. A sketch of this illustrious chemist, with a portrait, and an enumeration of his principal works, each of which might be characterized as a milestone in the advance of the science, was published in the Popular Science Monthly for August, 1881 (vol. xix, page 550). One of the principal The Unprofitableness of Strikes.—The cost of a large strike is impressively illustrated in some of the results of the great colliery dispute of 1898 in South Wales, as they are set forth in the British Board of Trade returns and the reports of the consular service. In direct financial loss, the company suffered to the extent of $100,000, and the men of $300,000 in wages, besides the demoralization from being so long out of work. To a certain extent, other districts gained what the South Wales mines lost by the diversion of trade to them, but that simply aggravated the evil in the mines, for some of this diverted trade will stay where it went. It is sometimes said, indeed, that strikes have only a temporary effect on business, from which it will recover in time. This is true, however, as is suggested in Industries and Iron, only when the locality affected has a virtual monopoly of the trade, while in the competition of the nations instances of that kind are growing rarer. England especially has many rivals in these days, eager to take advantage of every opportunity to profit by its mistakes or misfortunes, and which, when they get their hands on a good thing, are not apt to let go. Notwithstanding some strikes at home, the coal trade in the United States derived benefits from the British strike by sending to markets which the Welsh mines should have supplied; Germany sent coal to Sweden, and Belgium increased its shipments to the Canary Islands. Other countries are induced, by conditions making the usual sources of supply inconvenient to them, to a more active development of their own resources, as Austria-Hungary, Spain, and France were in the present case. So it is more than doubtful whether the present strike paid. The Scientific Spirit.—The study of science, especially of an experimental science, said Prof. R. H. Chittenden in an informal talk to students of the Sheffield Scientific School, is peculiarly adapted for developing the power of independent thought, and of training one in drawing logical conclusions from experimental data. In the laboratory is afforded an opportunity for making observations, but if real benefit is to be derived from the experimental work there must be a full realization of the necessity of careful thought in drawing deductions from the results observed. Broad generalizations built on a slender foundation of fact frequently topple to the ground, and sometimes carry destruction with them, all because of a lack of that critical spirit which prompts a careful and thorough consideration of all the premises. The man who has acquired the habit of careful thought, of reasoning out each step in a process, of weighing carefully each reaction involved, of seeking in his own mind the reason for this or that phenomenon, who looks at both sides of a question, and carefully considers all the facts available, will build much more surely and firmly than he who by specious arguments constructs a glittering hypothesis, only to see it fade away. Hasty reasoning, insufficient data, obscure facts, are the bane of modern Constitution of the Funafuti Atoll.—In the boring of the coral atoll of Funafuti, Professor David, of the University of Sydney, reached a depth of 697 feet, and a subsequent boring was made down to about 1,000 feet. The core obtained by the David party was sent to England and placed in the hands of Professor Judd for investigation. The general statement is made respecting it that the material brought up presents much the same character throughout, and so far is regarded as supporting Darwin's theory. There are no layers of chalky ooze, such as Murray's hypothesis might have made possible, and no trace of volcanic material has been found. The later boring beyond 700 feet passed through a hard limestone containing many well-preserved corals. In a boring of the bed of the lagoon down to 144 feet, after passing through 101 feet of water, the first 80 feet below were found to consist of the calcareous alga Halimeda mixed with shells, and the remaining 64 feet of the same material mixed with gravel. Metallic Calcium.—Metallic calcium, as prepared by Professor Moissan from solution in liquid sodium, separates in hexagonal crystals which have a specific gravity of 1.85 and melt at 760° in vacuo. On solidifying, the metal is somewhat brittle, is less malleable than potassium and sodium, and shows a crystalline fracture. When free from nitride it is silver-white in color, and has a brilliant surface. Heated to redness in a current of hydrogen, a crystalline hydride, CaH2, is formed. When pure, calcium is not acted upon at ordinary temperatures by chlorine, though at 100° C. the action is decided. But if the metal contains nitride, chlorine attacks it at the ordinary temperature. At 300° C. calcium ignites and burns brilliantly in oxygen. Gently warmed in air, it burns with brilliant scintillations. It combines with sulphur, with incandescence, at 400° C. At a red heat it unites actively with lampblack, giving a carbide, CaC2. It gives some brittle alloys with magnesium, zinc, and nickel. The alloy with tin slowly decomposes water. A crystalline amalgam is formed with mercury, which may be distilled in hydrogen at 400° C., but which forms nitride when heated in nitrogen. Heated to redness with potassium or sodium chloride, calcium sets the metal free. Water acts on calcium only very slowly, with the evolution of hydrogen. In liquefied ammonia at -40° C. calcium ammonia is formed—a reddish-brown solid. Prosperity and Enterprise in Mexico.