Climate and Acclimatization.—In view of the rapid growth of West Indian and South American commerce and the considerable emigration to Cuba and neighboring islands, which our present relations with them will probably bring about, the following extracts from an editorial in the London Lancet are of interest: "The American nation has entered upon a new and, in a sense, imperial policy, which may be regarded as forming an epoch in its history. This brings it face to face with the problem of colonization and acclimatization—a problem which we have had to confront long ago and toward the solution of which we have ever since been slowly fighting our way by following on the lines of the best practical measures of hygiene known to us. 'The white man's burden' has proved a tragical one in its drain on the life of the young manhood of this country, notwithstanding the very large measure of success which has attended our sanitary efforts in this direction. The Americans, having taken up their burden, will, no doubt, like the practical people they are, set about their task in a practical way. The four principal factors in the production of climate, according to Buchan, are distance from the equator, height above the sea, distance from the sea, and prevailing winds. The equatorial region has the most equable climate; tropical regions have much greater variations of temperature than those near the equator, and have a hot and cold or dry and rainy season. The isothermal lines of mean temperature do not supply a graduated measure of the effects of temperature on animal life. So far as climate is concerned, no single meteorological influence appears, however, to equal the effect of "Picture Telegraphy."—The following account of the new so-called picture telegraphy is from the New York Electrical World and Engineer: "The apparatus consists of a receiver and transmitter, similar in appearance and in mechanism. The picture to be transmitted is drawn on a heavy piece of metal foil, the lines of the drawing being made with an insulating ink. The foil is then secured on the circumference of a horizontal cylinder on the transmitter, the cylinder being of about the size of a typewriter rubber roller. There is a similar cylinder on the receiver, on whose surface is clamped the paper upon which the drawing is to be reproduced; over this is superposed carbon paper, which is covered in turn by a sheet of thin paper. A stylus actuated by an electro-magnet is adjusted close to the surface of the latter, and each time a current is passed through the electro-magnet the stylus is forcibly pressed against the moving surface of the cylinder, and a corresponding mark is made on the two sheets in contact with the carbon paper; the outer sheet serves merely to offer a smooth surface to the stylus and to enable the operator to see that the picture is being properly reproduced. The transmitting cylinder passes under a similar stylus, which latter closes the circuit between the receiving and transmitting ends when it rests upon the foil, and opens the circuit when it passes over the lines drawn with insulating ink, in the latter case actuating the stylus magnet at the receiving end, which leaves a mark on the paper of the receiving cylinder in the form of a line corresponding to the width of the insulation over which the transmitting stylus is passing. The stylus at each end of the line is simultaneously advanced at the end of each revolution of the cylinders by a screw of small pitch. From the description it will be seen that if the surface of the foil on the transmitting cylinder were entirely insulated the receiving stylus would merely draw a number of parallel lines on the paper corresponding to the turns of the screw, and separated a distance corresponding to the pitch of the screw and the angle through which it is turned at each operation. Four different rates of advance may be given to the stylus, corresponding to as many different angles of advance that may, by appropriate mechanism, be given to the screw. The two cylinders have synchronous motion, so that all the marks or lines on the receiving cylinder correspond to widths of insulating ink traced over on the transmitting cylinder. Synchronism is obtained as follows: Connected with both receiver and transmitter is an electric motor which, at the end of every revolution of the cylinder, raises a weight, which acts on a clock train when falling and thus gives motion to the cylinder. At the end of each revolution of the transmitting cylinder a contact is made which locks for an instant the receiving cylinder when it arrives in a position corresponding to a similar position of the transmitting cylinder. Thus it will be seen that each cylinder begins its revolution from identical positions and at the same instant, and as the clockwork of both receiver and transmitter are duplicates, approximate synchronism is maintained during a revolution. Owing to the use of carbon paper, the lines made by the receiver are of considerable width, with the The Charges on Country Checks: an Economic Mistake.