By Wilbur Wright THE difficulties which obstruct the pathway to success in flying machine construction are of three general classes: (1)Those which relate to the construction of the sustaining wings. (2)Those which relate to the generation and application of the power required to drive the machine through the air. (3)Those relating to the balancing and steering of the machine after it is actually in flight. Of these difficulties two are already to a certain extent solved. Men already know how to construct wings or aeroplanes which, when driven through air at sufficient speed, will not only sustain the weight of the wings themselves, but also that of the engine, and of the engineer as well. Men also know how to build engines and screws of sufficient lightness and power to drive these planes at sustaining speed. As long ago as 1893 a machine weighing 8,000lbs. demonstrated its power both to lift itself from the ground and to maintain a speed of from 30 to 40 miles per hour; but it came to grief in an accidental free flight, owing to the inability of the operators to balance and steer it properly. This inability to balance and steer still confronts students of the flying problem, although nearly ten years have passed. When this one feature has been worked out the age of flying machines will have arrived, for all other difficulties are of minor importance. The person who merely watches the flight of a bird gathers the impression that the bird has nothing to think of but the flapping of its wings. As a matter of fact, this is a very small part of its mental labour. Even to mention all the things the bird must constantly keep in mind in order to fly securely through the air would take a very considerable treatise. If I take a piece of paper, and after placing it parallel with the ground, quickly let it fall, it will not settle steadily down as a staid, sensible piece of paper ought to do, but it insists on contravening every recognized rule of decorum, turning over and darting hither and thither in the most erratic manner, much after the style of an untrained horse. Yet this is the style of steed that men must learn to manage before flying can become an everyday sport. The bird has learned this art of equilibrium, and learned it so thoroughly that its skill is not apparent to our sight. We only learn to appreciate it when we try to imitate it. Now, there are two ways of learning how to ride a fractious horse: one is to get on him and learn by actual practice how each motion and trick may be best met; the other is to sit on a fence and watch the beast awhile, and then retire to the house and at leisure figure out the best way of overcoming his jumps and kicks. The latter system is the safest; but the former, on the whole, turns out the larger proportion of good riders. It is very much the same in learning to ride a flying machine; if you are looking for perfect safety you will do well to sit on a fence and watch the birds; but if you really wish to learn you must mount a machine and become acquainted with its tricks by actual trial. My own active interest in aeronautical problems dates back to the death of Lilienthal in 1896. The brief notice of his death which appeared in the telegraphic news at that time aroused a passive interest which had existed from my With these plans we proceeded in the summer of 1900 to Kitty Hawk, North Carolina, a little settlement located on the strip of land that separates Albemarle Sound from the Atlantic Ocean. Owing to the impossibility of obtaining suitable material for a 200-square-foot machine, we were compelled to make it only 165 square feet in area, which, according to the Lilienthal tables, would be supported at an angle of three degrees in a wind of about 21 miles per hour. On the very day that the machine was completed the wind blew from 25 to 30 miles per hour, and we took it out for a trial as a kite. We found that while it was supported with a man on it in a wind of about 25 miles, its angle was much nearer 20 degrees than three degrees. Even in gusts of 30 miles the angle of incidence did not get as low as three degrees, although the wind at this speed has more than twice the lifting power of a 21-mile wind. As winds of 30 miles per hour are not plentiful on clear days, it was at once evident that our plan of practicing by the hour, day after day, would have to be postponed. Our system of twisting the surfaces to regulate the lateral balance was tried and found to be much more effective than shifting the operator’s body. On subsequent days, when the wind was too light to support the machine with a man on it, we tested it as a kite, working the rudders by cords reaching to the ground. The results were very satisfactory, yet we were well aware that this method of testing is never wholly convincing until the results are confirmed by actual gliding experience. We then turned our attention to making a series of actual measurements of the lift and drift of the machine under various loads. So far as we were aware, this had never previously been done with any full-size machine. The results obtained were most astonishing, for it appeared that the total horizontal pull of the machine, while sustaining a weight of 52lbs., was only 8.5lbs., which was less than had previously been estimated for head resistance