AcknowledgmentWe beg to tender grateful acknowledgment to author and publisher for the use of Dr. George M. Price's valuable articles on sanitation. The following extracts are taken from Dr. Price's "Handbook on Sanitation," published by John Wiley & Son, and are covered by copyright. CHAPTER ISoil and Sites Definition.—By the term "soil" we mean the superficial layer of the earth, a result of the geological disintegration of the primitive rock by the action of the elements upon it and of the decay of vegetable and animal life. Composition.—Soil consists of solids, water, and air. Solids.—The solid constituents of the soil are inorganic and organic in character. The inorganic constituents are the various minerals and elements found alone, or in combination, in the earth, such as silica, aluminum, calcium, iron, carbon, sodium, chlorine, potassium, etc. The characteristics of the soil depend upon its constituents, and upon the predominance of one or the other of its composing elements. The nature of the soil also depends upon its physical properties. When the disintegrated rock consists of quite large particles, the soil is called a gravel soil. A sandy soil is one in which the particles are very small. Sandstone is consolidated sand. Clay is soil consisting principally of The organic constituents of the soil are the result of vegetable and animal growth and decomposition in the soil. Ground Water.—Ground water is that continuous body or sheet of water formed by the complete filling and saturation of the soil to a certain level by rain water; it is that stratum of subterranean lakes and rivers, filled up with alluvium, which we reach at a higher or lower level when we dig wells. The level of the ground water depends upon the underlying strata, and also upon the movements of the subterranean water bed. The relative position of the impermeable underlying strata varies in its distance from the surface soil. In marshy land the ground water is at the surface; in other places it can be reached only by deep borings. The source of the ground water is the rainfall, part of which drains into the porous soil until it reaches an impermeable stratum, where it collects. The movements of the ground water are in two directions—horizontal and vertical. The horizontal or lateral movement is toward the seas and adjacent water courses, and is determined by hydrostatic laws and topographical relations. The vertical motion of the ground water is to and from the surface, and is due to the amount of rainfall, the pressure of tides, and water courses into which the ground water drains. The Ground Air.—Except in the hardest granite rocks and in soil completely filled with water the interstices of the soil are filled with a continuation of atmospheric air, the amount depending on the degree of porosity of the soil. The nature of the ground air differs from that of the atmosphere only as it is influenced by its location. The principal constituents of the air—nitrogen, oxygen, and carbonic acid—are also found in the ground air, but in the latter the relative quantities of O and CO2 are different. AVERAGE COMPOSITION OF ATMOSPHERIC AIR IN 100 VOLUMES
AVERAGE COMPOSITION OF GROUND AIR
Of course, these quantities are not constant, but vary in different soils, and at different depths, times, etc. The greater quantity of CO2 in ground air is due to the process of oxidation and decomposition taking place Ground air is in constant motion, its movements depending upon a great many factors, some among these being the winds and movements of the atmospheric air, the temperature of the soil, the surface temperature, the pressure from the ground water from below, and surface and rain water from above, etc. Ground Moisture.—The interstices of the soil above the ground-water level are filled with air only, when the soil is absolutely dry; but as such a soil is very rare, all soils being more or less damp, soil usually contains a mixture of air and water, or what is called ground moisture. Ground moisture is derived partly from the evaporation of the ground water and its capillary absorption by the surface soil, and partly by the retention of water from rains upon the surface. The power of the soil to absorb and retain moisture varies according to the physical and chemical, as well as the thermal, properties of the soil. Loose sand may hold about 2 gallons of water per cubic foot; granite takes up about 4 per cent of moisture; chalk about 15 per cent; clay about 20 per cent; sandy loam 33 to 35 per cent; humus Ground Temperature.—The temperature of the soil is due to the direct rays of the sun, the physicochemi The ground temperature varies according to the annual and diurnal changes of the external temperature; also according to the character of the soil, its color, composition, depth, degree of organic oxidation, ground-water level, and degree of dampness. In hot weather the surface soil is cooler, and the subsurface soil still more so, than the surrounding air; in cold weather the opposite is the case. The contact of the cool soil with the warm surface air on summer evenings is what produces the condensation of air moisture which we call dew. Bacteria.