—An article in the May issue of the Yale Review, discussing the recent adoption by the New York banks of a rule imposing a "collection charge" on all country checks handled, takes the view that the new rule is a mistake. After reviewing the history and present position of the Bank of England; calling attention to the fact that although it is a private enterprise its position is used as a governor, so to speak, of English finance; the similarity to it in position and power for good or evil of the association of banks known as the New York Clearing House is pointed out; the review goes on to say: "In the associated banks of New York, as in the Bank of England, is kept a very large part of the reserve on which the great financial transactions of a whole country are based. The system of 'reserve cities' for holding large deposit accounts of country banks, in which New York is by far the most important center, is but the recognition in the national banking law of this great fact of a central reserve, and the power of utilizing such deposits, indirectly extended by the law which allows and encourages country banks to hold a large part of their legal reserve in the form of deposits in New York, probably constitutes a much more valuable privilege than the rights of note issue enjoyed by the Bank of England. In extraordinary emergencies the parallel is even closer. Just as the Bank of England is encouraged to expect a modification of the restrictions on its right of note issue, as a means of extending its effective currency reserve in times of panic, so the New York banks, by their system of clearing-house loan certificates, are encouraged and expected to evade those provisions of our national banking laws which restrict their power of issuing notes to meet an emergency.... The exercise of this function of holding a reserve for clearing the business of the country is attended with some expense, as well as with much profit. One of the most vexatious of these expenses has been the cost of collecting country checks.... Under these circumstances they have adopted a rule imposing such charges on country checks as to compel a large part of the remittances to be made in the form of bank drafts on New York city, rather than individual checks on country banks supposed to have accounts with some New York bank. This rule will save the New York banks something like two million dollars annually. It will not prevent any solvent man from making remittances, for if he has a deposit in his local bank and his local bank has a deposit in New York he can buy a draft to send as a remittance, which will pass through the New York Clearing House without question or expense. Yet, in spite of these plausible arguments, we believe the action of the New York banks to be a mistake of very serious magnitude, an inconvenience to the public, a probable loss to deposit banking in the long run, and, worst of all, a serious blow to the cause of sound currency throughout the country. It seems to us, in short, a case where narrower duties and economics have been allowed to crowd broader ones out of sight." The review then goes on to show how great an amount of inconvenience and loss of time in the aggregate the new rule is going to cause, and finally says: "In a popular government the greatest safeguard against soft money—we may fairly say the only real safeguard—is to prevent the growth of a demand for soft money. And of all the means of prevention at our command the most effective is the encouragement of the habit of paying by checks. The habit of paying by check is very general in all large business centers, and has been rapidly extending into the smaller centers, and the most serious public danger in the action of the New York banks is that it seems La Nature's Second Scientific Excursion.—A second scientific excursion to an interesting district of France is planned, by M. Henri de Parville, of La Nature, to start from Bayonne August 25th. It will spend about two weeks, following the chain of the Pyrenees from the ocean to the Mediterranean. Among objects of interest enumerated are the scenery at Biarritz, Pau, Cauterets, and Bigorre; fine architecture at Toulouse, Carcassonne, Elne, etc.; glacial phenomena and thermal waters along the whole mountain chain; manufactories, including iron works at Bouchain, woolen mills at Bigorre, cigarette factories at Perpignan, and the Arago Maritime Laboratory and the sanitarium at Banyuls. The excursion will be "personally conducted" by the eminent anthropologist and archÆologist, M. E. Cartaillac. The excursion last year, to the Central Plateau and the Tarn, was an eminent success. The programme of the present one seems equally attractive. M. de Parville and his associates deserve great credit for their sagacity and enterprise in inaugurating these excursions, which now promise to become annual. We can conceive nothing more profitable and conducive to real pleasure in a vacation than the tour in the company of men having a common interest in the pursuit of knowledge of Nature and art, through such magnificent regions as that of the Pyrenees or through a country so full of natural wonders and novelties as that of last year's excursion. And it will be an incalculable advantage to be under the guidance of so eminent a student and one so familiar with the remarkable features and the antiquities of southern France as M. Cartaillac. The American Association Meeting.