THE ELECTRIC TELEGRAPH.

Previous

If a needle turning upon a pivot were fixed at York, and if, by a wire placed in close proximity to it, the needle could be made to move to the right or to the left through the agency of a power applied at the other end of the wire in London, and if it were agreed that one motion of the needle to the left should signify a, and one to the right b, &c.,[33] we should have just such a contrivance as the common needle telegraph now in use.

Such is the dry statement of a problem the more detailed working of which we are about to explain to the reader.

When a schoolboy places a sixpence and a piece of zinc in juxta-position with each other in his mouth, he immediately perceives a singular taste, which as instantly disappears upon their separation; it is an experiment which most of us have performed, wondered at for a moment, and then forgotten. How little did we ever dream that in so doing we were calling into life one of the most subtle, active, and universal agents in nature—a spirit like Ariel to carry our thoughts with the speed of thought to the uttermost ends of the earth—a workman more delicate of hand than the Florentine Cellini, and more resistless in force than the Titans of old!

Fig. 1

Fig. 2

If now we place a piece of zinc, Z, and of copper, C, in a glass of acidulated water, instead of in the saliva of the mouth, and if we then attach to the piece of zinc the wire D K, and to the piece of copper the wire B A, and approximate the two ends, A K, until they touch, we shall have the philosophic expression of the contrivance of the boy—a decomposition of the water will immediately take place, and either as its cause or consequence—for scientific men have not yet decided which—an electric current will flow in a continued stream from the zinc plate or positive pole to the copper plate or negative pole of the battery, and this action, provided the plates are kept clean and the acidulated water is supplied, will go on as long as the materials last. If this little instrument, which generates a very small amount of electric force, is combined with others, as in figure 2,—the zinc plate of one cell being connected with the copper plate of the next by a piece of wire—we shall have the celebrated battery invented by Volta in 1800, in which the accumulated current, after flowing from one cell into another, by means of the little hoops of wire, is transmitted along the large hoop, D K A B, from the one pole of the battery to the other. Within the narrow chambers of some such battery (which may be made of any number of cells, according to the force required), the motive power is generated by which the electric telegraph is worked, and the large hoop by which its two poles are connected represents the telegraphic wire we see running beside the railroad, whose office is to form a conducting pipe for the conveyance of the electricity. Different substances possess this property in various degrees; some, such as dry paper, not permitting the passage of the electric fluid to any sensible extent; and others transmitting it with great freedom. Of all known bodies, the metals are the most perfect conductors, and copper is in this respect superior to iron; but the latter, being cheaper and more durable, is commonly employed in the construction of the telegraph. Thus we have two of the indispensable requisites—a constant force and a channel which conveys it from place to place.

Fig. 3

There was yet a third thing necessary—some contrivance by which the force could be made instrumental in forming signs or characters at its destined goal; and this final condition was supplied by Oersted’s discovery in 1819, that a magnetic needle is deflected by the passage of a circuit of electricity through a wire parallel and in close neighbourhood to it. The following cut will explain our meaning:—When the fluid passes from the U pole of the battery in the direction of B A K L M Z, and enters V, its opposite pole, “a current,” as it is called, is completed, running from left to right, the effect of which upon the needle, N, is to deflect it in the direction of the dotted line (seen in perspective) 2, 3, or to an angle of 90 degrees, with the wire, if the current is sufficiently strong. If, however, the current be reversed, and the electric fluid made to traverse the wire from right to left, in the direction of the letters V Z M L K A B to the U end of the battery, the needle will immediately reverse its position and place itself at 90 degrees in the opposite direction. This then is the whole principle and mystery of the needle telegraph, the one still most extensively used in this country. The break that occurs between the letters B U and Z V is intended to show the method in which the needle is made to work. “Whilst the wires are thus apart the circuit is broken,” or the fluid no longer passes along the wire, but immediately they are approximated the circulation again commences, and the needle “answers the helm.” By the opening and closing, then, of this small space, which is effected by a lever, the needle is made to oscillate at will.

Fig. 4

The mere fact, however, of an electric current passing along a wire in proximity to a magnetic needle was not sufficient to enable any person to construct a telegraph. Would the needle be deflected by a wire, the battery of which was placed at any considerable distance? it would not; therefore, for all telegraphic purposes Oersted’s discovery was worthless. Schweigger, however, soon after ascertained that by passing a great number of times round the needle a wire, thoroughly insulated by a “serving” of silk thread, as shown in figure 4, the deflecting powers of the currant were multiplied, and the sensibility of the instrument marvellously increased.

Fig. 5

In the same year that Oersted made his brilliant discovery, M. Arago detected another law, which furnished a second method by which the electric current could be made to tell its tale. He announced to the French Academy the fact so pregnant in its consequences, that the fluid possessed the power of imparting magnetism to steel or iron; and shortly afterwards our own countryman, Sturgeon, invented the first electro-magnet, by coiling around a piece of soft iron a great length of fine insulated copper wire, the ends of which communicated with a battery. Figure 5 will give a rough idea of this instrument. The wire U B A, when it reaches the cylinder K L, is wound many times round it, and returns to the battery at V. As long as the current is passing, the soft iron becomes a magnet and attracts the iron armature P; but directly the circuit is broken its magnetic power ceases, and P, by the action of a spring, flies back. It will at once be seen that by alternately making and breaking the circuit, which can be done as fast as the hand can move the handle of a lever, an up and down movement of the armature P will take place, and this is the principle of action in Wheatstone’s electro-magnetic dial instrument and Morse’s recording telegraph, so extensively used in America. The general modus operandi of the latter, which is a contrivance of singular merit and efficiency, can be easily understood. At the station at which the message is received, a poised iron lever has a metal pin on its upper surface at one end, and an armature on its under surface at the other end. When the magnet, which is placed beneath the armature, attracts and draws it down, the pin at the opposite extremity is raised, and presses against a strip of paper, which is moved between the metal point, and a roller supported above it, at a uniform rate by means of clock-work. The pin or style will then make a simple dot, or trace lines of variable length upon the paper, according as the electric current is kept up only for a single instant, or for a longer period. “The impressions on the paper,” says Dr. Turnbull, “resemble the raised printing for the blind.” Out of these dots and lines an alphabet is formed similar to that which we have given in a subsequent page, when speaking of the chemical telegraph at Bain. The instrument of Morse requires only a single wire to work it, and is, says the AbbÉ Moigno, “an excellent telegraph, very simple, very efficacious, and very rapid in its transmissions. A practised clerk can indent on an average seventeen words a minute, which is consequently as many as a skilful writer could transcribe with a pen. It is, moreover, a great advantage to have fixed on a band of paper the messages which the needle telegraphs merely figure in the air.”

Since the year 1821 the principles of action of two of the working telegraphs of the present day were known to scientific men, and the question naturally arises, how was it that it still took so many years to make the telegraph a working fact? The answer is, that the combination of circumstances necessary to bring it to perfection had not arisen. What interest had practical men in carrying out the dreams of philosophers? No one imagined that it would ever become a necessary social engine, or that it would pay “seven per cent.” to a public Company. The patronage of the Government could alone have been looked to by any of the proposers of the new method of telegraphy, and the sort of encouragement received from this quarter may be judged from the fact that when Mr. Ronalds attempted to draw the attention of some of the officials to the working of his instrument, they did not even deign to pay it a visit, but returned for answer, “That the telegraph was of no use in time of peace, and that the semaphore in time of war answered all the required purposes.” The occasion that suddenly ripened the invention and brought it into practical operation was the introduction of railroads. Were it not for the universal spread of this new means of locomotion, the telegraph might still have remained in that limbo from which so many discoveries have never emerged. The vast advantage to a railroad of a method of conveying signals instantaneously throughout its entire length was at once seen, and the continuity of its property, together with the protection afforded by its servants, presented facilities for its introduction and maintenance which had never before occurred.

A problem of great scientific interest as well as of practical importance in connection with the electric telegraph had still to be solved. The experiments of Dr. Watson on Shooter’s Hill, in the middle of the last century, proved, it is true, that a shock of electricity passed along a four mile circuit without any appreciable loss of time, but nothing was definitely known about the speed at which it really travelled. This difficult question was answered by Professor Wheatstone. His beautiful investigations on the subject were made by means of a very rapidly revolving mirror, upon which the passage of the electric fluid, at different and distant parts of a severed wire, was indicated by sparks, which appeared as lines of light on the rapidly turning glass, on the same principle that a bit of lighted charcoal whirled round and round in the air appears as a circle of fire. By this instrument, which we cannot render intelligible to the general reader, but for a fuller account of which we refer him to the Philosophical Transactions of 1834, he made it evident to the eye that one spark or leap of the electric fluid did occur before the other—thus proving that its transit along the wire was a matter of time. The manner in which he took measure of this infinitesimal period was extremely ingenious. By attaching a hollow piece of metal—a metallic humming-top as it were—to the spindle of his revolving mirror, and at the same time directing a current of air against it, he was enabled to test its speed by the pitch of the sound produced: this once known, the measuring of time that elapsed between the different sparks was easy. Thus he forced the lightning to tell how fast it was going. His admirably-contrived apparatus has since proved of considerable use to philosophers in measuring very minute parts of time, and scientific men can now with the greatest ease ascertain the period a flash of light takes to traverse a distance of 50 feet—and light, be it remembered, travels at the speed of 200,000 miles a second!

By this experiment it appeared that electricity travels through a copper-wire with at least the velocity of light through the celestial space, though the recent experiments made for Professor Bache, director of the national survey of America, have proved that the velocity of the current through suspended iron wires is not more than 15,400 miles per second. The philosophic proof of the marvellous rate at which the electric current moved, doubtless turned many minds once more in the direction of the long sought for telegraph, and it is not surprising that the eminent elucidator of the fact was among the number. A short time after this he insulated four miles of wire in the vaults of King’s College, on which he performed most of his subsequent experiments.[34] Thus in the silence of these gloomy vaults, as early as 1836, the lightning that was to flash with intelligence round the world—the nervous system so shortly destined to spread itself through two hemispheres, string together continents and islands, and carry human thought under the wide-spreading seas, was slowly being trained to the service of man by one of the most distinguished of the many philosophers who have contributed to the development of this branch of science.

