Stimuli for the perception of location are provided by all the senses. We perceive a taste as in the mouth, thirst as in the throat, hunger pangs as in the stomach. To a familiar odor we may respond by knowing the odorous substance to be close at hand. To stimulation of the semi-circular canals we respond by knowing the direction in which we are being turned. We respond to sounds by knowing the direction from which they come, and the distance from which they come; The remaining senses, the cutaneous, the kinesthetic and the visual, afford much fuller data for the perception of spatial facts. Movements of the limbs are perceived quite accurately as to direction and extent. A cutaneous stimulus is located with fair exactness, though much less exactly on such regions as the back than on the hands or lips. If you were asked how you distinguished one point from another on the back of the hand, you could only answer that they felt different; and if you were further asked whether a pencil point applied to the two points of the skin did not feel the same, you would have to acknowledge that it did feel the same, except that it was felt in a different place. In other words, you would not be able to identify the exact data on which your perception of cutaneous position is based. Science has done no better, but has simply given the name of "local sign" to the unanalyzed sensory datum that gives a knowledge of the point stimulated. In handling an object, as also in walking and many other movements, the cutaneous and kinesthetic senses are stimulated together, and between them furnish data for the perception of many spatial facts, such as the shape of an object examined by the hand. The spherical shape is certainly better perceived by this combination of tactile and kinesthetic In part by this route of the substitute stimulus, the sense of vision comes to arouse almost all sorts of spatial perceptions. Of itself, the retina has "local sign" since we can tell where in the field of view a seen object is, i.e., in what direction it is from us. This visual perception of location is so much more exact than the cutaneous or kinesthetic that it cannot possibly be derived from them; and the same is true of the visual perception of difference in length, which is one of the most accurate forms of perception. The retina must of itself afford very complete stimuli for the perception of location and size, as far as these are confined to the two dimensions, up-down and right-left. But, when you stop to think, it seems impossible that the retina should afford any data for perceiving distance in the front-back dimension. The retina is a screen, and the stimulus that it gets from the world outside is like a picture cast upon a screen. The picture has the right-left and up-down dimensions, but no front-back dimension. How, then, does it come about, as it certainly does, that we perceive by aid of the eye the distance of objects from us, and the solidity and relief of objects? This problem in visual perception has received much attention and been carried to a satisfactory solution. Consider, first, what stimuli indicative of distance and relief could affect a single motionless eye. The picture on the retina could then be duplicated by a painter on canvas, and the signs of distance available would be the same in the two cases. The painter uses foreshortening, making a man in the picture small in proportion to his distance away; Now let the single eye move, with the head, from side to side: an index of the distance of objects is thus obtained, additional to all the painter has at his disposal, for the distant objects in the field of view now seem to move with the eye, while the nearer objects slide in the opposite direction. How much this sign is ordinarily made use of in perceiving distance is not known; it is believed not to be used very much, and yet it is the most delicate of all the signs of distance. The reason why it may not be much used by two-eyed people is that another index almost as delicate and handier to use is afforded by binocular vision. When both eyes are open, we have a sign of distance that the painter does not use, though it is used in stereoscope slides. The right and left eyes get somewhat different views of the same solid object, the right eye seeing a little further around the object to the right, and the left eye to the left. The disparity between the two retinal images, due to the different angles at which they view the object, is greatest when the object is close at hand, and diminishes to practically zero when it is a few hundred feet away. This disparity between the two retinal images is responded to by perception of the distance and relief of the object. It will be recalled [Footnote: See pp. 253-254.] that when two utterly inconsistent |