of the framing alone. Making allowance for the weight carried, it appeared that the head resistance of the framing was but little more than 50 per cent. of the amount which Mr. Chanute had estimated as the head resistance of the framing of his machine. On the other hand, it appeared sadly deficient in lifting power as compared with the calculated lift of curved surfaces of its size. This deficiency we supposed might be due to one or more of the following causes:—(1)That the depth of the curvature of our surfaces was insufficient, being only about one in 22, instead of one in 12. (2)That the cloth used in our wings was not sufficiently air-tight. (3)That the Lilienthal tables might themselves be somewhat in error. We decided to arrange our machine for Our attention was next turned to gliding, but no hill suitable for the purpose could be found near our camp at Kitty Hawk. This compelled us to take the machine to a point four miles south, where the Kill Devil sand hill rises from the flat sand to a height of more than 100 feet. Its main slope is toward the northeast, and has an inclination of 10 degrees. On the day of our arrival the wind blew about 25 miles an hour, and as we had had no experience at all in gliding, we deemed it unsafe to attempt to leave the ground. But on the day following, the wind having subsided to 14 miles per hour, we made about a dozen glides. It had been the original intention that the operator should run with the machine to obtain initial velocity, and assume the horizontal position only after the machine was in free flight. When it came time to land he was to resume the upright position and alight on his feet, after the style of previous gliding experiments. But in actual trial we found it much better to employ the help of two assistants in starting, which the peculiar form of our machine enabled us readily to do; and in landing we found that it was entirely practicable to land while still reclining in a horizontal position upon the machine. Although the landings were made while moving at speeds of more than 20 miles an hour, neither machine nor operator suffered any injury. The slope of the hill was 9.5 deg., or a drop of one foot in six. We found that after attaining a speed of about 25 to 30 miles with reference to the wind, or 10 to 15 miles over the ground, the machine not only glided parallel to the slope of the hill, but greatly increased its speed, thus indicating its ability to glide on a somewhat less angle than 9.5 deg., when we should feel it safe to rise higher from the surface. The control of the machine proved even better than we had dared to expect, responding quickly to the slightest motion of the rudder. With these glides our experiments for the year 1900 closed. Although the hours and hours of practice we had hoped to obtain finally dwindled down to about two minutes, we were very much pleased with the general results of the trip, for, setting out as we did with almost revolutionary theories on many points and an entirely untried form of machine, we considered it quite a point to be able to return without having our pet theories completely knocked on the head by the hard logic of experience, and our own brains dashed out in the bargain. Everything seemed to us to confirm the correctness of our original opinions—(1)that practice is the key to the secret of flying; (2)that it is practicable to assume the horizontal position; (3)that a smaller surface set at a negative angle in front of the main bearing surfaces, or wings, will largely counteract the effect of the fore-and-aft travel of the center of pressure; (4)that steering up and down can be attained with a rudder without moving the position of the operator’s body; (5)that twisting the wings so as to present their ends to the wind at different angles is a more prompt and efficient way of maintaining lateral equilibrium than that employed in shifting the body of the operator of the machine. When the time came to design our new machine for 1901 we decided to make it exactly like the previous machine in theory and method of operation. But as the former machine was not able to support the weight of the operator when flown as a kite, except in very high winds and at very large angles of incidence, we decided to increase its lifting power. Accordingly, Our experience of the previous year having shown the necessity of a suitable building for housing the machine, we erected a cheap frame building, 16 feet wide, 25 feet long, and 7 feet high at the eaves. As our machine was 22 feet wide, 14 feet long (including the rudder), and about 6 feet high, it was not necessary to take the machine apart in any way in order to house it. Both ends of the building, except the gable parts, were made into doors which hinged above, so that when opened they formed an awning at each end and left an entrance the full width of the building. We went into camp about the middle of July, and were soon joined by Mr. E. C. Huffaker, of Tennessee, an experienced aeronautical investigator in the employ of Mr. Chanute, by whom his services were kindly loaned, and by Dr. A. G. Spratt, of Pennsylvania, a young man who has made some valuable investigations of the properties of variously curved surfaces and the travel of the center of pressure thereon. Early in August Mr. Chanute