—Quite a large number of bacteria are found in the soil, especially near the surface, where chemical and organic changes are most active. From 200,000 to 1,000,000 bacteria have been found in 1 c.c. of earth. The ground bacteria are divided into two groups—saprophytic and pathogenic. The saprophytic bacteria are the bacteria of decay, putrefaction, and fermentation. It is to their benevolent action that vegetable and animal dÉbris is decomposed, oxidized, and reduced to its elements. To these bacteria the soil owes its self-purifying capacity and the faculty of disintegrating animal and vegetable dÉbris. The pathogenic bacteria are either those formed during the process of organic decay, and which, introduced into the human system, are capable of producing various diseases, or those which become lodged in the Contamination of the Soil.—The natural capacity of the soil to decompose and reduce organic matter is sometimes taxed to its utmost by the introduction into the soil of extraneous matters in quantities which the soil is unable to oxidize in a given period. This is called contamination or pollution of soil, and is due: (1) to surface pollution by refuse, garbage, animal and human excreta; (2) to interment of dead bodies of beasts and men; (3) to the introduction of foreign deleterious gases, etc. Pollution by Surface Refuse and Sewage.—This occurs where a large number of people congregate, as in cities, towns, etc., and very seriously contaminates the ground by the surcharge of the surface soil with sewage matter, saturating the ground with it, polluting the ground water from which the drinking water is derived, and increasing the putrefactive changes taking place in the soil. Here the pathogenic bacteria abound, and, by multiplying, exert a very marked influence upon the health by the possible spread of infectious diseases. Sewage pollution of the soils and of the source of water supply is a matter of grave im Interment of Bodies.—The second cause of soil contamination is also of great importance. Owing to the intense physicochemical and organic changes taking place within the soil, all dead animal matter interred therein is easily disposed of in a certain time, being reduced to the primary constituents, viz., ammonia, nitrous acid, carbonic acid, sulphureted and carbureted hydrogen, etc. But whenever the number of interred bodies is too great, and the products of decomposition are allowed to accumulate to a very great degree, until the capacity of the soil to absorb and oxidize them is overtaxed, the soil, and the air and water therein, are polluted by the noxious poisons produced by the processes of decomposition. Introduction of Various Foreign Materials and Gases.—In cities and towns various pipes are laid in the ground for conducting certain substances, as illuminating gas, fuel, coal gas, etc.; the pipes at times are defective, allowing leakage therefrom, and permitting the saturation of the soil with poisonous gases which are frequently drawn up by the various currents of ground air into the open air and adjacent dwellings. Influence of the Soil on Health.—The intimate relations existing between the soil upon which we live and our health, and the marked influence of the soil on the life and well-being of man, have been recognized from time immemorial. The physical and chemical nature of the soil, irrespective of its water, moisture, and air, has been regarded by some authorities as having an effect on the health, growth, and constitution of man. The peculiar disease called cretinism, as well as goitre, has been attributed to a predominance of certain chemicals in the soil. The ground-water level is of great importance to the well-being of man. Professor Pettenkofer claimed that a persistently low water level (about fifteen feet from the surface) is healthy, the mortality being the lowest in such places; a persistently high ground-water level (about five feet from the surface) is unhealthy; and a fluctuating level, varying from high to low, is the most unhealthy, and is dangerous to life and health. Many authorities have sought to demonstrate the intimate relations between a high water level in the soil and various diseases. A damp soil, viz., a soil wherein the ground moisture is very great and persistent, has been found inimical to the health of the inhabitants, predisposing them to various diseases by the direct effects of the dampness itself, and by the greater proneness of damp ground to become contaminated with various patho The organic impurities and bacteria found in the soil are especially abundant in large cities, and are a cause of the evil influence of soil upon health. The impurities are allowed to drain into the ground, to pollute the ground water and the source of water supply, and to poison the ground air, loading it with bacteria and products of putrefaction, thus contaminating the air and water so necessary to life. Diseases Due to Soil.