—The increasing prosperity of Mexico is one of the striking features of current history. In four years the imports of the country increased from $30,000,000 in 1894 to upward of $45,000,000 in 1898, the average for five years having been $40,000,000. The chief sellers to Mexicans are the United States, Great Britain, France, and Germany, and the keenness of the competition for trade is shown in the fluctuations in the relative shares of it of the several countries. Spain has a small share of trade, which is growing. Industrial enterprises are being developed throughout the country with energy, enterprise, and success. Cotton and linen factories have been established, attention is given to the erection of woolen mills, and a noticeable activity prevails in mining industries. Under all these influences the railroads are prospering too. A Question of Economy.—A paper, "Shall we grow the Sugar that we consume?" by Freeman Stewart, called out by an article by ex-Secretary Wilson, besides matter bearing directly on the question, embodies observations on general political principles. Thus, it seems necessary to observe "that the idea that republicanism requires our public officials to act as mere weathercocks for the transient waves of popular clamor and excitement is also a deplorable delusion, which, if persistently carried into effect, will soon utterly destroy republicanism. As free institutions depend on Bacteria of the Dairy.—An investigation of the relation of acid fermentation to the flavor and aroma of butter, made by C. H. Eckles at the Iowa College Experiment Station, has given the results that the flavor is produced by the bacterial fermentations which have taken place in the milk and cream. The kind of flavor depends upon the class of bacteria causing the fermentation. The ripening of a good quality of acid cream is mostly a development of acid bacteria. Four species of acid-producing bacteria, tested in ripening pasteurized cream, were found to give the butter the typical flavor and aroma. Of the species tried, the most common milk-souring organism (Bacterium lactarii) was found to give the most satisfactory results in ripening cream. Cream ripened with common bacteria found in hay dust (Bacillus subtilis) gives a very undesirable flavor to butter. The superior flavor of summer butter is due to the greater number of bacteria of the acid class found in milk during that season. For Outdoor Improvement.—The American Park and Outdoor Association has taken up and aims to nationalize the important work of the improvement of outdoors. Not that it expects to improve upon Nature, but it hopes to be able to neutralize or remedy the devastation and disfigurement which man has wrought upon her face. At the third annual meeting of the association, held in Detroit in July, 1899, preliminary steps were taken toward offering prizes for the improvement of grounds about manufactories and homes—both front and back lots—and especially about the homes of artisans. A standing committee was instituted to consider the best way of checking abuses of public advertising. A paper read by Mr. F. Law Olmstead, on the Relation of Reservoirs to Public Parks, concerned such construction of reservoirs and the surrounding them with suitable settings as would bring them into closer harmony with the park landscape and make them more a part of it. Another paper, by Mr. R. J. Coryell, of the Detroit parks, might be described as an effort to show how a similar service may be performed for the parks and the people—in other words, how to make the people at home in the parks. Its points were illustrated by citing what had been done in Detroit. Respecting means of preventing depredations, Mr. C. C. Lancey told of good results accomplished in Rochester, N. Y., by the distribution of circulars of information on the subject; and Mr. F. L. Olmstead, Jr., of the interest taken by the children in the school gardens in Cambridge, Mass. Where Physical Investigation Fails.—From the discussion of the physical method, with its descriptive laws and applications and hypotheses, Prof. J. H. Poynting was led, in his address at the British Association, to the consideration of the limitation of its range. It was developed in the study of matter which we describe as non-living, and with non-living matter it Honors to Sullivant and Lesquereux.