Following up his experiment, Professor Wheatstone worked out the arrangements of his telegraph, and having associated himself in 1837 with Mr. Cooke, who had previously devoted much time to the same subject, a patent was taken out in the June of that year in their joint names. Their telegraph had five wires and five needles; the latter being worked upon the face of a lozenge-shaped dial inscribed with the letters of the alphabet, any one of which could be indicated by the convergence of two of the needles. This very ingenious instrument could be manipulated by any person who knew how to read, and did not labour under the disadvantage of working by a code which required time to be understood. Immediately upon the taking out of the patent, the directors of the North Western Railway sanctioned the laying down of wires between the Euston Square and Camden Town stations, and towards the end of July the telegraph was ready to work.Late in the evening of the 25th of that month, in a dingy little room near the booking-office at Euston square, by the light of a flaring dip-candle, which only illuminated the surrounding darkness, sat the inventor, with a beating pulse and a heart full of hope. In an equally small room at the Camden Town station, where the wires terminated, sat Mr. Cooke, his co-patentee, and among others, two witnesses well known to fame, Mr. Charles Fox and Mr. Stephenson. These gentlemen listened to the first word spelt by that trembling tongue of steel which will only cease to discourse with the extinction of man himself. Mr. Cooke in his turn touched the keys and returned the answer. “Never did I feel such a tumultuous sensation before,” said the Professor, “as when all alone in the still room I heard the needles click, and as I spelled the words I felt all the magnitude of the invention, now proved to be practical beyond cavil or dispute.” The telegraph thenceforward, as far as its mechanism was concerned, went on without a check, and the modifications of this instrument, which is still in use, have been made for the purpose of rendering it more economical in its construction and working, two wires at present being employed, and in some cases only one.

A frequently renewed and still unsettled controversy has arisen upon the point of who is to be considered the first contriver of the telegraph in the form which made it available for popular use. Two names alone are now put forward to dispute the claim with Wheatstone—Steinheil of Munich and Morse of New York.

From a communication of M. Arago to the French Academy of Sciences, it appears that the telegraph of Steinheil was in operation, for a distance of seven miles, on the 19th of July, 1837, the same month in which Wheatstone put his own contrivance to the test upon the North Western Railway. But besides that the patent of Wheatstone was taken out in the preceding June, and was itself founded upon previous and thoroughly successful experiments, there is another material circumstance which gives him a claim to priority over Steinheil, viz., that the latter published no description of his instrument until August, 1838, that he altered and improved it in the interval, and that the only accounts we have of his contrivance describe its amended and not its original form. It was, however, a very meritorious performance, and, in addition to its other excellences, Steinheil was the first who employed the earth to complete the circuit—a most important fact, which we shall explain hereafter. Still his telegraph was inferior in its mechanical arrangements to that of Wheatstone, and the inventor himself soon abandoned it in favour of a modification of the instrument of Morse.

Morse dates his claim to the invention of the telegraph from the year 1832, when the first idea of such an instrument, he tells us, struck him as he was returning home from Havre in the ship Sully. A fellow-passenger, Professor Jackson, it appears, was in the habit of amusing himself, in common with the rest of the passengers, with some accounts of the wonders of electricity; and when Morse later developed his contrivance, Professor Jackson not only claimed it as a plagiarism from his own conversation, but added that Morse was so ignorant as to ask, upon hearing the term Electro-Magnetism, “In what does that differ from ordinary Magnetism?” The telegraph was at best, on the part of both of them, a crude idea; and it was not till September, 1837, that Professor Morse was able to exhibit his still imperfect machinery in action. He ultimately succeeded, as we have before stated, in producing a telegraph of first-rate excellence; and, out of 15,000 miles of wire which had been erected by 1852 in the United States, 12,124 were worked on the system of Morse.

The question of priority is, in our opinion, after all, of no sort of importance, at least as regards the rival claims of Wheatstone and Steinheil. When the progress of science has prepared the way for a great discovery, two geniuses will occasionally take the step together, because each is able to take the step of a giant. It was thus that the Calculus was found out by both Newton and Leibnitz, and the place of Neptune in the heavens by both Adams and Leverrier. It was the same with the telegraph. The investigations of Wheatstone and Steinheil were entirely independent of each other, and it cannot lessen the merit of either that there was a second man in Europe who was equal to the task.

There are some who dispute Professor Wheatstone’s claim, by urging that, inasmuch as all the main features of the telegraph existed before he took out his patent, there was nothing left to invent. It is true that much had been done, but it is equally certain that there was much to do. When Wheatstone first directed his attention to electricity as a means of communicating thoughts to a distance, the telegraph was a useless and inoperative machine. He and his partner established as a working, paying fact, what had hitherto been little better than a philosophic toy. To those who now disparage the Professor’s labours we think it sufficient to reply by the admirable saying of the French savant, M. Biot, “Nothing is so easy as the discovery of yesterday; nothing so difficult as the discovery of to-day.”

Let us return, however, to the history of the telegraph in England, from which we have digressed. After the successful working of the mile-and-a-quarter line, the Directors of the London and Birmingham Railway proposed to lay it down to the latter town if the Birmingham and Liverpool Directors would continue it on their line; but they objected, and the telegraph received notice to quit the ground it already occupied. Of course, its sudden disappearance would have branded it as a failure in most men’s minds, and, in all probability, the telegraph would have been put back many years, had not Mr. Brunel, to his honour, in 1839, determined to adopt it on the Great Western line. It was accordingly carried at first as far as West Drayton, thirteen miles, and afterwards to Slough, a distance of eighteen miles. The wires were not at this early date suspended upon posts, but insulated and encased in an iron tube, which was placed beneath the ground.

The telegraph hitherto had been strictly confined to railway business, and in furtherance of this object Brunel proposed to continue it to Bristol as soon as the line was opened. Here, again, the folly and blindness of railway proprietors threw obstacles in the way, which led, however, to an unlooked-for application of its powers to public purposes. At a general meeting of the proprietors of the Great Western Railway in Bristol, a Mr. Hayward, of Manchester, got up and denounced the invention as a “new-fangled scheme,” and managed to pass a resolution repudiating the agreement entered into with the patentees. Thus within a few years we find the telegraph rejected by two of the most powerful railway companies, the persons above all others who ought to have welcomed it with acclamation.

To keep the wires on the ground, Mr. Cooke proposed to maintain it at his own expense, and was permitted by the directors to do so on condition of sending their railway signals free of charge, and of extending the line to Slough. In return, he was allowed to transmit the messages of the public. Here commences the first popular use of the telegraph in England, or in any other country. The tariff was one shilling per message. The effect of this low charge was to develop a class of business which seems beneath the notice of the powerful company now in possession of most of the telegraphic lines in the kingdom. The transactions of the retail dealers are considered too petty, perhaps, for their attention; but there can be no doubt that the comfort of the public would be vastly increased, and also the revenues of the company, if they would only condescend to take a lesson by the commercial experience of this shilling tariff, the working of which we will illustrate by transcribing from the telegraph book at Paddington a few specimens of the messages sent:—

“Commercial News. 1844, Nov. 1, Slough, 4.10 P.M.—‘Send a messenger to Mr. Harris, poulterer, Duke-street, Manchester-square, and order him to send twelve more chickens to Mr. Finch, High-street, Windsor, by the 5.0 P.M. down train, without fail.’ Answer: Paddington, 5.5 P.M.—‘The chickens are sent by the 5.0 P.M. train.’

“Slough, 7.35 P.M.—‘A Mr. Thomas B., a first-class passenger, 6.30 P.M. train, left a blue cloak with a velvet collar in first-class booking-office. Send it by mail train if found.’

“Paddington 7.45 P.M.—‘There are two such cloaks in the booking-office: has Mr. B.’s any mark on any part of it?’ Slough, 7.47 P.M.—‘Mr. B.’s has the mark × under the collar, inside.’

“Paddington, 7.55 P.M.—‘Cloak found, and will be sent on as requested.’

“Slough, Nov. 11, 1844, 4.3 P.M.—‘Send a messenger to Mr. Harris, Duke-street, Manchester-square, and request him to send 6 lbs. of white bait and 4 lbs. of sausages, by the 5.40 train, to Mr. Finch, of Windsor they must be sent by 5.30 down train, or not at all.’

“Paddington, 5.27 P.M.—‘Messenger returned with articles which will be sent by 5.30 train, as requested.’”

The first application of the telegraph to police purposes took place about this time on the Great Western Railway, and, as it was the first intimation thieves got of the electric constable being on duty, it is full of interest. The following extracts are from the telegraph book kept at the Paddington station:—

“Eaton Montem day, August 28, 1844.—The Commissioners of Police have issued orders that several officers of the detective force shall be stationed at Paddington to watch the movements of suspicious persons, going by the down-train, and give notice by the electric telegraph to the Slough station of the number of such suspected persons, and dress, their names if known, also the carriages in which they are.”

Now come the messages following one after the other, and influencing the fate of the marked individuals with all the celerity, certainty, and calmness of the Nemesis of the Greek drama:—

“Paddington, 10.20 A.M.—‘Mail train just started. It contains three thieves, named Sparrow, Burrell, and Spurgeon, in the first compartment of the fourth first-class carriage.’

“Slough, 10.48 A.M.—‘Mail train arrived. The officers have cautioned the three thieves.

“Paddington, 10.50 A.M.—‘Special train just left. It contained two thieves: one named Oliver Martin, who is dressed in black, crape on his hat; the other named Fiddler Dick, in black trowsers and light blouse. Both in the third compartment of the first second-class carriage.’

“Slough, 11.16 A.M.—‘Special train arrived. Officers have taken the two thieves into custody, a lady having lost her bag, containing a purse with two sovereigns and some silver in it; one of the sovereigns was sworn to by the lady as having been her property. It was found in Fiddler Dick’s watch-fob.’”

It appears that, on the arrival of the train, a policeman opened the door of the “third compartment of the first second-class carriage” and asked the passengers if they had missed anything? A search in pockets and bags accordingly ensued, until one lady called out that her purse was gone. “Fiddler Dick, you are wanted,” was the immediate demand of the police-officer, beckoning to the culprit, who came out of the carriage thunderstruck at the discovery, and gave himself up, together with the booty, with the air of a completely beaten man. The effect of the capture so cleverly brought about is thus spoken of in the telegraph book:—

“Slough, 11.51 A.M.—‘Several of the suspected persons who came by the various down-trains are lurking about Slough, uttering bitter invectives against the telegraph. Not one of those cautioned has ventured to proceed to the Montem.’”

Ever after this the lightfingered gentry avoided the railway and the too intelligent companion that ran beside it, and betook themselves again to the road—a retrograde step, to which on all great public occasions they continue to adhere.