—The forty-eighth annual meeting of the American Association for the Advancement of Science will be held at Columbus, Ohio, August 19th to 26th. The association headquarters will be in University Hall, of the Ohio State University, and the headquarters of the council will be at the Chittenden Hotel. The president of the meeting will be Prof. Edward Orton, of the Ohio State University. The vice-presidents or chairmen of sections will be: Mathematics and astronomy, Alexander Macfarlane; physics, Elihu Thomson; chemistry, F. P. Venable; mechanics and engineering, Storm Bull; geology and geography, J. F. Whiteaves; zoÖlogy, S. H. Gage; botany, Charles R. Barnes; anthropology, Thomas Wilson; social and economic science, Marcus Benjamin. The Permanent Secretary is L. O. Howard, Cosmos Club, Washington; General Secretary, Frederick Bedell, Cornell University; Secretary of the Council, Charles Baskerville, Chapel Hill, N. C.; Treasurer, R. S. Woodward, Columbia University, New York. The address of retiring President Putnam will be delivered Monday evening, August 21st. Saturday, August 26th, will be devoted to excursions to Fort Ancient and elsewhere. Receptions and shorter excursions will be provided at hours that will not conflict with the appointments of the association. The Desire for Notoriety a Cause of Crime.—Under the title Luccheni Redivivus the London Lancet gives some interesting psychological data which have been obtained since the imprisonment of Luccheni, the assassin of the Austrian Empress. Twice since his trial and conviction he has attempted suicide. Within the last few days (May 13th) his moral condition has undergone a change confirmatory in a significant degree of the diagnosis which found vanity or megalomania at the root of his crime. The cantonal juge d'instruction in an attempt to ascertain if possible his associates in the crime, visited him in his cell and approached the subject with what seemed to himself due dexterity and caution. At once the previously downcast and abject creature brightened up, his eyes sparkling with gratified self-importance. "I giornali riparlano di me?" (So the journals are talking of me again) he exclaimed interrogatively. The judge disclosed the object of his visit. Luccheni thereupon dallied with his interlocutor, smiling at his reminiscences of the crime, assuming airs of reticence, even indulging in self-contradiction to tease if not torment his judicial antagonist. It was learned, however, that in the preliminaries leading up to the assassination he really had accomplices; beyond this nothing new was elicited from Bounties and Free Trade.—Much discussion is going on in England over the question of bounties and the propriety of putting a tariff on those imported articles which, owing to bounties or other form of government aid at their place of manufacture, can be sold "too cheaply." The following paragraphs are taken from an article in the London Spectator: "In our opinion there can be no question between the policy of free and open market and the policy of only allowing goods to be sold here 'at the natural price of the world's market.' We hold that the maintenance of an open and unhindered market is essential to our welfare; ... that is the real principle involved, and that is the ground on which this question of bounties must be fought out. It is not Cobdenism or free trade that is involved, but that which underlies them both—the great principle of the free and open market.... We attach such immense importance to the open market because we believe not only that our internal prosperity is essentially bound up with the right, not merely of consumers, but of producers, to buy as cheaply as they can and where and how they will, but that the empire itself rests upon the preservation of a free and open market. Mr. Morley never spoke a truer word than when he insisted that Cobden and Bright and the old free traders were empire builders. That they were so and that our empire could not possibly have grown up except with the help of free trade and a market always open must be clear to all whose eyes are not blinded by that evil and foolish spirit of commercial jealousy under which a man, in order to injure his neighbor, wounds himself. Free trade made our empire possible and created what the world before had never seen, overwhelming commercial power wielded without jealousy or narrowness and based on wide and liberal ideas. How long would our colonies have tolerated the connection with us had we been forever worrying them with tariffs and excluding this or that product because it was unnaturally cheap?... As it is, we bid all men welcome in our markets and none are aggrieved.... Foreign powers may hate us for our wealth and prosperity, but not one of them would care to spoil their best market. How would the commerce of France, or Germany, or Russia get on if England were ruined and the English market destroyed? The principle of maintaining a free and open market, coupled with our moral and physical energy, and our liberal aims and aspirations have given us a great and splendid empire. Are we to risk its destruction because the sugar refiners grumble, and because the words of Cobden on another subject may possibly be interpreted to show that he would not, were he alive, have voted against the imposition of countervailing duties?" Forest and Animal Life of the Catskills.