—"Sullivant day," August 22d, was devoted in the American Association to the commemoration of the lives and works of William S. Sullivant and C. Leo Lesquereux, botanists, the former distinguished for his studies in the mosses and the latter for his researches in paleobotany, both of whom lived and did the work by which they became famous in Columbus, Ohio. Sullivant was born and passed the whole of his life in Columbus. Lesquereux, a Swiss by birth, lived in Columbus during many of his most fruitful years, and worked alongside of Sullivant. A considerable number of objects associated with the two botanists were on exhibition—rare botanical specimens, charts and pictures connected with their labors, and complete sets of their published works—and excellent and highly prized portraits of them were shown. The families of both were represented by the presence of daughters and granddaughters, among whom was Miss Arhart, a granddaughter of Lesquereux, who was associated with him in part of his work, and made most of the drawings for his later books. Prof. C. R. Barnes presided over the exercises. Prof. W. A. Kellerman read a tribute to Sullivant from Dr. Gray's supplement to the Icones. Mrs. Britton gave a short review of the species named from Sullivant (including twelve North American mosses). Professor Barnes read a tribute to Lesquereux, taken from the Botanical Gazette. Remarks were made and papers read on the Progress in the study of the Hepatica, by Prof. L. M. Underwood; the Moss Flora of Alabama, by Dr. Charles Mohr (read by Professor Earle); the History of the Study of the Mosses, by Mrs. Britton; the Classification of Certain Mosses, by A. J. Grout; the Study of Lichen Distribution in the Mississippi Valley, by Bruce Fink; and Botanical Teaching in the Secondary Schools, by W. C. Stevens and Ida Clendenin. Among the exhibits, those of twelve species of hepaticÆ from California, by Prof. F. E. Lloyd; forty-five photographs of American students and collectors made famous by their work in mosses, by Mrs. Britton and Professor Underwood; and six species of mosses discovered and collected originally by Sullivant and Lesquereux near Columbus, deserve special mention. Rate of Evolutionary Variation in the Past.—Mr. Adam Sedgwick, speaking, in his address at the British Association, of variation, selection, and heredity, having raised the question whether the variability of organisms has ever been different from what it is now, answered it in the affirmative, because it would be absurd to suppose that organisms would remain constant in this respect while they have undergone alteration in all their other properties. According to the Darwinian theory of evolution, one of the most important factors in determining the modification of organisms has been natural selection. It acts by preserving certain favorable variations, and allowing others less favorable to be killed off in the struggle for existence. It will thus come about that certain variations will be gradually eliminated, while the variations of the selected organisms will themselves be submitted to selection, and certain of these will in their turn be eliminated. In this way a group of organisms becomes more and more closely adapted to the surroundings. It would thus appear that the result of continued selection is to diminish the variability of a species. Hence, as selection has been going on all the while, variation must have been much greater in past times than it is now. Following out this train of reasoning, we are MINOR PARAGRAPHS.Of the archÆology of Block Island, Arthur Hollick found in his explorations that around the shores of Great Salt Pond and on the sand dunes that border the western shores of the island evidences of former occupation by the Indians are numerous. Kitchen middens are exposed in several street cuttings, implements are often found scattered over the surface of the ground in certain localities, and skeletons have been unearthed from time to time. In many places the kitchen midden accumulations were so obvious that it was impossible to ignore them entirely. They were found to consist of the customary collection of oyster and other shells, bones, pottery fragments, fire-cracked stones, charcoal, finished implements, rejects, flakes, chips, etc. The finished implements found were two axes, of a plagioclase igneous rock, and three arrow points, all of quartzite. In the sand dunes were many old fireplaces, mostly buried by the sand which has drifted over them. They could generally be located by the richness of the turf on the surface immediately above. Mixed with the accumulations in these places were the bones and teeth of animals. The island promises a good reward for archÆological investigation. In a form of disease known as peckiness in the cypress and pin-rot in the librocedrus, described by Hermann von Schrenk in a thesis presented to Washington University, the wood is destroyed in localized areas, which are surrounded by apparently sound wood. The cell walls are changed into compounds, which diffuse through the walls and fill the cells surrounding the decayed center, and these have been called humus compounds. In both trees a fungus mycelium occurs, with strongly marked characteristics, which flourishes within the diseased centers, and grows between them without affecting the intervening wood. This wood can be utilized for many purposes