—A great many diseases have been thought to be due to the influence of the soil. An Ætiological relation had been sought between soil and the following diseases: malaria, paroxysmal fevers, tuberculosis, neuralgias, cholera, yellow fever, bubonic plague, typhoid, dysentery, goitre and cretinism, tetanus, anthrax, malignant Œdema, septicÆmia, etc. Sites.—From what we have already learned about the soil, it is evident that it is a matter of great importance as to where the site for a human habitation is selected, for upon the proper selection of the site depend the health, well-being, and longevity of the inhabitants. The requisite characteristics of a healthy site for dwellings are: a dry, porous, permeable soil; a low and nonfluctuating ground-water level, and a According to Parkes, the soils in the order of their fitness for building purposes are as follows: (1) primitive rock; (2) gravel, with pervious soil; (3) sandstone; (4) limestone; (5) sandstone, with impervious subsoil; (6) clays and marls; (7) marshy land, and (8) made soils. It is very seldom, however, that a soil can be secured having all the requisites of a healthy site. In smaller places, as well as in cities, commercial and other reasons frequently compel the acquisition of and building upon a site not fit for the purpose; it then becomes a sanitary problem how to remedy the defects and make the soil suitable for habitation. Prevention of the Bad Effects of the Soil on Health.—The methods taught by sanitary science to improve a defective soil and to prepare a healthy site are the following:
Street Paving serves a double sanitary purpose. It prevents street refuse and sewage from penetrating the ground and contaminating the surface soil, and it Tree Planting serves as a factor in absorbing the ground moisture and in oxidizing organic impurities. The Proper Construction of the House has for its purpose the prevention of the entrance of ground moisture and air inside the house by building the foundations and cellar in such a manner as to entirely cut off communication between the ground and the dwelling. This is accomplished by putting under the foundation a solid bed of concrete, and under the foundation walls damp-proof courses. The following are the methods recommended by the New York City Tenement House Department for the Water-proofing and Damp-proofing of Foundation Walls.—"There shall be built in with the foundation walls, at a level of six (6) inches below the finished floor level, a course of damp-proofing consisting of not less than two (2) ply of tarred felt (not less than fifteen (15) pounds weight per one hundred (100) square feet), and one (1) ply of burlap, laid in alternate layers, having the burlap placed between the felt, and all laid in hot, heavy coal-tar pitch, or liquid asphalt, and projecting six (6) inches inside and six (6) inches outside of the walls. "There shall be constructed on the outside surface of the walls a water-proofing lapping on to the damp-proof course in the foundation walls and extending up to the soil level. This water-proofing shall consist of not less than two (2) ply of tarred felt (of weight specified above), laid in hot, heavy coal-tar pitch, or liquid asphalt, finished with a flow of hot pitch of the same character. This water-proofing to be well stuck to the damp course in the foundation walls. The layers of felt must break joints." Water-proofing and Damp-proofing of Cellar Floors.—"There shall be laid, above a suitable bed of rough concrete, a course of water-proofing consisting of not less than three (3) ply of tarred felt (not less than fifteen (15) pounds weight per one hundred (100) square feet), laid in hot, heavy coal-tar Other methods of damp-proofing foundations and cellars consist in the use of slate or sheet lead instead of tar and tarred paper. An additional means of preventing water and dampness from coming into houses has been proposed in the so-called "dry areas," which are open spaces four to eight feet wide between the house proper and the surrounding ground, the open spaces running as deep as the foundation, if possible. The dry areas are certainly a good preventive against dampness coming from the sides of the house. Fig. 4. Fig. 4. CONCRETE FOUNDATION AND DAMP-PROOF COURSE. Subsoil Drainage.—By subsoil drainage is meant the reducing of the level of the ground water by draining all subsoil water into certain water courses, either artificial or natural. Subsoil drainage is not a modern discovery, as it was used in many ancient lands, and was extensively employed in ancient Rome, the valleys and suburbs of which would have been uninhabitable but for the draining of the marshes by the so-called "cloacÆ" or drains, which lowered the ground-water level of the low parts of the city and made them fit to build upon. The drains for the conduction of sub By subsoil drainage it is possible to lower the level of ground water wherever it is near or at the surface, as in swamps, marsh, and other lands, and prepare lands previously uninhabitable for healthy sites. FOOTNOTES:The granite blocks are now nearly discarded in New York because of their permeability, expense, and noise, being now used for heavy traffic only. Asphalt is noiseless and impermeable (thereby serving the "double sanitary purpose" mentioned by Dr. Price). But the wood possesses these qualities, and has in addition the advantage of inexpensiveness, since it is more durable, not cracking at winter cold and melting under summer heat like the asphalt; and there is but slight cost for repairs, which are easily made by taking out the separate blocks. These "creo-resinate" wood blocks, recently used on lower Broadway, Park Place, and the congested side streets, are giving admirable results.