The telegraph, even up to this period, was very little known to the great mass of the public, and might have continued for some time longer in obscurity but for its remarkable agency in causing the arrest of the quaker Tawell. This event, which took place on the afternoon of Friday, January 3rd, 1845, placed it before the world as a prominent instrument in a terrible drama, and at once drew universal attention to its capabilities.

It must not be imagined, however, that Mr. Wheatstone’s was the only patent taken out for a telegraph in the year 1837. A number of inquiring minds were simultaneously with the Professor wandering in the tangled wood of doubt, and when he burst his way through, others speedily emerged at different points, one after another. Consequently, the year 1837 was distinguished by a complete crop of telegraphs, any one of which would perhaps have held its ground had it stood alone, but not one of them was practically equal to the first, and they have all long since departed to the tomb, already stored with the abortive results of so many merely ingenious minds.

The rapidity with which the needle instrument transmits messages, the small amount of electricity required to work it, and the simplicity of its construction, are its chief recommendations. Upwards of 200 letters can be forwarded by it within the minute. Its great drawback—a drawback that will appear greater every year—is that it can only be worked by a system of signs, which requires some practice to understand. As long as the public is content to send its messages open to the light of day, this plan will hold its ground, as a practised manipulator can indicate the letters as fast as it is possible to read, much less transcribe them, at the other end of the wire; but immediately that the public come to demand secrecy—to put a seal as of old on its letters—this telegraph will, we predict, fall into public disuse; and the revolving dial telegraph, invented by Mr. Wheatstone, in 1840, or the recording telegraph of Bain or Morse, or, more likely still, the American printing telegraph of House, will come into play.

This latter instrument appears to contain within itself capabilities of very high excellence; for instance, it requires no one to interpret, and then to re-write its messages—this it does itself. In fact it extends the compositor’s fingers as far as the wire can be stretched. Messages are thus printed at the rate of fifty letters a minute, say at five hundred miles distance, in common Roman characters, on long slips of paper similar to those used on the recording instrument. Any description of its complicated mechanism would be utterly unintelligible to general readers. “While the arrangements of the telegraph of Morse,” said Mr. Justice Woodbury, of America, in giving judgment in a patent case, “can be readily understood by most mechanics and men of science, it requires days, if not weeks with some, thoroughly to comprehend all the parts and movements of the telegraph of House.” His system is in use for thousands of miles of the American lines. Bakewell’s copying telegraph is naturally suggested by the telegraph of House, from the fact that it reproduces its messages, although in a different manner. The sender of the message may be said to write with a pen long enough to stretch to the most distant correspondent; that is, he not only forwards instantaneously the substance of a message, but it is conveyed in his own handwriting. The principle is similar to that of Davy’s chemical recording telegraph. The person sending the message writes it on a piece of tin foil with a pen dipped in varnish or any other non-conducting substance; this message is then placed round a metal cylinder, which is made to revolve at a certain regulated pace. In contact with this cylinder is a blunt steel point, which, by the action of a screw, makes a spiral line from the top to the bottom of the cylinder, thus touching every portion of the written message enveloping it. In connection with the steel point is the conducting wire, and at the end of the wire is a similar steel point working spirally upon a like cylinder. It will be at once seen that the current will always be transmitted, except at those portions of the tin foil which are covered with the non-conducting varnish, and which, therefore, cut off the flow of electricity, and the handwriting will appear at the other end of the telegraphic wire upon a piece of chemically-prepared paper rolled upon its cylinder, and moving synchronously with it. The transmitted letter appears to be written in white upon a dark ground, the white parts, of course, indicating where the current has been broken, and where, consequently, no decomposition of the chemical paper has taken place.

To return, however, to our subject after this little digression. At the same time that the first working telegraph was being simplified and improved, the system was gradually spreading, and, by the end of the year 1845, lines exceeding 500 miles in extent were in operation in England, working Messrs. Wheatstone and Cook’s patents. In the following year, capital, as represented by the powerful Electric Telegraph Company, commenced its operations, and an immediate and rapid development of the new method of carrying intelligence was the result.

“A period of eight years has elapsed,” as they say in a certain class of drama, and let us now look upon the condition of electric-telegraphy in England. We left it exerting its influence in a disjointed manner over a few railways, and striking out its wires here and there at random, without governing head or organization; and how do we find it?

Jammed in between lofty houses, at the bottom of a narrow court in Lothbury, we see before us a stuccoed wall, ornamented with an electric illuminated clock. Who would think that behind this narrow forehead lay the great brain,—if we may so term it,—of the nervous system of Britain, or that beneath the narrow pavement of the alley lies its spinal chord, composed of hundreds of fibres, which transmit intelligence as unperceived as does the medulla oblongata beneath the skin? Emerging from this narrow channel, the “efferent” wires branch off beneath the different footways, ramify in certain plexuses within the great centre of intelligence itself, and then shoot out along the different lines of railway until the shores of the island would seem to interpose a limit to their further progress. Not so, however:—beneath the seas, under the heaving waves covered with stately navies, they take their darksome way, until, with the burden of their moving fire, they emerge once more upon the foreign strand, and commence afresh their career over the wide expanse of the Continent.

And now, like a curious physiologist, let us examine the various parts of this ingeniously-constructed sensorium, and endeavour to show our readers how in this high chamber, fashioned by human hands, thoughts circulate, and ideas come and go. The door of the “Central Telegraph Station” leads immediately into the Central Hall, an oblong space, open quite up to the roof, which presents an appearance something like the Coal Exchange or the Geological Museum, two tiers of galleries being suspended from the bare walls, and affording communication to the different parts of the building. If we ascend the first gallery, and lean over the balustrade, we shall get a very clear bird’s-eye view of the method in which messages are received and transmitted. Here, man, like the watchful spider, sits centered within his radiating web, and “lives along the line.” Beneath us runs a sweep of counter forming three sides of a quadrangle, divided into compartments of about a square yard by green curtains. A desk and printed forms, to be filled up, are placed in each of these isolated cells, towards which we see individuals immediately make, and then bury themselves, being for the time profoundly intent upon the printed form.

We all know the jocose excuse of the correspondent for having written a long letter—that he had not time to make it shorter. And truly it requires some art to be laconic enough to satisfy the pocket in this establishment. Let us watch, for instance, yonder youth: he seems to have filled his sheet very close—now he gives it in to the receiving-clerk, and something evidently is wrong, for he looks perplexed—it is some hitch about the charge, for his attention is directed to the scale of prices printed at the head of the paper.

“Messages (not exceeding twenty words) can be sent between all the principal towns in Great Britain at a charge of 1s. within a circuit of 50 miles, of 2s. 6d. within a circuit of 100 miles (geographical distance), and of 5s. beyond a circuit of 100 miles, with an additional sum of 6d. porterage within half a mile of the station.”

“Economy,” says a French writer, M. de Courcy, “teaches conciseness. The telegraphic style banishes all the forms of politeness. ‘May I ask you to do me the favour,’ is 6d. for a distance of fifty miles.” How many of those fond adjectives, therefore, must our poor fellow relentlessly strike out to bring his billet down to a reasonable charge! What food for speculation each person affords, as he writes his hurried epistle, dictated either by fear, or greed, or more powerful love!—for we have not yet got into the habit of employing the telegraph, like the Americans, on the mere every-day business of life. Every message—and of these there are 350,000 transmitted by this Company yearly for the public, and upwards of 3,500,000 for the Railways—is faithfully copied, and put by in fire-proof safes, those sent by the recording telegraph being wound in tape-like lengths upon a roller, and appearing exactly like discs of sarcenet ribbon. Fancy some future Macaulay rummaging among such a store, and painting therefrom the salient features of the social and commercial life of England in the nineteenth century. If from the Household Book of the Duke of Northumberland, or still later, from the Paston Letters, we can catch such glimpses of the manners of an early age, what might not be gathered some day in the twenty-first century from a record of the correspondence of an entire people?

“Softly, softly,” interposes the Secretary of the Company, “we have no such intention of gratifying posterity; for, after a certain brief period all copies of communications are destroyed. No person unconnected with the office is, under any consideration, allowed to have access to them, and the servants of the Company are under a bond not to divulge ‘the secrets of the prison-house.’” Very good, as far as the present generation is concerned; nevertheless, it is devoutly to be wished that an odd box or two of these sarcenet ribbons, with their linear language, may escape, for future Rawlinsons to puzzle over and decipher for the instruction of mankind.

Whilst we have been thus speculating, however, a dozen messages for all parts of the kingdom have successively ascended, through the long lift before us, to the instrument-rooms, of which there are two, situated in the attics of the establishment, on either side of the top gallery of the central hall; these, to carry out our anatomical simile, might be called the two hemispheres of the establishment’s cerebrum. The instruments of one of these rooms are worked by youths, while those of the other are manipulated by young ladies; and it seems to us as though the directors were pitting them against each other—establishing a kind of industrial tournament—to see which description of labourer is worthiest. As yet, little or no difference can be detected: this, however, is in itself a triumph for the fair sex, as it proves their capacity for a species of employment well calculated for their habits and physical powers, and opens another door for that superabundance of female labour of a superior kind which has hitherto sought employment in vain.

Click, click, go the needles on every hand as we enter. Here we see the iron tongues of the telegraph wagging, and talking as fast as a tea-table full of old maids. London is holding communication with Manchester. Plymouth is listening attentively to a long story, and every now and then intimates by a slight movement that he perfectly comprehends. But there is one speaker whose nimble tongue seems to be saying important things by the stir around him,—that is the Hague whispering under the North Sea the news he has heard, an hour or so ago, from Vienna of a great victory just gained by the Turks. We are witness to a series of conversations carried on with all corners of the island, and between the metropolis of the world and every capital of northern and central Europe, as intimately as though the speakers were bending their heads over the dinner-table, and talking confidentially to the host. And by what agency is this extraordinary conversation carried on? All that the visitor sees is a number of little mahogany cases, very similar to those of American clocks, each having a dial, with two lozenge-shaped needles working by pivots, which hang, when at rest, perpendicularly upon it. Two dependant handles, situated at the base of this instrument, which the operator grasps and moves from side to side at his will, suffice to make and break the currents or reverse them, and consequently to deflect the needles either to the right or left. Two little stops of ivory are placed about half an inch apart, on either side of the needle, to prevent its deflecting too much, and to check all vibration. It is the sound of the iron tongue striking against these stops that makes the clicking, and to which the telegraphists are sensitively alive. In the early days of telegraphy, the operator’s attention, at all the stations, was drawn to the instrument by the sudden ringing of an alarum, which was effected by the agency of an electro-magnet; but the horrid din it occasioned became insupportable to persons in constant attendance, and this part of the instrument was speedily given up, the clicking of the needle being found quite sufficient to draw his attention to the arrival or passing of a message. We say or passing of a message, because, when a communication is made, as for instance, between London and Edinburgh, the needles of all the telegraph-stations on the line are simultaneously deflected, but the attendant has only to take notice of what is going on when a special signal is made to his particular locality, informing him that he is spoken with. A story is told of a certain somnolent station clerk, who, in order to enjoy his nap, trained his terrier to scratch and awaken him at the first sound of the clicking needles.