—The interior region of the Catskill Mountains surrounding Kaaterskill Junction is assigned, by Dr. E. A. Means in a paper of the United States National Museum, to the Canadian faunal region, with a slight mixture of the Alleghanian in the farming lands on the banks of Schoharie Creek. A few mammals of the Upper Austral zones, however, such as the New England cottontail, the deer mouse, and the gray fox, appear to have extended their ranges into the locality by following up the clearings. Though the region is now again well wooded, only the barest tags and remnants yet remain of the splendid forests that once covered the area. All is second growth except in the rockiest gulches, whence the lumber can not be extracted, and about the rocky summits of a few mountains of the East Jewett ranges. While the original forests seem to have been of conifers, the woods are now very thoroughly mixed, and the Geology of Block Island.—In a study of the geology and natural history of Block Island, of which Arthur Hollick gives a summary in the Annals of the New York Academy of Sciences, the most important problem was whether the Amboy clay series was represented in the island. Of fifteen species of fossil leaves and fruit capable of identification, represented by about twenty-five specimens, at least nine were typical of the Amboy flora. Observations on dip and strike of strata tended to emphasize the fact of contortion of glacial action, the dip in all cases being toward the north, indicating that the strata had been pushed southward in a series of overthrust folds by the advancing ice front. The flora may be divided physiographically into that of the hills, the peat bogs and pond holes, the salt marshes, the sand dunes, and the salt water. Trees are rare, and such vegetation as is dependent on forestal conditions is absent. The bulk of the surface is that of a typical morainal region, with rounded hills and corresponding depressions, many of the depressions being occupied by swamps or ponds, often without any visible outlet. Running streams are few and insignificant, and permanent springs occur only in a limited number of localities. The soil is bowlder till and gravel, with sand in the dunes and beaches, and there are no outcrops of rock. The flora is morainal in its general character, except in the peat bogs and on the limited sand dunes and sea-beach areas, and has its nearest analogue in that of Montauk Point. "In fact, if we could imagine Montauk Point to be despoiled of its few remaining trees and converted into an island it would bear a striking resemblance, geologically and botanically, to Block Island." Considering the geological features of Long Island, Block Island, Martha's Vineyard, and Nantucket, and comparing their floras, we find that all except Block Island have some of the plain region remaining with them, on which a characteristic flora finds a home. Block Island has lost all its plain region and accompanying flora, and is now merely an isolated portion of the terminal moraine, with small areas of modern sand beach and dune formations, affording a home only for such species as can exist under such conditions. The island appears to have been extensively wooded before it was settled, and large stumps, together with roots and branches, are found in some of the peat bogs. The scarcity of animal life on the island is sure at once to attract the attention of the observer from the mainland. Tree-living birds are absent, but robins, bank swallows, red-winged blackbirds, and meadow larks occur with some frequency. Among mollusks, the periwinkle of the Old World, an importation or migration, is the most abundant. Frogs and spotted turtles are plentiful, and a few small striped snakes were seen by Mr. Hollick. The archÆology of the island is being studied by persons specially interested in the subject. The Claims of the High School.—In considering the right of the public high school to be a just charge upon the public treasury, Mr. Frank A. Hill, of the Massachusetts State Board of Education, finds that less than one fifth of the school money raised in the State is expended on account of these schools, whereas if the number of pupils in each of the thirteen grades of school was equal and the money was evenly divided, the higher grades would be entitled to four thirteenths, or nearly one third of it. To an objection sometimes raised against the high-school system that the "toiling millions" will have no use for more than the teaching of the elementary grades, Mr. Hill asks, Who has a right to decide whether one child shall have a greater or less amount of instruction than another? "And so freedom of choice, when the question of what one's life work shall be comes up, is a basic thing in government by the people. Upon the wisdom of this choice turns the welfare of each unit in the State, and Degeneration.—Dr. William C. Krauss, in a paper on The Stigmata of Degeneration, describes degeneration as meaning, in pathology, the substitution of a tissue by some other regarded as less highly organized, less complex in structure, of inferior physiological rank, or less suited for the performance of the original function. The same definition may apply equally well, according to Dr. Krauss, in human ontogeny, "where we can regard a normal man as possessing a certain number of units of strength capable of supplying or exerting a certain number of units of work or force, varying of course according to the environment, education, and fixity of purpose of the individual. It would be obviously unfair to compare a professional man or a brain-worker, whose units of work are intuitively manifold more than a hand-worker, and declare the latter a degenerate because his force and energy, as measured by the world's standard, are not as productive as the former. The questions of money standard and time-worth are foreign to the laws of degeneracy, and are not to be regarded in any way. The degenerate must be considered solely and alone upon the physical, mental, and abnormal stigmata which brand him as an abnormal or atypical man, and prevent him from exerting himself to the highest limit commensurate with his skill and development." The author's paper treats in detail of the various aspects of degeneracy. Birds as Pest Destroyers.