—Editor. CHAPTER IIVentilation Definition.—The air within an uninhabited room does not differ from that without. If the room is occupied by one or more individuals, however, then the air in the room soon deteriorates, until the impurities therein reach a certain degree incompatible with health. This is due to the fact that with each breath a certain quantity of CO2, organic impurities, and aqueous vapor is exhaled; and these products of respiration soon surcharge the air until it is rendered impure and unfit for breathing. In order to render the air pure in such a room, and make life possible, it is necessary to change the air by withdrawing the impure, and substituting pure air from the outside. This is ventilation. Ventilation, therefore, is the maintenance of the air in a confined space in a condition conducive to health; in other words, "ventilation is the replacing of the impure air in a confined space by pure air from the outside." Quantity of Air Required.—What do we regard as impure air? What is the index of impurity? How much air is required to render pure an air in a given space, in a given time, for a given number of people? An increase in the quantity of CO2 [carbon dioxide gas], and a proportionate increase of organic impurities, are the results of respiratory vitiation of the air; and it has been agreed to regard the relative quantity of CO2 as the standard of impurity, its increase serving as an index of the condition of the air. The normal quantity of CO2 in the air is 0.04 per cent, or 4 volumes in 10,000; and it has been determined that whenever the CO2 reaches 0.06 per cent, or 6 parts per 10,000, the maximum of air vitiation is reached—a point beyond which the breathing of the air becomes dangerous to health. We therefore know that an increase of 2 volumes of CO2 in 10,000 of air constitutes the maximum of admissible impurity; the difference between 0.04 per cent and 0.06 per cent. Now, a healthy average adult at rest exhales in one hour 0.6 cubic foot of CO2. Having determined these two factors—the amount of CO2 exhaled in one hour and the maximum of admissible impurity—we can find by dividing 0.6 by 0.0002 (or 0.02 per cent) the number of cubic feet of air needed for one hour,==3,000. Therefore, a room with a space of 3,000 cubic feet, occupied by one average adult at rest, will not reach its maximum of impurity (that is, the air in such a room will not be in need of a change) before one hour has elapsed. It is not necessary, however, to have 3,000 cubic feet of space for each individual in a room, for the air in the latter can safely be changed at least three times within one hour, thus reducing the air space needed to about 1,000 cubic feet. This change of air or ventilation of a room can be accomplished by mechanical means oftener than three times in an hour, but a natural change of more than three times in an hour will ordinarily create too strong a current of air, and may cause draughts and chills dangerous to health. In determining the cubic space needed, the height of the room as well as the floor space must be taken into consideration. As a rule the height of a room ought to be in proportion to the floor space, and in ordinary rooms should not exceed fourteen feet, as a height beyond that is of very little advantage. Forces of Ventilation.—We now come to the question of the various modes by which change in the air of a room is possible. Ventilation is natural or The properties of air which render both natural and artificial ventilation possible are diffusion, motion, and gravity. These three forces are the natural agents of ventilation. There is a constant diffusion of gases taking place in the air; this diffusion takes place even through stone and through brick walls. The more porous the material of which the building is constructed, the more readily does diffusion take place. Dampness, plastering, painting, and papering of walls diminish diffusion, however. The second force in ventilation is the motion of air or winds. This is the most powerful agent of ventilation, for even a slight, imperceptible wind, traveling about two miles an hour, is capable, when the windows and doors of a room are open, of changing the air of a room 528 times in one hour. Air passes also through brick and stone walls. The objections to winds as a sole mode of ventilation are their inconstancy and irregularity. When the wind is very slight its ventilating influence is very small; on