There are but two kinds of telegraph used by the company, the needle telegraph and a few of the chemical recording telegraph of Bain. The latter instrument strikes the spectator more, perhaps, than the nimble-working needle apparatus, but its action is equally simple. Slits of variable length representing letters, according to the alphabet in the note,[35] are punched out from a long strip of paper called the message-strip, which is placed between a revolving cylinder and a toothed spring. The battery is connected with the cylinder; the wire, which goes from station to station, is joined to the spring. As dry paper is a non-conductor, no electricity passes while the unpierced portion of the message-slip interposes between the cylinder and the tooth; but when the tooth drops into a space, and comes in contact with the cylinder, the current flows. If we now transfer our attention to the station at which the message is received, we find a similar cylinder revolving at a regular rate, and a metal pin, depending from the end of the telegraph wire, pressing upon it; but in this case the paper between the cylinder and the pin has been washed with a solution of prussiate of potash, which electricity has the effect of changing to Prussian blue at the point where the pin touches it. Therefore, as the chemically prepared paper moves under the pin, a blue line is formed of the same length as the slits at the other end, which regulate the duration of the electric current; and thus every letter punched upon the message-strip is faithfully transferred to its distant fellow. Such is the celerity with which the notation is transmitted by this method, that “in an experiment performed by M. Le Verrier and Dr. Lardner, before committees of the Institute and the Legislative Assembly at Paris, despatches were sent 1,000 miles at the rate of nearly 20,000 words an hour.” In ordinary practice, however, the speed is limited to the rate at which an expert clerk can punch out the holes, which is not much above a hundred per minute. Where the object was to forward long documents, such as a speech, a number of persons could be employed simultaneously in punching out different portions of the message, and the message-strips would then be supplied as fast as the machine could work.

This system is used extensively in America. A weaker current of electricity than what is required for deflecting needles or magnetising iron, suffices to effect the requisite chemical decomposition. The conducting power of vapour or rain carries much of the electricity from the wires in certain states of the atmosphere; “and in such cases, where both Morse’s and Bain’s telegraphs are used by an amalgamated company in the same office, it is found convenient to remove the wires from Morse’s instruments, and connect them with Bain’s, on which it is practicable to operate when communication by Morse’s system is interrupted.”—(Whitworth’s Report, p. 51.)

This chemical telegraph has also the advantage, in common with all recording instruments, that it leaves an indelible record of every message transmitted, and therefore is very useful when the mistake of a single figure or letter might be of consequence, which we will illustrate by a case which happened very lately. A stockbroker in the City received, during a very agitated state of the funds, an order to buy for a client in a distant part of the country, by a certain time of the day, 80,000l. of consols. This order being unusually large for the individual, the broker doubted its accuracy, and immediately made inquiries at the office. The message had luckily been sent by the recording instrument, and upon looking at the record it was immediately seen that the order was for 8,000l., the transcriber having put in an 0 too much, for which, according to the rules of the company, he was incontinently fined. Now, here the error was immediately traced to the person who made it, and there was no need of telegraphing back to inquire if all were right, two matters of vital importance in such a transaction as this, involving so much personal responsibility; for if the purchase had been made and turned out unfortunate, the loss would indubitably have fallen upon the unhappy sharebroker.[36]In all ordinary transactions, however, the needle instrument is preferable, because it transmits its messages much more quickly. The speed with which the attendants upon these instruments read off the signals made by the needles is really marvellous: they do not in some cases even wait to spell the words letter by letter, but jump at the sentence before it is concluded; and they have learned by practice, as Sir Francis Head says in “Stokers and Pokers,” to recognize immediately who is telegraphing to them, say at York, by the peculiar expression of the needles, the long drawn wires thus forming a kind of human antennÆ by which individual peculiarities of touch are projected to an infinite distance. To catalogue the kind of messages which pass through the room, either on their way from London or in course of distribution to it, would be to give a history of human affairs. Here, from the shores of this tight island, comes the morning news gathered by watchers, telescopes in hand, on remote headlands, of what ships have just hove in sight, or what craft have foundered or come ashore—to this room, swifter beyond comparison than the carrier-dove of old, the wire speeds the name of the winner of the Derby or the Oaks. How the four winds are blowing throughout the island; how stocks rise or fall every hour of the day in all the great towns and in the continental capitals; what corn is at Mark Lane, and what farmer Giles got a quarter of an hour since in a country town in Yorkshire, are equally known in the telegraph room. Intermixed with quotations of tallow and the price of Wall’s End coals, now and then comes a love-billet, which excites no more sympathy in the clerk than in the iron that conveys it; or a notice that the sudden dart of death has struck some distant friend, is transmitted and received as unconcernedly as an account of the fall in Russian stock. When business is slack the telegraphists sometimes amuse themselves by an interchange of badinage with their distant friends. Sir Francis Head informs us that an absolute quarrel once took place by telegraph, and the two irritated manipulators were obliged to be separated in consequence.In addition to this private message department there is, below stairs, an intelligence office, in which news published in the London morning papers is condensed and forwarded to the Exchanges of Liverpool, Bristol, Manchester, Glasgow, &c.[37] A few years since the company opened subscription rooms in all the large towns of the north, in which intelligence of every kind was posted immediately after its arrival in London; but the craving for early intelligence was not sufficient to induce the people to incur the expense, and, with the exception of the room at Hull, the establishments have all been shut up.

On Friday evening especially this department is very busy condensing for the country papers the news which appears in that exciting column headed “By Electric Telegraph, London, 2 A.M.” Thus the telegraph rides express through the night for the broadsheets of the entire kingdom, and even steps across from Portpatrick to Donaghadee into the sister country, with its budget of latest intelligence, by which means the extremities of the two islands are kept as well up in the progress of important events as London itself. Upwards of 120 provincial papers each receive in this manner their column of parliamentary news of the night; and the Daily Mail, published in Glasgow, gets sometimes as much as three columns of the debates forwarded whilst the House is sitting. A superintendent and four clerks are expressly employed in this department; and early in the day, towards the end of the week, the office presents all the appearance of an editor’s room. At seven in the morning the clerks are to be seen deep in the Times and other daily papers, just hot from the press, making extracts, and condensing into short paragraphs all the most important events, which are immediately sent off to the country papers to form “second editions.” Neither does the work cease here; for no sooner is a second edition published in town, than its news, if of more than ordinary interest, is transmitted to the provinces. For instance: whilst we were in the company’s telegraph room a short time since, the following intelligence was being served out to Liverpool, York, Manchester, Leeds, Bristol, Birmingham, and Hull:—

Eastern War—Battle on the Danube—From Evening Edition of the ‘Morning Chronicle.’

Vienna, Saturday, April 8th.

“The journal Fremden Blatt announces, under date of Bucharest, 4th April, that a great battle was being fought at Rassova, about midway between Hirsova and Silistria, in the Dobrudscha. The result was not known. Mustapha Pasha is at the head of 50,000 men.”

Arrived at the above-mentioned places, swifter than a rocket could fly the distance, like a rocket it bursts, and is again carried by the diverging wires into a dozen neighbouring towns. The announcement we have quoted comes opportunely to remind us that intelligence thus hastily gathered and transmitted has also its drawbacks, and is not so trustworthy as the news which starts later and travels slower. The “great battle of Rassova” has not yet been fought, and the general action announced through the telegraph was only a sanguinary skirmish.

The telegraphic organization of London, meagre as it is at present, would form alone a curious paper: “a province covered with houses,” it demands a special arrangement, and accordingly we see day by day new branches opened within its precincts, by which means every part of the metropolis is being put in communication with the country and Europe.

The branch stations are, London Docks (main entrance); No. 43, Mincing Lane; General Post Office, St. Martin’s-le-Grand; No. 30, Fleet Street; No. 448, West Strand; No. 17a, Great George Street, Westminster; No. 89, St. James’s Street; No. 1, Park Side, Knightsbridge; No. 6, Edgeware Road; Great Western Railway Station; London and North-Western Railway Station; Great Northern Railway Station; Highbury Railway Station; Eastern Counties’ Railway Station; Blackwall Railway Station; London and Brighton and South Coast Railway Station; and the London and South-Western Railway Station; of these only two are open night and day. The central office, strange as it might appear, is closed at half-past 8 o’clock P.M., and its wires are put in connection with those at the Charing Cross Station, which takes upon itself the night work—a singular proof, by the way, that London proper is deserted shortly after the hours of business are over. The Eastern Counties’ office is also open at night, and forms the East End office of the company. These stations communicate with the central office in Lothbury, and form, in fact, direct feeders to it, just as the hundred suckers do to the zoophyte.

We have yet, however, to notice the special telegraphic communication which exists in the metropolis between place and place, either for governmental purposes or for social convenience. The most curious of these lines is the wire between the Octagon Hall in the new Houses of Parliament and the St. James’s Street Commercial station. They should name this line from the “whipper-in” of the House, for it is nothing more than a call-wire for members. The company employ reporters during the sitting of Parliament, to make an abstract from the gallery of the business of the two Houses as it proceeds; and this abstract is forwarded, at very short intervals, to the office in St. James’s Street, where it is set up and printed, additions being made to the sheet issued as the MS. comes in. This flying sheet is posted half-hourly to the following clubs and establishments:—Arthur’s; Carlton; Oxford and Cambridge; Brook’s; Conservative; United Service; AthenÆum; Reform; Traveller’s; United University; Union; and White’s; hourly to Boodle’s Club and Prince’s Club; and half-hourly to the Royal Italian Opera. The shortest possible abstract is of course supplied—just sufficient, in fact, to enable the after-dinner M.P. so to economize his proceedings as to be able to finish his claret, and yet be in time for the ministerial statement, or to count in the division.