—The French journal, Le Chasseur, puts in a plea for the animals that should not be killed. "Why destroy spiders, except in rooms, while they check the increase of flies? Why tread on the cricket in the garden, which wars upon caterpillars, snails, and grubs? Why kill the inoffensive slowworm, which eats grasshoppers? Why slay the cuckoo, whose favorite food is the caterpillar, which we do not like to touch? Why destroy the nuthatch and de-nest the warbler, foes of wasps? Why make war on sparrows, which eat seeds only when they can not get insects, and which exterminate so many grain-eating insects? Why burn powder against starlings, which pass their lives in eating larvÆ and picking vermin from the cattle in the fields? (But they eat grapes too.) Why destroy the ladybird, which feeds on aphides? Why lay snares for titmice, when each pair take on an average one hundred and twenty thousand worms and insects for their little ones? Why kill the toad, which eats snails, weevils, and ants? Why save the lives of thousands of gnats by destroying goat-suckers? Why kill the bat, which makes war on night moths and many bugs, as swallows do on flies? Why destroy the shrew mole, which lives on earthworms, as the mouse does on wheat? Why say the screech owl eats pigeons and chickens, when it is not true, and why destroy it when it takes the place of seven or eight cats by eating at least six thousand mice a year?" The Yang-tse-Kiang.—In a lecture before the London Foreign Press Association Mrs. Isabella Bishop describes the Yank-tse-Kiang as one of the largest rivers of the world, it draining an area of 650,000 square miles, within which dwell a population of 180,000,000. In the journey to the far East, the scenery at Szu-chuan changed from savage grandeur and endless surprises to the fairest scenes, with prosperity, peace, law, and order seeming to prevail everywhere. Erroneous ideas were often entertained about Chinese social life and surroundings. China had many trade associations, which were often strengthened by alliance with guilds. They were composed of men in any particular trade or employment, who bound themselves for common action in the interest of that trade. They might rightly be called "Somewhat" Poisonous Plants.—In Prof. B. D. Halsted's paper in the State Agricultural Experiment Station Bulletins on The Poisonous Plants of New Jersey, besides the descriptions of plants recognized as poisonous internally and to the touch, a list is given of "many somewhat poisonous plants." Among these the catalpa and ailantus produce emanations that are disagreeable and sometimes poisonous, and catalpa flowers, when handled, will produce an irritation of the skin. The thorn of the Osage orange leaves a poisoned wound. The young leaves of the red cedar and the arbor vitÆ are irritating to the skin and may produce blisters, and the pitch of the spruce causes itching. Balm of Gilead may cause blistering. The green bark of the club of Hercules is irritating to the skin. The herbage of oleander affects some persons like poison ivy, the bark of the daphne causes blisters, and the juice of the box produces an itching with many persons. To some the herbage of the wild clematis is acrid and unpleasant. Many of the wild herbs have acrid properties, among them skunk cabbage, Indian turnip, cow parsnip, several of the mustards, and the juice of red pepper and stonecrop. Garden rue and the short bristles of the borage are irritating. Some persons have had their skin inflamed by handling the garden nasturtium. Other plants not always pleasant to handle are meadow-saffron bulbs, garlic, juice of bloodwort and celandine, the smartweed, the herbage of the poke, monkshood, larkspur, bearberry, some of the buttercups, anemone, star cucumber, various burs, daisy flowers, hairy plants, the nettles, sneeze-weed, the corpse plant, and some of the toadstools. Flax spinners have a flax poison, jute workers a rash, hop pickers a disagreeable irritation of the hands, and the grinders of mandrake root find the powder irritating to the face. It is not unusual for persons who gather plants in field and forest to receive sensations akin to those produced by mosquitoes, which are often chargeable to the plants. Other animals than man are less susceptible to the effects of contact poisons. The Dangers of Hypnotism.