came down from Chicago to witness our experiments, and spent a week in camp with us. These gentlemen, with my brother and myself, formed our camping party, but in addition we had in many of our experiments the valuable assistance of Mr. W. J. Tate and Mr. Dan Tate, of Kitty Hawk. It had been our intention when building the machine to do most of the experimenting in the following manner:—When the wind blew 17 miles an hour, or more, we would attach a rope to the machine and let it rise as a kite with the operator upon it. When it should reach a proper height the operator would cast off the rope and glide down to the ground just as from the top of a hill. In this way we would be saved the trouble of carrying the machine uphill after each glide, and could make at least 10 glides in the time required for one in the other way. But when we came to try it we found that a wind of 17 miles, as measured by Richards’ anemometer, instead of sustaining the machine with its operator, a total weight of 240lbs., at an angle of incidence of three degrees, in reality would not sustain the machine alone—100lbs.—at this angle. Its lifting capacity seemed scarcely one-third of the calculated amount. In order to make sure that this was not due to the porosity of the cloth, we constructed two small experimental surfaces of equal size, one of which was air-proofed and the other left in its natural state; but we could detect no difference in their lifting powers. In gliding experiments, however, the amount of lift is of less relative importance than the ratio of lift to drift, as this alone decides the angle of gliding descent. In a plane the pressure is always perpendicular to the surface, and the ratio of lift to drift is therefore the same as that of the cosine to the sine of the angle of incidence. But in curved surfaces a very remarkable situation is found. The pressure, instead of being uniformly normal to the chord of the arc, is usually inclined considerably in front of the perpendicular. The result is that the lift is greater and the drift less than if the pressure were normal. However, there is another way of flying which requires no artificial motor, and many workers believe that success will first come by this road. I refer to the soaring flight, by which the machine is permanently sustained in the air by the same means that are employed by soaring birds. They spread their wings to the wind, and sail by the hour, with no perceptible exertion beyond that required to balance and steer themselves. What sustains them is not definitely known, though it is almost certain that it is a rising current of air. But whether it be a rising current or something else, it is as well able to support a flying machine as a bird, if man once learns the art of utilizing it. In gliding experiments it has long been known that the rate of vertical descent is very much retarded, and the duration of the flight greatly prolonged, if a strong wind blows up the face of the hill parallel to its surface. Our machine, when gliding in still air, has a rate of vertical descent of nearly six feet per second, while in a wind blowing 26 miles per hour up a steep hill we made glides in which the rate of descent was less than two feet per second. And during the larger part of this time, while the machine remained exactly in the rising current, there was no descent at all, but even a slight rise. If the operator had had sufficient skill to keep himself from passing beyond the rising current he would have been sustained indefinitely at a higher point than that from which he started. In looking over our experiments of the past two years, with models and full-size machines, the following points stand out with clearness:—
Transcriber's Note: Wilbur, who was at one end, seized it in front, Mr. Daniels and I, who were behind, tried to stop it behind, tried to stop it by holding to the rear uprights. has been changed to Wilbur, who was at one end, seized it in front, Mr. Daniels and I, who were behind, tried to stop it by holding to the rear uprights. Lilienthal was the first to discover this exceedingly though our measurements differ considerably from those of Lilienthal. While important fact, which is fully set forth in his book, “Bird Flight the Basis of the Flying Art,” but owing to some errors in the methods he used in making measurements, question was raised by other investigators not only as to the accuracy of his figures, but even as to the existence of any tangential force at all. Our experiments confirm the existence of this force, at Kitty Hawk we spent much time in measuring the horizontal pressure on our unloaded machine at various angles of incidence. has been changed to While our measurements differ considerably from those of Lilienthal, Lilienthal was the first to discover this exceedingly important fact, which is fully set forth in his book, “Bird Flight the Basis of the Flying Art,” but owing to some errors in the methods he used in making measurements, question was raised by other investigators not only as to the accuracy of his figures, but even as to the existence of any tangential force at all. Our experiments confirm the existence of this force. At Kitty Hawk we spent much time in measuring the horizontal pressure on our unloaded machine at various angles of incidence. |