The wire to the Opera is a still more curious example of the social services the new power is destined to perform. An abstract of the proceedings of Parliament, similar to the above, but in writing, is posted, during the performance, in the lobby; and Young England has only to lounge out between the acts to know if Disraeli or Lord John Russell is up, and whether he may sit out the piece, or must hasten down to Westminster. The Opera House even communicates with the Strand Office, so that messages may be sent from thence to all parts of the kingdom. The Government wires go from Somerset House to the Admiralty, and thence to Portsmouth and Plymouth by the South-Western and Great Western Railways; and these two establishments are put in communication, by means of subterranean lines, with the naval establishments at Deptford, Woolwich, Chatham, Sheerness, and with the Cinque Ports of Deal and Dover. They are worked quite independently of the Company, and the messages are sent in cipher, the meaning of which is unknown, even to the telegraphic clerks employed in transmitting it. In addition to the wires already spoken of, street branches run from Buckingham Palace and Scotland Yard (the head police-office) to the station at Charing Cross, and thence on to Founder’s Court; whilst the Post-office, Lloyd’s, Capel Court, and the Corn Exchange communicate directly with the Central Office.

The function, then, of the Central Office is to receive and redistribute communications. Of the manner in which these ends are accomplished nothing can be gained from a glance round the instrument-rooms. You see no wires coming into or emerging from them; you ask for a solution of the mystery, and one of the clerks leads you to the staircase and opens the door of what looks like a long wooden shoot placed perpendicularly against the wall. This is the great spinal cord of the establishment, consisting of a vast bundle of wires, insulated from each other by gutta percha. One set of these conveys the gathered-up streams of intelligence from the remote ends of the continent and the farthest shores of Britain, conducts them through London by the street lines underneath the thronging footsteps of the multitude, and ascends with its invisible despatches directly to the different instruments. Another set is composed of the wires that descend into the battery-chamber. It is impossible to realize the fact by merely gazing upon this brown and dusty-looking bundle of threads; nevertheless so it is, that they put us in communication with no less than 4,409 miles of telegraph, which is coterminous with the railway system of the island, and forms a complete network over its entire surface, with the exception of the highlands of North Wales. It penetrates already into the wilds of Scotland, as we see the wire is carried on from Aberdeen to Balmoral.

The physiologist, minutely dissecting the star-fish, shows us its nervous system extending to the tip of each limb, and descants upon the beauty of this arrangement, by which the central mouth is informed of the nutriment within its reach. The telegraphic system, already developed in England, has rendered her as sensitive, to the utmost extremities, as the star-fish. Day by day and hour by hour everything that happens of importance is immediately referred to its centre at Lothbury, and this centre returns the service by spreading the information afresh in every direction. Thus, should an enemy appear off our coast, his presence, by the aid of the fibre, is immediately felt at the Admiralty, and an immediate reply sends out the fleet in chase. Should a riot occur in the manufacturing districts, the local authorities communicate with the Home Office, and orders are sent down to put the distant troops in motion. Does a murderer escape, the same wire makes the fact known to Scotland Yard, and from thence word is sent to the distant policemen to intercept him in his flight. The arm is scarcely uplifted quicker to ward off a sudden blow—the eye does not close with more rapidity upon an unexpected flood of light, than, by the aid of the telegraph, actions follow upon impressions conveyed along the length and breadth of the land. But, says our reader, suppose these wires should be severed or damaged, your whole line is paralyzed; and how are you to find out where the fault may be? Against these eventualities human foresight has provided: by testing from station to station along the line, the office soon knows how far the wires are perfect; and if the breach of continuity should be in the subterranean street wires, there are iron testing-posts at every 500 yards distance, by the aid of which the workman knows where to make his repairs. Whilst all is being made right again, however, a curious contrivance is brought into play, in order to keep the communication open. Every one is acquainted with the action of the railway “switch,” by which a train is enabled to leave one line of rails and run on to another. The telegraph has its switch also, and thus a message can be transferred from one line to another, or can be sent right throuyh to any locality, without making a stoppage at the usual resting-place on its way. By this device, then, the “sick wires” can be altogether avoided. Suppose, for instance, that some accident had happened to the direct Bristol line, and it would not work in consequence, then the clerk at the Lothbury station would signal to Birmingham to switch the wire through to Bristol, or, in other words, to put him in communication with that place; this done, the message would fly along the North-Western line, look in at the Birmingham station, and immediately be off down the Midland wire to Bristol, arriving, to all perception, in the same latitude as quickly as though it had gone direct by the Great Western wire. Every large station is provided with a switching apparatus, and the Lothbury office has several. Here also there is a very curious contrivance called the “testing-box,” which enables the manipulator to connect any number of batteries to a wire, in order to give extra power, without going into the battery vault.

These switches, testing, and battery boxes are of great service in certain conditions of the atmosphere. For instance, a thunderstorm, or more often a fog, will now and then so affect the conducting power of a wire, working through a long distance, that it is found impossible to send a message along it, in which case the clerk “dodges” the passing storm or fog by switching the dispatch round the country through a fine-weather wire. If however the foggy weather should continue, the manipulator has only to go to the battery box and couple on one or more batteries, just as fresh engines are put on a train going up an incline when the rails are “greasy.” By thus increasing the power of the electric current the message is driven through the worst weather. Sometimes as many as six or eight 24-plate batteries are necessary to speed a signal to Glasgow. The more general way in such cases, however, is to transmit the dispatch to some intermediate station, where the message is repeated.

Let us now descend into the battery vaults—two long narrow chambers, situated in the basement of the building. Who would think that in this quiet place, night and day, a power was being generated that exerted its influence to the very margin of this seagirt isle, nay, invaded the territories of Holland, Belgium, and France? Who would think that those long dusty boxes on the shelves were making scores of iron tongues wag hundreds of miles off? There are upwards of sixty Daniel’s batteries in full employment in these vaults. They are ranked as sixes, twelves, and twenty-fours, according to the number of their elements or plates; and just like guns, the higher they rank the further they carry. The powerful twenty-fours work the long ranges of wire, and the smaller batteries the shorter circuits. Of course some of these batteries have harder work to do than others, and the “twenty-fours” working the North-Western line have much the busiest time of it. Considering the work done by them, their maintenance is not very costly. A twenty-four, when in full work, does not consume its zinc plates under three months, and a gill of sulphuric acid, diluted, is its strong but rather moderate allowance of liquid per month. Other batteries of the same force are satisfied with 1 lb. of sulphate of copper per month, with a little sulphate of zinc, and salt and water. The entire amount of electric power employed by the Company throughout the country is produced by 8000 12-plate batteries, or 96,000 cells, which are lined with 1,500,000 square inches of copper, and about the same of zinc. To work these batteries six tons of acid is yearly consumed, and fifty-five tons of sand; the principal use of the latter is to prevent the chemicals from slopping about, and the metal plates from getting oxidised too rapidly. The language of the “wire,” with respect to the working of the telegraph, is very curious. For instance, when a distant station-clerk finds that a battery is not up to its work, by the weak action of the needles, he sends word that it requires “refreshment,” and it is accordingly served with its gill of aquafortis, and, totally opposed to the doctrines of temperance, a “long-lived battery” owes its vitality to the strongest drink.

We have followed the wires down to one pole of their respective batteries, and now we have to pursue them out of the opposite pole until they take to “earth.” No electricity will flow from the positive pole Z of the battery (Fig. 2) unless the wire D K A B is connected, either by being itself unbroken, or by the interposition of some other conductor where a gap occurs, to the negative pole C. In the earlier telegraphs it was usual to have a return-wire to effect this purpose. But, strange as it may sound, it was discovered that the earth itself would convey the current back to the negative pole, and thus an entire length of wire was saved. Accordingly the earth completes the two hundred and odd different circuits, which pass their loops, as it were, through the central office. In order to get a “good earth” a hole was dug deep in the foundations, until some moist ground was found, dry soil being a very bad conductor, and into this a cylinder of copper, four inches in diameter and 40 lbs. in weight, was sunken, surrounded by a mass of sulphate of copper in crystals. All the earth wires of the establishment were then put in connection with this mass of metal, or earth plate.

Fig. 6

The non-scientific reader will perhaps require a figure to explain to him our meaning, when we say that the earth is capable of completing the “circuit.” In the accompanying diagram (No. 6) we have a battery, U V, in the central office in London, deflecting a needle N, say in Liverpool. The fluid passes from the positive pole of the battery U, traverses the wire of the North-Western Railway, and after working the telegraph in Liverpool, descends into the earth by the wire B, which has a metal or earth-plate attached to it. From this point the electric fluid starts homewards, through the solid ground, and finding out the earth-plate[38] under the foundations at Lothbury, ascends along the wire A, into the negative pole of the battery V. By reversing the current, it flows first through the earth from V A to B, and returns by the wire to the opposite pole U.

Nothing in telegraphy impresses the thoughtful mind more than the fact that the electric fluid, after spanning, maybe, half the globe, should come back to its battery, through adamantine rocks, through seas and all the diverse elements which make up the anatomy of the globe. The explanation of the phenomenon is still a matter of pure speculation. Indeed, it may be objected that our flight of the electric principle is altogether a flight of fancy—that there is in fact no flow of electricity at all, but that its progress through bodies, according to the generally received theory, is owing to opposite poles of contiguous particles acting upon each other. The hypothesis, however, first received in science gives birth to its language, which usually continues the same, although it may have ceased to be an adequate expression of the current doctrine of philosophers.

The traveller, as he flies along in the train, and looks out upon the wires which seem stretched against the sky like the ledger lines of music, little dreams of these invisible conductors that are returning the current through the ground. In ninety-nine cases out of a hundred, indeed, the wires and their sustaining posts represent to the spectator the entire telegraph. The following conversation between two navigators, overheard the other day by a friend, gives the most popular view of the way the telegraph works. “I say, Jem, how do ’em jaw along them wires?” “Why, Bill, they pulls at one end, and rings a bell at t’other.” Others again fancy that messages are conveyed by means of the vibrations of the metal, for on windy days they sometimes give out sounds like an Æolian harp: a fact which, according to Sir Francis Head, called forth the remark from a North-Western driver to his stoker, “I say, Bill, aint they a giving it to ’em at Thrapstone?” The more ignorant class of people actually believe that it conveys parcels and letters, and they sometimes carry them for transmission to the office.