—In a review of the medico-legal aspects of hypnotism Dr. Sydney Kuh inquires whether the hypnotized can be injured physically or mentally by hypnotization, and whether they can fall victims to crime. Summing up a number of cases cited as bearing on the former question, he finds that hypnotism is now generally conceded to be a pathological and not a physiological condition; that its use, when resorted to too frequently, is liable to bring on mental deterioration; that it may be the cause of chronic headache or of an outbreak of hysteria; that at times it has an undesirable effect upon pre-existing mental disease; and that in some cases it may even produce an outbreak of insanity. He has learned of a few cases on record in which hypnotism was directly or indirectly responsible for the death of the patient. On the other hand, "we all know that hypnotism is a useful therapeutic agent practically only in cases of functional disease which only very rarely endangers the patient's life." Seeking simpler, less dangerous methods of treating maladies for which hypnotism has been recommended, the author has experimented upon the use of suggestion in the waking state, with results that encourage him. A large series of cases Instruction of the Deaf and Dumb.—Of the two principal methods of instructing deaf-mutes in this country, as defined by Mr. J. C. Gordon, of the Illinois Institution, in the sign method, deaf-mutes are taught a peculiar language of motions of the arm and upper part of the body, to which they learn to attach signification through usage. For instance, to teach the word cat to a deaf child a sign teacher would show the child a cat or a picture of a cat. He would next direct attention to the cat's whiskers, drawing the thumb and finger of each hand lightly over them. "A similar motion of the thumb and hand above the teacher's upper lip at once becomes a sign for cat." After the sign has become familiar the child is trained to write the word cat on a slate, blackboard, or sheet of paper, and by frequent repetition the pupil associates the written word with the sign for cat, so that the written word recalls the gestural sign, and the gestural sign serves to recall the concept cat. This language is acquired more readily than any other means of communication. The other method is the intuitive, direct, or English-language method, and, while it would require the use of the living cat or the recognition of the picture of a cat by the deaf child, would connect the written or spoken word directly with the object, without the intervention of any artificial finger-sign. Wherever this method prevails the English language in its written or spoken forms, or in its finger-spelled form, becomes the ordinary means of communication between teachers and pupils, so that every step in instruction requires the use of the English language, which is practically both the instrument and the immediate end of instruction. All the schools called oral use this method. It can be used in connection with finger-spelling, but not with the sign method. Experiments in Nature Study.—Some very interesting features of school children's Nature study—not the teaching of science, but the seeing and understanding of the common objects of the external world—are illustrated in a report of Cornell Agricultural Experiment Station, from incidents of school life in some of the New York schools. The children in the sixth grade of one of the schools of Saratoga Springs provided themselves with eggshells filled with earth and sown with wheat. "The botanical side was made a lesson well flavored with active interest. The pride of ownership and a plant coming from a spoonful of earth had the charm of a creation all the pupil's own, and it was much more real to study the thing itself than to read about it and make a recitation." Geographical applications were made by tracing the introduction and extension and transportation of the crop, and by means of the exchange of correspondence the wheat belt could be traced and plotted in every State of the Union. The children of Corning gathered seeds and divided them into classes as indicated by the means of travel with which they are provided. A small boy felt himself a profound investigator when he discovered the advantage some seeds have in being able to float and ride on the water. It required no hard drill to learn the names. The summer planting of flowers by the children of Jamestown resulted in a flower show in the fall. Many children took the tent caterpillar, reared it from the eggs, and learned all about its metamorphoses. "Nature study can be made elastic. In the kindergarten it can be idealized so as to approach a fairy story. It can be intensified so that in the high school it will have all the solidity of pure science." Chemistry Teaching in Grammar and High Schools.—At the fourth meeting of the New England Association of Chemistry Teachers, held in Boston in January, 1899, preliminary reports were made on grammar-school and high-school courses in chemistry. The grammar-school course was defined as intended to give its pupils first-hand knowledge of the more obvious and important facts and principles of chemical changes, with emphasis placed on those facts which are illustrative of the changes that are going on all about the pupil in the home and in outdoor Nature. While the point of view should be that of Nature study rather than of science, the selection of material and method of study should be such as to make the course of greatest value to those who are to pursue the subject in higher institutions. For high-school study the report insists that, before everything else, the course be intelligible to the pupil. Whatever experiment or work is undertaken, it must be such that the pupil shall be able