even when much rotted, and in neither case does the mycelium grow after the tree has once been cut down. The two trees thus diseased, both representatives of a race of trees the majority of which are extinct, are closely related genetically, although growing in different parts of the country. The two forms of decay differ but slightly, and not more than might be expected in two woods of different character. Mr. J. C. Arthur, of the Purdue University Agricultural Experiment Station, a few years ago picked up a small white flower (Cerastium arvense oblongifolium) growing unobtrusively among the grass and low weeds of the roadside. It was a little more attractive than its relative which is called the field chickweed, and the author suggests the name of starry grasswort for it. Under cultivation it spread out over the ground in a close mat of foliage in a manner characteristic of many members of the pink family, to which it belongs; and now for six weeks in April and May it is a mass of "dazzling whiteness, softened with the pale green of stems and leaves," while "all winter long the prostrate stems remain alive to their very tips, and the leaves maintain a summerlike appearance," without the indurated, polished look so usually associated with evergreen foliage. This is one roadside flower taken up, perhaps casually, for cultivation and improvement. There are others—no one knows how many—that will doubtless likewise reward the pains taken with them; and this inspires Mr. Arthur to suggest to others that they keep a lookout for plants that may become desirable garden varieties and try them. "It is evident that showiness in the wild state is not the most important criterion by which to gauge the future culture value of a plant. One needs to have many factors in mind to meet with success, and it is hoped that the An experiment has been tried in New York during the past summer in the way of "vacation schools" for teaching housekeeping and domestic economy. Instruction was given daily in these arts in the public schoolrooms in Front and Oliver Streets and in Hester Street. At Front and Oliver Streets girls were taught to air, clean, and take care of a bedroom; to set table, clean, and take care of a living room; kitchen cleanliness; laundry work—one week being devoted to each course, and talks were given on furnishing a flat, the care of a cellar, and the importance of air and sunlight to health. The children were also taught daily to cook appetizing dishes and serve them. At Hester Street more time was given to the cooking lessons, instruction was given on the feeding of babies, and a class in nursing was taught; among other things, emergency bandaging, caring for helpless patients, and the hygiene of the sick-room. Mr. A. P. Coleman, during some geological work last summer on the north shore of Lake Superior, about Heron Bay, discovered a new mineral, which he has named Heronite, and which he describes at length in the Journal of Geology for July-August. It is a dike rock, consisting essentially of analcite, orthoclase, plagioclase, and Ægyrite, the analcite having the character of a base, in which the other minerals form radiating groups of crystals. The analcite clearly represents the magma left after the crystallization of the imbedded minerals, and it is evident that it can be formed only from a magma highly charged with water, and therefore under pressure. From the examination of a number of nearly pure hydrocarbons obtained from American petroleum by Young, it appears that the same classes of hydrocarbons, paraffins, polymethylene compounds of naphthenes and aromatic hydrocarbons are present in these and in Russian and Galician petroleums; but that Russian petroleum contains a relatively larger amount of naphthalenes and, in all probability, of aromatic hydrocarbons, than Galician, and Galician a larger amount of the same hydrocarbons than American petroleum. NOTES.An old contributor, Dr. A. F. A. King, of Washington, D. C., writes us calling attention to the interesting fact that we printed an article of his as far back as September, 1883, suggesting the mosquito theory of malaria, and giving a number of observations which seemed strongly to support this view. Experiments made by F. H. Hall and W. P. Wheeler, at the New York Agricultural Experiment Station, regarding the best food for "chicks, pullets, cockerels, and ducklings," seem to indicate conclusively that part of the protein must be drawn from animal sources if we are to get the best results. Rations in which from forty to fifty per cent of the protein was supplied by animal food produced more rapid growth and at less cost of production. Messrs. A. Stutzer and Hartlieb, of Breslau, have detected bacteria in Portland cements, which provoke the liberation of the nitrogen from nitrogenous compounds in water, and the formation of nitrous and nitric acids that act upon the lime in the cement and promote its disintegration. According to Industries and Iron, the tides are now utilized for generating power at Pont-l'AbbÉ, Finisterre, France, during fourteen hours per day. At flood tide the water flows through a canal two miles and a half inland into a pond in