Iron wire, coated with zinc, or “galvanised,” as it is termed, to prevent its rusting, is now universally used as the conductor of the electric fluid when the lines are suspended in the air. The first rain falling upon the zinc converts it into an oxide of that metal, which is insoluble in water, so that henceforth in pure air it cannot be acted upon by that element, and all further oxidation ceases. Mr. Highton says, however, that in the neighbourhood of large manufacturing towns the sulphur from the smoky atmosphere converts the oxide into a sulphate of zinc, which is soluble, and consequently the rain continually washes it off the wire. He asserts that he has had wires in this manner reduced from the eighth of an inch to the diameter of a common sewing-needle. There has been a great controversy as to the best means of insulating the wires from their supporting-poles, which would otherwise convey the electricity from the wires to the earth. There is no method known of effecting this completely, but we believe it is now decided that stoneware is the best material for the purpose, both on account of its non-conducting qualities, and the readiness with which it throws off from its surface particles of water. The latter quality is extremely important, for, in very rainy weather, if the insulator should happen to get wet, the electric fluid will sometimes make a bridge of the moisture to quit the wire, run down the post to the earth, and make a short circuit home again to its battery. Indeed, when there are many wires suspended to the same pole on the same plane, a dripping stream of water falling from an upper to a lower one will often suffice to return the current before it has done its work, much to the telegraphist’s annoyance. Not long ago, a mishap, having similar consequences, occurred on the line between Lewes and Newhaven, owing to the following very singular circumstance: a crane, in its flight through the rain, came in contact with the wires, and having threaded his long neck completely through them, the current made a short cut along his damp feathers to the wire below, and by this channel home. Moisture, however, much as it may interfere for a time with the working of a line, rarely does any permanent injury. Lightning, on the contrary if not guarded against, is capable of producing great mischief. It has been known to strike and run for miles along a wire, and, in its course, to enter station after station, and melt the delicate coils and the finer portions of the instruments into solid masses. In most cases it reverses the polarity of the needles, or renders permanent the magnetism of the electro-magnets. All these dangerous and annoying contingencies are easily avoided by the application of a simple conducting-apparatus to lead away the unwelcome visitor. The method adopted by Mr. Highton is to line a small deal box, say ten or twelve inches long, with a tin plate, and to put this plate in connection with the earth. The wire bound up in bibulous paper—which is a sufficient insulator for the low-tensioned fluid of the battery—is carried, before it enters the instrument, through the centre of the box, and is surrounded with iron fillings. The high-tensioned electricity of the lightning instantly darts from the wire, through the pores of the paper, to the million points of the finely-divided iron, and so escapes to the earth. There are, of course, many kinds of lightning conductors used on different lines, but this one is simple in its construction, and, we are given to understand, answers its purpose exceedingly well.

Notwithstanding that the Electric Telegraph Company has been established so many years, it is only just now that the public have begun to understand the use of the “wire.” The very high charges at first demanded for the transmission of a message, doubtless, made it a luxury rather than a necessary of life; and every reduction of the tariff clearly brought it within the range of a very much larger class of the community, as will be seen by the following table issued by the Company, which shows the advance of the system under its management.

In the half-years ending Miles of
Telegraph
in
operation.
Miles
of
Wires.
Number
of
Messages.
Receipts. Dividends paid.
£. s. d.
June, 1850 1,684 6,730 29,245 20,436 10 0 4 per Cent. per Ann.
December, 1850 1,786 7,200 37,389 23,087 13 9 4 per Cent. per Ann.
June, 1851 1,965 7,900 47,259 25,529 12 4 6 per Ct. per Ann. & 2 per Ct. Bonus.
December, 1851 2,122 10,650 53,957 24,336 8 10 6 per Cent. per Ann.
Note.—In this half-year the paid-up
Capital of the Company was increased,
and the tariff diminished about 50 per
Cent. from the original rate of charge.
June, 1852 2,502 12,500 87,150 27,437 4 8 6 per Cent. per Ann.
December, 1852 3,709 19,560 127,987 40,087 18 2 6½ per Cent. per Ann.
June, 1853 4,008 20,800 138,060 47,265 16 3 6½ per Cent. per Ann.
December, 1853 4,409 24,340 212,440 56,919 0 1 7 per Cent. per Ann.

It will be seen from the above what an impulse was given to the business by the reduction in the tariff which took place in December, 1851; for if we compare the messages of the half-year ending June, 1850, with those of the half-year of June, 1852, we shall find that whilst the miles of telegraph in work had not increased one-half, the messages transmitted had nearly trebled. It is only within this last year or two, however—as will be seen by the table—that a very large augmentation of business has taken place, which is doubtless owing to the public being better acquainted with its capabilities. The tariff has since been further reduced, with the result of a still further increase of the messages sent and of the money received—the profits allowing, at the present moment, of a seven per cent. dividend! The lowest point of cheapness, in our opinion, is yet very far from being reached; and it would only be a wise act on the part of the Company to at once adopt an uniform charge for messages, say of fifty words, for one shilling. If this were done, the only limit to its business would be the number of wires they could conveniently hang, for the present set would clearly be insufficient. Means should also be taken to obviate one great objection, at present felt, with respect to sending private communications by telegraph—the violation of all secrecy,—for in any case half a dozen people must be cognizant of every word addressed by one person to another. The clerks of the English Electric Telegraph Company are sworn to secrecy, but we often write things that it would be intolerable to see strangers read before our eyes. This is a grievous fault in the telegraph, and it must be remedied by some means or other. Our own opinion is that the public would much prefer the dial telegraph, by the use of which two persons could converse with each other, without the intervention of a third party at all—or the printing step by step instrument would be equally good. At all events, some simple yet secure cipher, easily acquired and easily read, should be introduced, by which means messages might to all intents and purposes be “sealed” to any person except the recipient. We have reason to believe that Professor Wheatstone has invented a cipher of this description, which will speedily be made public. “One-eighth of the despatches between New Orleans and New York,” says Mr. Jones in his “Historical Sketch of the Electric Telegraph,” “are in cipher. For instance, merchants in either city agree upon a cipher, and if the New Orleans correspondent wishes to inform his New York friend of the prices and prospects of the cotton market, instead of saying ‘Cotton eight quarter—don’t sell,’ he may use the following:—‘Shepherd—rum—kiss—flash—dog.’”

The Company has lately made an arrangement, by which the very absurd and inconvenient necessity of being obliged to attend personally at the telegraph station with a message has been obviated. “Franked message papers,” pre-paid, are now issued, procurable at any stationers’. These, with the message filled in, can be dispatched to the office when and how the sender likes, and the Company intend very quickly to sell electric stamps, like Queen’s heads, which may be stuck on to any piece of paper, and frank its contents without further trouble. Another very important arrangement for mercantile men is the sending of “remittance messages,” by means of which money can be paid in at the central office in London, and, within a few minutes, paid out at Liverpool or Manchester, or by the same means sent up to town with the like dispatch from Liverpool, Manchester, Bristol, Birmingham, Leeds, Glasgow, Edinburgh, Newcastle-on-Tyne, Hull, York, Plymouth, and Exeter. There is a money-order office in the Lothbury establishment to manage this department, which will, no doubt, in all emergencies speedily supersede the Government money-order office, which works through the slower medium of the Post Office.

We have spoken hitherto only of the Old Electric Telegraph Company. There are several other companies in the United Kingdom, working different patents. We have chosen, however, to describe the proceedings of the original Company, because it is the only one that has an amount of business sufficient to give it universal interest; it is the only company, in fact, that has seized the map of England in its nervous grasp, and shot its wires through every broad English shire. The European and the British Telegraph Companies have laid their lines, insulated with gutta percha and protected by iron tubes, beneath the public roads. The European Company works between Manchester, Birmingham, London, and Dover, and, by means of the two submarine cables of Dover and Calais and Dover and Ostend, puts the great manufacturing and commercial emporiums in connection with France, Belgium, and the rest of Europe by a double route. The British Telegraph Company works principally in the northern counties. Of the other lines, we need only mention at present the United Kingdom, and the English and Irish Magnetic Company, which works wires between London, Belfast, and Galway, by means of a subterranean line as far as the west coast of Scotland, and of a submarine cable stretched between Portpatrick and Donaghadee.

It will, perhaps, be a source of wonder to our readers that one company should virtually possess the monopoly of telegraphic communication in this country, but this will cease when they consider that this Company was the first to enter the field, that it came forward with a large capital, speedily secured to themselves the different lines of railway—the only paths it was then considered that telegraphs could traverse with security,—and that it bought up, one after another, most of the patents that stood any chance of competing with its own. The time is fast approaching, however, when most of these advantages will fail them, and when the Company, powerful as it is, must be prepared to encounter a severe and active competition, and that for the following reasons:—

1. The plan of bringing the wires under the public roads turns, as it were, the flank of the railroad lines.

2. The patents of the old company are year by year expiring.

3. The very large capital expended by it—upwards of 170,000l. being sunk in patent rights alone,—independently of the vast expense attaching to the first introduction of the invention, forms a dead-weight which no new company would have to bear.

In the ordinary course of events, then, the other lines at present in existence will gain strength; new companies will spring up, and the supply of a great public want will be thrown into the arena of competition. Would it not be wise for the legislature to consider the question of telegraphy in England before it is too late? We all know what the principle of reckless competition led us into in our railway system. For years opposing companies scrambled for the monopoly of certain districts, and the result was the intersection of the country with bad lines, and, in many cases, with useless double routes. Millions were spent in litigation; railway travelling became, as a natural consequence, dear; the property of the original shareholders rapidly deteriorated; and it has all ended in half a dozen powerful companies swallowing up the smaller ones; and that competition, in whose name so much was demanded, has turned out to be only “a delusion and a snare.” The conveyance of intelligence cannot safely and conveniently be left in the hands of even one company without a strict Government supervision; much less can half a dozen systems be allowed to distract the land at their own will. Indeed, the question might with propriety be asked, Is not telegraphic communication as much a function of Government as the conveyance of letters? If the do-nothing principle is to be allowed to take its course, we shall have to go through a similar state of things to that which occurred only a few years since in the United States, when different competing lines refused to forward each other’s messages, and the whole system of telegraphic communication was accordingly dislocated. Indeed, even with the most perfect accord between different companies, the dissimilarity of instruments used by them would prove a great practical evil—as great a one, if not greater, than the break of gauge in the railway system. Messages could not be passed from one line to another, and delays as vexatious as those which occur on the continental lines would take away much of the value of the invention. It seems to us, then, that even if Parliament should refuse to interfere with the principle of competition in the case of the telegraphic communication, it should, at least, provide for the use of the same kind of instruments, and make it a fineable offence for one line to refuse to forward the messages of another.