to understand its aim and the steps in its pursuit, and it must not be too intricate in demonstration or abstruse in application. It should require at least five hours a week, and, if possible, too, of these periods consecutive, and should come as late in the curriculum as possible, following physics. The general work may be divided into the heads of historical, informational (qualitative and quantitative), and theoretical, the second division having ordinarily the larger part of the time. The belief is expressed that only part of the demonstration work should be done by the teacher in the class, but most of it should be performed, as far as practicable, by each pupil in the laboratory. Lastly, the report recommends that the humanistic side of the science be made as prominent as possible. Whenever facts in chemistry can be related to human life or activity this should be done. MINOR PARAGRAPHS.In a recent report on the educational work of the Passaic (New Jersey) public schools, Superintendent F. E. Spaulding points out one of the worst faults of our present public-school system. "The true function of education is to foster and direct the growth of children, not to teach so many pages, rules, facts, or precepts of this subject or of that. And the one adequate rule of practice is constantly to meet the growing needs of this and that individual child, not to teach this class of children as a class. From this proposition there follows the corollary, which is amply substantiated in practice, that the time, order, method, and extent of presenting any subject can be rightly determined only by the interest and capacity of the child for whose benefit it is to be presented, not by the logic and practical importance of the subject itself." Dr. Sir James Grant, of Ottawa, has been led, by his studies of the alimentary canal in its function of discharging the secretions of the various glands, to a high appreciation of the importance of its operation in connection with the elaborate and complex nervous system associated with it. It is reasonable, he believes, to suppose that the activity of these nerves is injuriously affected by noxious influences long before any evidence of organic disease appears, and that, hence, want of care in the digestive process can not and does not fail "to bring about results of a most telling character in the very process of sanguinification." Believing that irregularities of the digestive process in the alimentary canal are more frequent than is generally supposed, he holds that "the internal sewage of the system" can not be too critically examined with a view of preventing the ill effect of toxic accumulations upon the nerve centers. "That the recently discovered neurones," he adds, "play an important part in the vitalizing of nerve energy is a reasonable deduction. A path is now open in which life, under ordinary circumstances, may be prolonged, provided no organic disease is present." The courses in biology in the University of Pennsylvania have been arranged We learn from the London Lancet that besides the special ward of twelve beds at the Royal Southern Hospital of Liverpool, which was formally opened by Lord Lister on April 29th last, arrangements have been completed for a school for the study of tropical diseases at Liverpool. Lord Lister, on the occasion of the school's foundation, said: "The medical student in the ordinary hospital has rare opportunities of seeing these diseases, and for a man who is about to practice in the tropics it is essential that he have opportunities for studying them here before embarking on his tropical career. The possession of tropical colonies makes such institutions in the home country very necessary, not only for preparing the colonial doctors, but for the protection of the home population, which is sure to be brought into contact more or less with the infectious tropical diseases." An interesting paper by Mr. C. J. Coleman on The Electrical Protection of Safes and Vaults is described in the Electrical World and Engineer. He divided the methods into two systems, in one the alarm depending on the opening and the other on the closing of a circuit—the latter of the two being the one most in use. Among the curious devices mentioned are cementing narrow tin-foil strips on the inner surfaces of window glass, so that any breakage or fracture of the glass will open the circuit; the use of glass tubes filled with mercury and connected in circuit, or tubes filled with water or compressed air. In reply to questions as to the use of electricity in perforating safes it was stated that a five-ply chrome steel safe, seven inches and a half thick, was burned through by three hundred ampÈres in twenty-five minutes, and holes were burned through a solid block of vault steel twelve inches thick in twenty-six minutes with three hundred and fifty ampÈres, and in fifteen minutes with five hundred ampÈres. NOTES.The Royal Institution of Great Britain, on the occasion of its one hundredth anniversary, has elected as honorary members the following Americans: Prof. Samuel Pierpont Langley, astronomer, Secretary of the Smithsonian Institution, Washington, D. C.; Prof. Albert Abraham Michelson, physicist, of Chicago; Prof. Robert Henry Thurston, mechanical engineer, Director of the Sibley College of Cornell University; Prof. J. S. Ames, of Johns Hopkins University; George