Examination of Objects—Principles of Illumination—Mirror and its Action—Substage Condenser—Use of Bull’s-eye—Opaque Objects—Photography of Microscopic Objects. So much depends upon a right method of employing the microscope, as regards both comfort and accuracy, that we propose to devote a little space to the consideration of the subject. Let us first warn the intending observer against the use of powers higher than are required to bring out the details of the object. Mere magnification is of very little use: it increases the difficulties both of illumination and of manipulation, and, as already said, interferes with that grasp of the object which it is most desirable to obtain. Rather let the beginner lay himself out to get the very most he can out of his lowest powers, and he will find that, by so doing, he will be able far better to avail himself of the higher ones when their use is indispensable. The essential means to this end is a mastery of the principles of illumination, which we now proceed to describe. We suppose the microscope to be inclined at an angle of about 70° to the horizontal, with a If an object be now placed upon the stage, instead of the ground-glass, and the objective focused upon it, it will, if the mirror be properly adjusted, be brilliantly illuminated. It will be understood that every concave mirror has a focus, and converges the rays which fall upon it to this focus, behaving exactly like a convex lens. The principal focus of a concave mirror is its radius of curvature, and this is not difficult to determine. Place side by side a deep cardboard box and the lamp, so that the concave mirror may send the rays back, along a path only slightly inclined to that by which they reached it, to the bottom of the box. The lamp and box being equidistant from the mirror, it is evident that when the mirror forms an image of the former upon the latter equal to the flame in size, we have the equivalent of the equal conjugate foci Work done with the concave mirror can, however, under the most favourable conditions, only be looked upon as a pis aller. The advantages gained by the use of some substage condenser, even the most simple, in conjunction with the plane mirror, or even without any mirror at all, are so manifold that the beginner is strongly urged to provide himself with some form or other of it, and we now proceed to describe the way in which this should be used to produce the best effect. To reduce the problem to its most simple elements, turn the mirror altogether out of the way, and place the microscope upon a block at such a height as shall be convenient for observa The centre of the object will now be brilliantly illuminated by rays travelling in the proper direction for yielding the best results. The object is situated at the common focus of the microscope and the condenser, and, whatever means of illumination be adopted, this is the result which should always be aimed at. Satisfactory as this critical arrangement is, however, from a scientific point of view, it has its drawbacks from an artistic and Æsthetic one. It is not pleasant, for most purposes, to have merely the centre of an object lighted up, and we have now to consider how the image of the edge of the flame may be so expanded as to fill the field without sacrificing more than a very small fraction of the accuracy of the arrangement just attained. Referring to Fig.1, we see that if we place the lamp at the principal focus of a lens, it will emit a bundle of parallel rays equal in diameter It may be necessary to place the bull’s-eye a little farther from or nearer to the lamp, or to move it a little to one side or the other, but when it is at the correct distance, and on the central line between the lamp and the substage condenser, at right angles to this line, the effects will be as described. It may help in securing this result if we mention that when the bull’s-eye is too far from the lamp, the image of the flame is a spindle-shaped one; whilst, when the distance between the two is too short, i.e. less than the principal focal length of the lens, the field is crossed by a bar or light, the ends of which are joined by a ring, whilst on either side of the bar there is a semi-circular dark space. We have hitherto supposed the objects viewed to be transparent, but there are many, of great interest, which are opaque, and call for other means of illumination. Of these there are several. The simplest and, in many ways, the best is to use the bull’s-eye condenser to bring to a focus upon the object the rays of light from some source placed above the stage of the microscope. If light can be obtained from the sun itself, no lens will be needed to concentrate it; and indeed, if this were done, there would be considerable risk of burning the object. The light from a white cloud, however, with the help of the bull’s-eye, answers admirably. At night-time an artificial source of light, the more intense and the more distant the better, is required. For most cases, and with powers not higher than one inch, a good paraffin lamp, placed about two feet away from the stage, and on one side of it, so as to be about a foot above the level of the object, will give all that is needed. Such a lamp is shown in Fig.14. Low magnifications are, as a rule, all that is called for in this method. Lieberkuhn’s condensers are useful aids, but are somewhat expensive. They are concave mirrors, which are so adjusted to the objective that the latter and the reflector come into focus together, the light being sent in from below, or from one side. One other method of illumination must be mentioned before leaving the topic, and this is the illumination of objects upon a “dark field.” With suitable subjects, and when carefully managed, It consists essentially in allowing the light to fall upon the object from below, at such an angle that none of it can enter the objective directly. Thus the concave mirror, turned as far as possible to one side, and reflecting on to the object the rays from the lamp placed upon the opposite side, will The best and only really satisfactory plan is to arrange the illumination with the substage condenser, as previously described, and then to place below the lens of the latter a central stop of a suitable size, which can only be determined by trial. When this has been done the object will be seen brilliantly illuminated upon a field of velvety blackness. Such stops are supplied with the condenser. We have devoted a considerable portion of space to this question, since it is, of all others, the most important to a successful, satisfactory, and reliable manipulation of the microscope; but even now, only the main points of the subject have been touched upon, and the worker will find it necessary to supplement the information given by actual experiment. A few failures, rightly considered, will afford a great amount of information, but those who desire to go thoroughly into the matter are recommended to consult the present writer’s Guide to the Science of Photomicrography, where it is treated at much greater length, as an essential part of the subject-matter of the book. It may be added here, that no method of reproducing the images of objects is on the whole so satisfactory as the photographic one; and whilst a lengthened reference to the topic would be out of place in a work of the character of the present one, the one just mentioned will be found to contain all that is necessary to enable the beginner to produce results which, for faithfulness and beauty, far excel any drawing, whilst they have the additional advantage that they can, if required, be exhibited to hundreds simultaneously. |