Having done so much towards completing our telegraphic organization at home, our engineers adventurously determined to carry the wires across to the continent, and thus destroy the last remnant of that isolation to which we were forced to submit on account of our insular position. As long back as the year 1840 we find, by the Minutes of Evidence in the Fifth Report upon Railways, wherein the subject of electric telegraphy was partially examined, that, whilst Mr. Wheatstone was under examination Sir John Guest asked, “Have you tried to pass the line through water?” to which he replied, “There would be no difficulty in doing so; but the experiment has not yet been tried.” Again, on the chairman, Lord Seymour, asking, “Could you communicate from Dover to Calais in that way?” he replied, “I think it perfectly practicable.” A couple of years later the professor, indeed, engaged, and had everything in readiness, to lay a line for the Government across Portsmouth Harbour; it was not executed, however, through circumstances over which he had no control, but which were quite irrespective of the perfect feasibility of the undertaking.We question, however, whether it would have been possible to have accomplished the feat of crossing the Channel with the electric fire before this date, as the difficulty of insulating the wires, so as to prevent the water from carrying off the electricity, would, we imagine, have been insuperable, but for the happy discovery of gutta percha, which supplied the very tough, flexible, non-conducting material the electrician sought for. Thus it might be said that the instantaneous interchange of thought between distant nations awaited the discovery of a vegetable production in the dense forests of the Eastern Archipelago. The first application of this singular substance to the insulation of electric conducting wires was made in 1847, by Lieutenant SiÉmens, of the Prussian artillery, for a line to cross the Rhine at Cologne.

The first submarine wire laid down was that between Dover and Cape Gris-nez, in the vicinity of Calais, belonging to the Submarine Telegraph Company. This wire, thirty miles in length, was covered with gutta percha to the diameter of half an inch, and sunk (August, 1850), as it was paid out, by the addition of clumps of lead at every sixteenth of a mile. The whole was completed and a message sent between the two countries on the same day. In the course of a month, however, the cable broke, owing to its having fretted upon a sharp ridge of rocks about a mile from Cape Gris-nez. It was now determined to make a stronger and better-constructed cable, capable of resisting all friction in this part of the Channel. The form of cable adopted for this and all other submarine telegraphs now in existence seems to have been originally suggested by Messrs. Newall and Co., of Gateshead, the wellknown wire-rope manufacturers. Instead of one, four wires, insulated by the Gutta Percha Company, were twisted together into a strand, and next “served” or enveloped in spun-yarn. This core was then covered with ten iron galvanized wires five-sixteenths of an inch in diameter, welded into lengths of twenty-four miles, and forming a flexible kind of mail. The cable was manufactured in the short space of twenty-one days. It weighed 180 tons, and formed a coil in the hold of the old hulk that carried it of thirty feet in diameter outside, and fifteen feet inside, standing five feet high. All went well with the undertaking until about one-half had been “paid out,” when, a gale arising, unfortunately the tug-boat that towed the hulk containing the rope broke away, and vessel, wire, and all, drifted, with a racing tide, full a mile up the Channel before it could be overtaken. The consequence was, that the cable was violently dragged out of its course in the middle of the straits. What was worse, a sharp “kink,” or bend, also occurred near the Dover shore, which doubled the cable on itself, but luckily produced no serious damage. The “lie” of the submarine cable between Dover and the vicinity of Calais, at this present moment, is expressed in the following diagram:—

Fig. 7

When the cable at length came near the French coast, it was found to be, in consequence of this unintentional detour, at least half a mile too short. This was remedied, however, by splicing on a fresh piece; and, on securing it at Saugat, the new place of landing, fixed upon on account of its sandy shore, it was found that the communication was good, and good it has remained ever since—a proof of the admirable manner in which the wires were insulated and the cable constructed. The placing of this successful cable was superintended by Mr. Wollaston, the Company’s engineer, and by Mr. Crampton, the contractor. Mr. Wollaston, who is a nephew of the illustrious philosopher of the same name, and who also presided over the earlier attempt, will accordingly, in the annals of electricity, carry off the honours of having first laid down the ocean telegraph.The same Company, not long afterwards, laid another cable across to Ostend. This established a connection with Europe through Belgium, and was planned to prevent this line of communication falling into the hands of another company, and was not, as was suspected at the time, a matter of political foresight on the part of the directors, to enable them to carry on their intercourse with the continent, in spite of France, supposing war should break out between the two countries. Who would have believed a short time since, in Belgium, that the day would come when it would be quicker to convey intelligence to France by way of England than directly across the frontiers? Yet such was actually the case; for, before the line was laid by land, it was a thing of very frequent occurrence for despatches from Ostend to cross the Channel to Dover by one cable, and to be immediately switched across to Calais by the other; thus paying us a momentary triangular visit underneath the rapid straits.

The notion, however, of preventing competition proved to be vain. A third cable was laid on the 30th May, 1853, between the English coast at Orfordness, near Ipswich, and the port of Schevening in Holland, and thence to the Hague. This cable is the longest at present in connection with this isle, extending 120 miles under the turbulent North Sea. It was, however, paid out during a violent gale of wind without the slightest accident, and affords the most direct means of communication with the north of Europe, and entirely commands the commercial traffic of the cities of Amsterdam and Rotterdam. The Hague cable (or cables, for there are now many, consisting of a single wire conductor each, running side by side) is the property of the International Company, a branch of the Old Electric Telegraph, and its wires go direct to the Lothbury office.

Whilst England has moored her south-eastern shores to the continent by three cables, and put herself en rapport with all its principal cities, her north-western extremity has been secured, after many failures, to the sister kingdom—the Electro-Magnetic Company having laid a submarine wire from Portpatrick and Donaghadee, in the neighbourhood of Belfast, and the British Electric Telegraph Company another between Portpatrick and Whitehead in Belfast Lough. England, as befits her, led the way in these adventures upon the sea with the electric fire, and the Danes, Dutch, Russians, and others, are now following in her track.

Will it be believed that in 1841, long after the electric telegraph was working in England, scientific men were seriously discussing in the French Chamber the propriety of establishing a night telegraph on the visual principle, and that when at length it was determined to call in the aid of electricity, instruments were ordered to be so constructed that signals could be given after the fashion of the old semaphore, in order that the officials might be spared the trouble of leaving their ancient ruts? The needles were accordingly displaced for a mimic post, to which moveable arms were attached and signs were transmitted by elevating or depressing them by electricity, instead of by hand. Of course this absurd system was after a while abolished, and the instrument now made use of is a modification of the dial telegraph constructed by Breguet. The first telegraph planted in France was constructed by Mr. Wheatstone, from Paris to Versailles, in 1842. The principal line is that running from Calais vi Paris to Marseilles, which puts the English Channel and the Mediterranean in communication, and transmits for us the more urgent items of the India and China mail.

Belgium and Switzerland are perhaps the best supplied of all the continental kingdoms with telegraphic communication. The Belgian lines were excellently planned and cheaply constructed, consequently their tariff is comparatively low, the average charge for a message being 3 francs 48 centimes, or about 2s. 10½d. Of the nature of the messages sent we can form a very good idea by the following classification of a hundred dispatches:—

Government 2
Stock-jobbing 50
Commercial 31
Newspaper 4
Family affairs 13
100

A comparison of the average division of messages in every state would afford a very fair index of the nature of the occupations of their peoples. We have attempted to obtain materials for this purpose in vain; foreign governments, as well as English companies, being very jealous of giving any information relative to their messages. The history of the telegraph in Switzerland is an evidence of what patriotic feeling is capable of accomplishing. Although by far the best and most extensive, for a mountainous country, in the world, it was constructed by the spontaneous efforts of the people. The peasantry gave their free labour towards erecting the wires and poles, the landlords found the timber and gave the right of way over their lands, and the communes provided station room in the towns. Thus the telegraph was completed, so to speak, for nothing. The peculiarity of the Swiss telegraph is that, like the great wall of China, it proceeds totally regardless of the nature of the ground. It climbs the pass of the Simplon in proceeding from Geneva to Milan; it goes over St. Gothard in its way from Lucerne to Como: it mounts the Splugen, and again it goes from Feldkirch to Inspruck by the Arlberg pass, thus ascending the great chain of the Alps as though it were only a gentle hillside. The wires course along the lakes of Lucerne, Zug, Zurich, and Constance; sometimes they are nailed to precipices, sometimes they make short cuts over unfrequented spurs of the mountains, going every way, in short, that it is found most convenient to hang them. The completion of the telegraphic system of this little republic, which stands in the same relation to Southern as Belgium does to Northern Europe, was of great consequence, as it forms the keystone between France, Prussia, Austria, Piedmont, and Italy.

In Prussia the lines are insulated in gutta percha, and buried in the ground in leaden tubes, a very costly process, but with many great advantages, in freedom from injury and atmospheric influences, over the more usual method of suspending them in the air on poles. Upwards of 4,000 miles of wire have already been laid down in this kingdom. Although Austria only commenced operations in 1847, she already possesses 4,000 miles of telegraph, which puts the greater part of her extensive empire in communication with Vienna.

Whatever injury the Eastern war might have inflicted upon the world, it at least infused fresh vigour into the telegraphic system, as, independently of the lines planned to put Constantinople in communication with the Danubian frontier, Russia has been stimulated to complete a line between St. Petersburg and Helsingfors, in the Baltic, and a continuation of the line already extending from the capital to Moscow, down to Bucharest, Odessa, and Sebastopol. One feature distinguishes the management of continental telegraphs over those of England and America: they are all, with the exception of the short line between Hamburg and Cuxhaven, possessed and worked by the different governments, who seem afraid of the use they might be put to for political purposes, and accordingly exercise a strict surveillance over all messages sent, and rigidly interdict the use of a cipher.[39] The Anglo-Saxon race, however, has far surpassed any other in the energy with which it has woven the globe with telegraphic wires. The Americans in the West and the British in the East alike emulate each other in the magnitude of their undertakings of this nature. The United States, although she came into the field long after England—her first line from Washington to Baltimore not having been completed until 1844—has far outstripped the mother country in the length of her lines, which already extend over 16,729 miles. Every portion of the Union, with the exception of California and the upper portion of the Mississippi, is covered with a network of wire.

New York and New Orleans communicate with each other by a double route—one skirting the seacoast, the other taking an inland direction by Cincinnati. These lines alone, following the sinuosities of their routes, are upwards of 2,000 miles in length.Other lines extend as far as Quebec, in Upper Canada, so that messages may be forwarded in the course of a couple of hours from the freezing north to the burning south. The great chain of lakes which form the northern boundary of the Union is put in communication with the Missouri and Mississippi rivers, and the great valley traversed by the latter will, ere long, interchange messages with the Pacific coast,—Congress having under its consideration a plan to establish a telegraph across the continent to San Francisco, as the precursor of the proposed railroad.