Frederick Barker, physicist, Professor of Physics at the University of Pennsylvania, Philadelphia; and Prof. William Lyne Wilson, President of Washington and Lee University, ex-Congressman, and Postmaster-General. The foundation stone of an oceanographic museum, instituted by Prince Albert of Monaco, was laid in that city April 25th. The museum is designed, primarily, to receive the large and valuable collections obtained by the prince in the voyages of ocean exploration which he has conducted, and to become a general depository for oceanographic spoils. The principal address was made by the governor-general, who glorified the prince's meritorious scientific career. The German Emperor, who is named a patron of the museum, and the French President were represented on the occasion by deputies. The City Library Association of Springfield, Mass., has been holding, during April, May, and June, an elaborate and instructive exhibit of geographic appliances of special interest to teachers in the elementary schools. The exhibition included a number of sets of wall maps, Dr. Daniel G. Brinton has presented to the University of Pennsylvania, where he is Professor of American ArchÆology and Linguistics, his entire collection of books and manuscripts relating to the aboriginal languages of North and South America. The collection represents the work of twenty-five years, and embraces about two thousand titles. Mr. Andrew Carnegie has offered to complete, with a contribution of £50,000, a fund which Mr. Joseph Chamberlain is trying to raise in order to make the scientific school the principal department of the University of Birmingham, England. A noteworthy experiment in bird protection has been made in a boys' school at Coupvray, France, by forming a society of the pupils for that purpose. The president, vice-president, and secretary of the society are selected from among the pupils of the first division, and all the other pupils are members. Meetings are held every Saturday afternoon in March, April, May, June, and July, under the presidency of the teacher, to hear the reports of members and record the nests protected and noxious animals destroyed in a notebook kept for the purpose. In 1898, 570 nests were protected by the school, and more than 400 mice, rats, weasels, and dormice were destroyed. Such societies cost nothing, and are capable of rendering great service. Ernest D. Bell, whose formula for determining animal longevity by the length of the period of maturity was published in a recent Monthly, has sent a later communication to Nature, changing his constant from 10.5 to 10.1, the latter figure giving much better results. The report of Mr. J. C. Hopkins on the Clays and Clay Industries of Western Pennsylvania is the second one of a series of economic reports on the natural resources of the State in course of publication by the Pennsylvania State College. The first report, published in 1897, was on the Brown Stones of Pennsylvania. The report represents that a capital of nearly $7,000,000 is invested in the clay industries about Pittsburg, of which more than $3,000,000 are in the fire-clay industry. The value of the annual output of material is nearly $4,000,000, more than fifty per cent of the capital invested. The 139 companies employ 4,403 men. Herr Hansemann, of the University of Berlin, who examined the skull of Helmholtz, reports in the Zeitschrift fÜr Psychologie that he found the head about the size of Bismarck's, and a little smaller than Wagner's. By metrical standards the brain weighed about 1,700 grammes with the coagulated blood, and about 1,440 grammes without it—about 100 grammes more than the average. The circumvolutions, which are now thought to have more relation to mental capacity than mere weight, were particularly deep and well marked. The skull was 55 centimetres in circumference, 15.5 centimetres broad, and 18.3 centimetres long, and the cephalic index was 85.25. Our obituary list for this month includes the names, among persons known in connection with science, of Miss Elizabeth M. Bardwell, Professor of Astronomy in Mount Holyoke College, who died May 28th, aged sixty-seven years; G. F. Lyster, long Engineer-in-Chief of the Mersey Docks and Harbor Board, and author of valuable improvements in the Liverpool docks, member of the Royal Society of Edinburgh and of the Institute of Civil Engineers, aged seventy-six years; Prof. Lars Fredrik Nilson, Director of the Agricultural Experiment Station at Stockholm, Sweden, May 14th, aged fifty-nine years; M. Adolphe Lageal, a French geologist, killed by natives while making explorations in the French Soudan; Sir Frederick McCoy, Professor of Natural Science in the University of Melbourne, died in May, aged seventy-six years; he was a member of the Geological Survey of Victoria, founder of the Melbourne National Museum, and author of numerous papers on Victorian geology; before going to Australia he was Professor of Geology in Queen's College, Belfast, and had already attained a high reputation as a geologist by the work he had done as assistant to Sedgwick and by the publication of important memoirs in geology and paleontology; and Lawson Tait, an eminent English surgeon, author of numerous books of a high order relative to his profession, and an active worker in practical sanitary matters; he died at Llandudno, Wales, June 13th, aged fifty-four years. |