the other hand, when the wind is strong it cannot be The third, the most constant and reliable, and, in fact, principal agent of ventilation is the specific gravity of the air, and the variations in the gravity and consequent pressure which are results of the variations in temperature, humidity, etc. Whenever air is warmer in one place than in another, the warmer air being lighter and the colder air outside being heavier, the latter exerts pressure upon the air in the room, causing the lighter air in the room to escape and be displaced by the heavier air from the outside, thus changing the air in the room. This mode of ventilation is always constant and at work, as the very presence of living beings in the room warms the air therein, thus causing a difference from the outside air and effecting change of air from the outside to the inside of the room. Methods of Ventilation.—The application of these principles of ventilation is said to be accomplished in a natural or an artificial way, according as mechanical means to utilize the forces and properties of air are used or not. But in reality natural ventilation can hardly be said to exist, since dwellings are so constructed as to guard against exposure and changes of temperature, and are usually equipped with numerous appliances for promoting change of air. Windows, doors, fireplaces, chimneys, shafts, courts, etc., Natural Ventilation.—The means employed for applying the properties of diffusion are the materials of construction. A porous material being favorable for diffusion, some such material is placed in several places within the wall, thus favoring change of air. Imperfect carpenter work is also a help, as the cracks and openings left are favorable for the escape and entrance of air. Wind, or the motion of air, is utilized either directly, through windows, doors, and other openings; or indirectly, by producing a partial vacuum in passing over chimneys and shafts, causing suction of the air in them, and the consequent withdrawal of the air from the rooms. The opening of windows and doors is possible only in warm weather; and as ventilation becomes a problem only in temperate and cold weather, the opening of windows and doors cannot very well be utilized without causing colds, etc. Various methods have therefore been proposed for using windows for the purposes of ventilation without producing forcible currents of air. The part of the window best fitted for the introduction of air is the space between the two sashes, where they meet. The ingress of air is made possible whenever the lower sash is raised or the upper Fig. 5. Fig. 5. HINKES BIRD WINDOW. (Taylor.) Fig. 6. Fig. 6. ELLISON'S AIR INLETS. (Knight.) Fig. 7. Fig. 7. SHERINGHAM VALVE. (Taylor.) Fig. 8. Fig. 8. THE TOBIN VENTILATOR. (Knight.) Fig. 9. Fig. 9. McKINNELL'S VENTILATOR. (Taylor.) To assist the action of winds over the tops of shafts and chimneys, various cowls have been devised. These cowls are arranged so as to help aspirate the air from the tubes and chimneys, and prevent a down draught. The same inlets and outlets which are made to utilize winds may also be used for the ventilation effected by the motion of air due to difference in the specific gravity of outside and inside air. Any artificial warming of the air in the room, whether by illuminants or by the various methods of heating rooms, will aid in ventilating it, the chimneys acting Fig. 10. Fig. 10. VENTILATING THROUGH CHIMNEY. (Knight.) The question of the number, relative size, and position of the inlets and outlets is a very important one, but we can here give only an epitome of the requirements. The inlet and outlet openings should be about twenty-four inches square per head. Inlet openings should be short, easily cleaned, sufficient in number to insure a proper distribution of air; should be protected from heat, provided with valves so as to regulate the inflow of air, and, if possible, should be placed COWL VENTILATOR. (Knight.) Artificial Ventilation.—Artificial ventilation is accomplished either by aspirating the air from the building, known as the vacuum or extraction method, or by The extraction of the air in a building is done by means of heat, by warming the air in chimneys or special tubes, or by mechanical means with screws or fans run by steam or electricity; these screws or fans revolve and aspirate the air of the rooms, and thus cause pure air to enter. Fig. 12. Fig. 12. AN AIR PROPELLER. The propelling method of ventilation is carried out Artificial ventilation is applicable only where a large volume of air is needed, and for large spaces, such as theaters, churches, lecture rooms, etc. For the ordinary building the expense for mechanical contrivances is too high. On the whole, ventilation without complex and cumbersome mechanisms is to be preferred. FOOTNOTES: |
1/2 inch thick | |
6"" | 1/16"" |
8"" | 3/4"" |
12"" | 1"" |
The pipes are made in two- and three-foot lengths, with spigot, and socket ends." (Gerhardt.)
Sewer pipes are laid in trenches at least three feet deep, to insure against the action of frosts.
