Comparison of Sight and Hearing

Previous

The two senses of sight and hearing have many curious differences, and one of the most curious appears in mixing different wave-lengths. Compare the effect of throwing two colored lights together into the eye with the effect of {232} throwing two notes together into the ear. Two notes sounded together may give either a harmonious blend or a discord; now the discord is peculiar to the auditory realm; mixed colors never clash, though colors seen side by side may do so to a certain extent. A discord of tones is characterized by imperfect blending (something unknown in color mixing), and by roughness due to the presence of "beats" (another thing unknown in the sense of sight). Beats are caused by the interference between sound waves of slightly different vibration rate. If you tune two whistles one vibration apart and sound them together, you get a tone that swells once a second; tune them ten vibrations apart and you get ten swellings or beats per second, and the effect is rough and disagreeable.

Aside from discord, a tone blend is really not such a different sort of thing from a color blend. A chord, in which the component notes blend while they can still, by attention and training, be "heard out of the chord", is quite analogous with such color blends as orange, purple or bluish green. At the same time, there is a curious difference here. By analogy with color mixing, you would expect two notes, as C and E, when combined, to give the same sensation as the single intermediate note D. Nothing of the kind! Were it so, music would be very different from what it is, if indeed it were possible at all. But the real difference between the two senses at this point is better expressed by saying that D does not give the effect of a combination of C and E, or, in general, that no one note ever gives the effect of a combination or blend of notes higher and lower than itself. Homogeneous orange light gives the sensation of a blend of red and yellow; but there is nothing like this in the auditory sphere. In light, some wave-lengths give the effect of simple colors, as red and yellow; and other wave-lengths the effect of blends, as greenish yellow or bluish {233} green; but in sound, every wave-length gives a tone which seems just as elementary as any other.

There is nothing in auditory sensation to correspond to white, no simple sensation resulting from the combined action of all wave-lengths. Such a combination gives noise, but nothing that seems particularly simple. There is nothing auditory to correspond with black, for silence seems to be a genuine absence of sensation. There are no complementary tones like the complementary colors, no tones that destroy each other instead of blending. In a word, auditory sensation tallies with its stimulus much more closely than visual sensation does with its; and the main secret of this advantage of the sense of hearing is that it has a much larger number of elementary responses. Against the six elementary visual sensations are to be set auditory elements to the number of hundreds or thousands. From the fact that every distinguishable pitch gives a tone which seems as simple and unblended as any other, the conclusion would seem to be that each was an element; and this would mean thousands of elements. On the other hand, the fact that tones close together in pitch sound almost alike may mean that they have elements in common and are thus themselves compounds; but still there would undoubtedly be hundreds of elements.

Both sight and hearing are served by great armies of sense cells, but the two armies are organized on very different principles. In the retina, the sense cells are spread out in such a way that each is affected by light from one particular direction; and thus the retina gives excellent space information. But each retinal cell is affected by any light that happens to come from its particular direction. Every cone, in the central area of the retina, makes all the elementary visual responses and gives all the possible color sensations; so it is not strange that the number of visual {234} elements is small. On the other hand, the ear, having no sound lens, has no way of keeping separate the sounds from different directions (and accordingly gives only meager indications of the direction of sound); but its sense cells are so spread out as to be affected, some by sound of one wavelength, others by other wave-lengths. The different tones do not all come from the same sense cells. Some of the auditory cells give the low tones, others the medium tones, still others the high tones; and since there are thousands of cells, there may be thousands of elementary responses.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page