This we suspect is the project of Mr. O’Reilly, the engineer who has already executed the boldest lines in America. In constructing such a line, man, not nature, is the great obstacle to be encountered. The implacable Indians inhabiting this portion of the States certainly would not pay any respect to the telegraphic wire; on the contrary, they would in all likelihood take it to bind on the heads of their scalping tomahawks. To provide against this contingency, it is proposed to station parties of twenty dragoons at stockades twenty miles apart, along the whole unprotected portion of the route; two or three of these soldiers are also to ride from post to post and carry a daily express letter across the continent.

When this project is executed, it is asserted that “European news may be published in six days on the American shores of the Pacific, on the shortened route between the old and new world.” “The shortened route,” it should be mentioned, lies between Cape Race, in Newfoundland, and Galway, in Ireland, a passage calculated to take, on the average, only five days.

It may be asked how is it that such lengths of wire, carried through thinly settled parts of the country, and sometimes through howling wildernesses, can pay? The only manner that we can account for it is the cheapness with which the telegraph is built in America, the average price being 150 dollars, or about 31l. a mile—less than a fourth part of the cost at which the early lines of the English Electric Telegraph Company were erected. Again, the low prices charged for the transmission of messages produce an amount of business which the lines running through thickly-inhabited England cannot boast. For instance, let us take the following advertised “specimen message,” of the latter Company, and compare the price charged for it here, with what it could be sent for in America:—

“FromTo
James Smith,S. R. Brown,
London,Exchange,
Liverpool.

“I will meet you at Birmingham to-morrow, 3 P.M. Don’t fail me.”

Now, the London charge for the above, if forwarded to Liverpool, would be 2s. 6d.; but the American tariff for the same, on the Louisville and Pittsburgh rail, would be only one cent a word, or sixpence halfpenny English. On very long distances our friends on the other side of the steam ferry have a still greater advantage over us: for instance, a message of ten words can be sent on O’Reilly’s line, from New York to New Orleans, a distance of 2,000 miles, for sixty cents, or two and sixpence—not half the sum it would cost to send the same message from London to Edinburgh, about 500 miles. We give, as a curiosity, the scale of prices on this line:[40]

Per word.
200 miles or under 1 cent.
500 " or over 300 miles 2 cents.
700 " " 500 " 3 "
1000 " " 700 " 4 "
1500 " " 1000 " 5 "
2000 " " 1500 " 6 "

These charges, it is true, are unusually low; but if they will pay one Company, why should they not another? There are as many as twenty Telegraph Companies in America, and consequently there is great competition, three or four competing lines in many cases running between the same towns. Great confusion has arisen from this competition, as we have before stated; but it cannot be doubted that prices have materially fallen in consequence. It is common to send a message 1,000 miles in the United States without its being read and repeated at intermediate stations; and brother Jonathan boasts that he can communicate in fine weather instantaneously between New York and New Orleans. This, if done at all, must be at the expense of enormous battery power, as 2,000 miles of No. 8 wire would expose a conducting surface of no less than 450,000 square feet to the air. The wires in America are all suspended upon poles, and those passing through the southern pine forests are in consequence particularly liable to injury from the falling of trees, and watchers are posted at every twenty miles’ distance to patrol the line. The telegraph is rarely seen in America running beside the railway, for what reason we do not know; the consequence, however, is, that locomotion in the United States is vastly more dangerous than with us. A comparison of the casualties occurring on railroads in the two countries, in the year 1852, will show this at a glance; for in the State of New York alone, during that year, 228 persons were killed out of 7,440,053 travellers, whilst during the same period only 216 people perished in Great Britain out of a total number of 89,135,729 passengers: thus the average in America was 1 killed in 286,179, and in Great Britain 1 in 2,785,491! Of course property suffers in an equal degree with life on the American lines. The people of Boston, on the recommendation of Dr. Channing, have constructed a municipal telegraph, the many uses of which will be obvious. Mr. Alexander Jones, in his historical sketch of the electric telegraph in America, gives the following account of the application of the electric wire in cases of fire:—

“A central office or station is fixed upon, at which the main battery, with other instruments, is placed. From this two circuit-wires proceed, like those of the common telegraph wires, fastened to housetops or ingeniously insulated supports. One of the wires communicates from the main fire bell-tower to all the others, and connects each with machinery, which puts in motion the largest-sized hammer, and causes it to strike a large fire-bell the desired number of blows; the other wire proceeds on a still more circuitous route, and from one local street or ward signal-station to another. Each station is provided with a strong box and hinged door and lock. Inside of this box there is a connecting electro-magnet and connecting lever, an axle with a number of pins in it to correspond to the number of the station. The axle is turned by a short crank, and in its revolutions the pins break and close the circuit, by moving the end of the lever as often as there are pins or cogs, the result of which is communicated to the central station. If the alarm indicates a fire in the local district No. 3, the alarm can be instantly rung on all the bells in the city. If it is a subject requiring the speedy and efficient attention of the police, information by alarms can be given at each police-station, or the despatches can be recorded by instruments at each place. The local street alarm-boxes are placed in the charge of a person whose duty it is to give the alarm from the local to the central station, when called upon, or circumstances require him to do so.”

Canada has also sketched out a plan of telegraphs, which every year will see filled up. Already she has lines connecting all her principal towns, and extending over nearly two thousand miles of country, all of which lock in with the American system.

In India, Dr. O’Shaughnessy has for some time been engaged in carrying out a telegraphic system proposed by Lord Dalhousie, and approved by the East India Company, which has already put all the important towns of the peninsula in communication with the seat of government and with each other. The fine No. 8 galvanized iron wire, which in Europe runs along from pole to pole, like a delicate harp-string, is discarded in this country for rods of iron three-eighths of an inch in thickness. The nature of the climate, and the character of its animal life, has caused this departure from the far more economical European plan. Clouds of kites and troops of monkeys would speedily take such liberties with the fine wires as to place them hors-de-combat. Again, the deluges of rain which occur in the wet season would render the insulation of a small wire so imperfect that a message could not be sent through it to any distance. The larger mass of metal, on the contrary, is capable of affording passage for the electric fluid through any amount of rain, without danger of “leakage;” and as for the kites and other large birds of the country, they may perch on these rods by thousands without stopping the messages, which will fly harmlessly through their claws; and the weight of the heaviest monkey is not sufficient to injure them. These rods are planted, without any insulation, upon the tops of bamboo poles (coated with tar and pitch), at such a height that loaded elephants can pass beneath without displacing them; and even if by chance they should be thrown down, bullock-carts or buffaloes and elephants may trample them under foot without doing them injury. In some places the rods, if we are rightly informed, run through rice-swamps, buried in the ground, and even here the only insulating material used is a kind of cement made of rosin and sand. The telegraph, like a swift messenger, goes forward and prepares the way for the railroad, which is planned to follow in its footsteps. When these two systems are completed, the real consolidation of England’s power in the East will have commenced, and the countless resources of the Indian peninsula will be called forth for the benefit of the conquered as well as of the conquering race.

The restless spirit of English engineers, having provided for the internal telegraphic communication of Great Britain and her principal dependencies, seems bent upon stretching out her lines to the East and to the West, so as ultimately to clasp the entire globe. The project of connecting, telegraphically, England with America is at the present moment seriously engaging the attention of scientific and commercial men. The more daring engineers are still sanguine of the practicability of laying a submarine cable directly across the Atlantic, from Galway to Cape Race in Newfoundland. Now that we have Lieutenant Maury’s authentic determination of the existence of a shelf across the North Atlantic, the soundings on which are nowhere more than 1,500 fathoms, the feasibility of the project is tolerably certain. The principal question is, whether if a line were laid an electric current can be worked to commercial advantage through 3,000 miles of cable. No doubt, by the expenditure of enormous battery power, this might be accomplished through wires suspended in the air, but it is a question whether it can be done along a vast length of gutta-percha coated wire, passing through salt-water. There is such a thing as too great an insulation. Professor Faraday has shown that in such circumstances the wire becomes a Leyden jar, and may be so charged with electricity that a current cannot, without the greatest difficulty, move through it. This is the objection to a direct cable between the two continents: if, however, it can be overcome, doubtless the ocean path would in all possible cases be adopted where communications had to be made between civilized countries having intermediate, barbarous, or ungenial lands. To escape this at present dubious ocean path, it is proposed to carry the cable from the northernmost point of the Highlands of Scotland to Iceland, by way of the Orkney, Shetland, and Ferroe islands—to lay it from Iceland across to the nearest point in Greenland, thence down the coast to Cape Farewell, where the cable would again take to the water, span Davis’s Straits, and make right away across Labrador and Upper Canada to Quebec. Here it would lock in with the North American meshwork of wires, which hold themselves out like an open hand for the European grasp. This plan seems quite feasible, for in no part of the journey would the cable require to be more than 900 miles long; and as it seems pretty certain that a sandbank ex-tends, with good soundings, all the way to Cape Farewell, there would be little difficulty in mooring the cable to a level and soft bottom. The only obstacle that we see is the strong partiality of the Esquimaux for old iron, and it would perhaps be tempting them too much to hang their coasts with this material, just ready to their hands. The want of settlements along this inhospitable arctic coast to protect the wire is, we confess, a great drawback to the scheme; but, we fancy, posts might be organized at comparatively a small cost, considering the magnitude and importance of the undertaking. The mere expense of making and laying the cable would not be much more than double that of building the new Westminster-bridge across the Thames.

Whilst England would thus grasp the West with one hand, her active children have plotted the seizure of the East with the other. A cable runs from Genoa to Corsica, and from thence to Sardinia. From the southernmost point of the latter island, Cape Spartivento, to the gulf of Tunis, another cable can easily be carried. The direction thence (after giving off a coast branch to Algeria) will be along the African shore, by Tripoli to Alexandria, and eventually across Arabia, along the coasts of Persia and Beloochistan until it enters Scinde, and finally joins the wire at Hydrabad, which in all probability by that time will have advanced from Burmah, across the Indian peninsula, to welcome it. America will shortly carry her line of telegraph to the Pacific shore, and run it up the coast as far as San Francisco. Can there be any reasonable doubt that, before the end of the century, the one line advancing towards the West and the other towards the East—through China and Siberia—will gradually approach each other so closely that a short cable stretched across Behring Straits will bring the four quarters of the globe within speaking distance of each other, and enable the electric fire to “put a girdle round the world in forty minutes?”


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page