the rear of the power house, and returns to the sea at ebb tide. The total fall is seven feet and a half, and eighty-horse power is generated by means of turbines. Means have been considered for applying this method of generating power to various industries. A proposal for an International Physical Congress has been accepted by the authorities of the Paris Exposition of 1900, and the congress will be held from the 6th to the 12th of August, under the auspices of the French Government. It immediately precedes the International Electrical Congress. So far as has yet been determined, the subjects of the addresses and reports will be classified under the headings of the definition and fixing certain units (of pressure, scale of hardness, quantity of In a book called Literary Munich Portraits, with brief biographical sketches by Paul Heyse, are given of twenty-five of the most prominent literary men of that brilliant capital. Only two authors not Germans are included. One of them is our contributor, E. P. Evans. The other is the Norwegian novelist BjÖrnson. Heyse leaves himself out, although he is the greatest literary character of them all. Some recent experiments, conducted jointly by the Kew Observatory Committee and the International Bureau of Weights and Measures at SÈvres, were made to compare the platinum thermometer of Professor Callendar, which measures temperature by the varying resistance of a platinum wire, and the older mercury and gas thermometers. It was found that below 100° C. the differences between the observed values on the nitrogen scale and those deduced from the platinum thermometer are exceedingly small, and that even at the highest temperature (590°) the differences only amount to a few tenths of a degree. The American Chemical Society has gained 232 members during the past year, making the present number 1,540. The report of the committee on the analysis of coal, submitted to the recent meeting of the society at Columbus, Ohio, embodied detailed instructions in regard to the best methods of analyzing coke, and outlined a plan for securing uniformity in such analysis by chemists throughout the land. This report was adopted. At the recent annual meeting of the American Society for the Promotion of Agricultural Science Prof. W. J. Beal reported concerning the germination of seeds, after long keeping, that experiments had been tried with various seeds five, ten, fifteen, and twenty years old, from which it appeared that seeds of a large number of important plants would germinate after fifteen years, but the number sprouting after twenty years was small. A paper was read by Dr. L. O. Howard, at the recent meeting of the American Society of Entomologists, recording the success which has been obtained by the fig-raisers of California in fertilizing the Smyrna variety of figs by the aid of the blastophaga which issues from the Capri figs covered with their pollen. A generation of the blastophaga has been developed at Fresno by which many Smyrna figs have been satisfactorily fertilized, and there is considerable probability that the insect has at last established itself on California soil. The five hundredth anniversary of the birth of Gutenberg, associated with the invention of printing, is to be celebrated at Mayence, June 24, 1900. It is hoped that the foundation of a Gutenberg Museum may be a result of this movement. An exhibition illustrating the art and progress of printing is also expected to be held. The conclusion is drawn by the Italian, Signor Albini, from investigations on the nutritive value of whole-meal bread, that it is inferior to that of ordinary white bread, and that a further disadvantage comes from the excessive quantity of indigestible matter, formed of the harder parts of the pericarp of the grain, which it contains. We have to add to our obituary list of men known in science the names of Edward Orton, LL. D., Professor of Geology in Ohio State University, late State Geologist of Ohio, and late President of the American Association for the Advancement of Science, at Columbus, Ohio, October 16th, in his seventy-first year, of whom we shall shortly give a more extended sketch, with portrait; Grant Allen, writer of several scientific books and articles, and a contributor to the Popular Science Monthly; Prof. Theodore Elbert, German geologist, aged forty-two years; Dr. Max Barth, Director of the Agricultural Station of Rufach, Alsace, aged forty-four years; M. Paul Janet, member of the Paris Academy of Moral Science, and formerly professor at the Sorbonne; Edward Case, English engineer, well known for his method of groining to prevent the sea from encroaching on the coast, September 22d; Hamilton Y. Castner, whose name is associated with the establishment of processes for the electrolytic production of alkali and bleaching powder from common salt, and for the extraction of aluminum; Dr. Oscar Baumann, of Vienna, African explorer, author of a map of the Congo, geographical articles, and books relating to his explorations; and Dr. J. W. Hicks, Bishop of Bloemfontein, formerly demonstrator in chemistry in the University of Cambridge, and author of a text-book on inorganic chemistry. |