Construction.—The level of the trenches in which sewers are laid should be accurate, and a hard bed must be secured, or prepared, for the pipes to lie on. If the ground is sandy and soft, a solid bed of concrete should be laid, and the places where the joints are should be hollowed out, and the latter embedded in cement.
Joints.—The joints of the various lengths must be gas-tight, and are made as follows: into the hub (the enlargement on one end of the pipe) the spigot end of the next length is inserted, and in the space left between the two a small piece, or gasket, of oakum is rammed in; the remaining space is filled in with a mixture of the best Portland cement and clean, sharp sand. The office of the oakum is to prevent the cement from getting on the inside of the pipe. The joint is then wiped around with additional cement.
A BRICK SEWER.
The following has been determined to be about the right fall for the sizes stated:
1 foot in 40 feet | |
6"" | 1"" 60" |
9"" | 1"" 90" |
12"" | 1"" 120" |
Flow.—The velocity of the flow in sewers depends on the volume of their contents, the size of the pipes, and the fall. The velocity should not be less than 120 feet in a minute, or the sewer will not be self-cleansing.
Size.—In order for the sewer to be self-cleansing, its size must be proportional to the work to be accomplished, so that it may be fully and thoroughly flushed and not permit stagnation and consequent decomposition of its contents. If the sewer be too small, it will not be adequate for its purpose, and will overflow, back up, etc.; if too large, the velocity of the flow will be too low, and stagnation will result. In the separate system, where there is a separate provision for rain water, the size of the sewer ought not to exceed six inches in diameter. In the combined system, however, when arrangements must be made for the disposal of large volumes of storm water, the size of the sewer must be larger, thus making it less self-cleansing.
Connections.—The connections of the branch sewers and the house sewers with the main sewer must be carefully made, so that there shall be no impediment to the flow of the contents, either of the branches or of the main pipe. The connections must
Tide Valves.—Where sewers discharge their contents into the sea, the tide may exert pressure upon the contents of the sewer and cause "backing up," blocking up the sewer, bursting open trap covers, and overflowing into streets and houses. To prevent this, there are constructed at the mouth of the street sewers, at the outlets to the sea, proper valves or tide flaps, so constructed as to permit the contents of the sewers to flow out, yet prevent sea water from backing up by immediately closing upon the slightest pressure from outside.
House Sewers.—Where the ground is "made," or filled in, the house sewer must be made of cast iron, with the joints properly calked with lead. Where the soil consists of a natural bed of loam, sand, or rock, the house sewer may be of hard, salt-glazed, and cylindrical earthenware pipe, laid in a smooth bottom, free from projections of rock, and with the soil well rammed to prevent any settling of the pipe. Each section must be wetted before applying the cement, and the space between each hub and the small end of the next section must be completely and uniformly
Connections of the house sewer (when of iron) with the house main pipe must be made by lead-calked joints; the connection of the iron house pipe with the earthenware house sewer must be made with cement, and should be gas-tight.
Sewer Air and Gas.—Sewer gas is not a gas at all. What is commonly understood by the term is the air of sewers, the ordinary atmospheric air, but charged and contaminated with the various products of organic decomposition taking place in sewers. Sewer air is a mixture of gases, the principal gases being carbonic acid; marsh gas; compounds of hydrogen and carbon; carbonate and sulphides of ammonium; ammonia; sulphureted hydrogen; carbonic oxide, volatile fetid matter; organic putrefactive matter, and may also contain some bacteria, saprophytic or pathogenic.
Any and all the above constituents may be contained in sewer air in larger or smaller doses, in minute or toxic doses.
It is evident that an habitual breathing of air in which even minute doses of toxic substances and gases are floating will in time impair the health of
Ventilation.—To guard against the bad effects of sewer air, it is necessary to dilute, change, and ventilate the air in sewers. This is accomplished by the various openings left in the sewers, the so-called lamp and manholes which ventilate by diluting the sewer air with the street air. In some places, chemical methods of disinfecting the contents of sewers have been undertaken with a view to killing the disease germs and deodorizing the sewage. In the separate system of sewage disposal, where sewer pipes are small and usually self-cleansing, the late Colonel Waring proposed to ventilate the sewers through the house pipes, omitting the usual disconnection of the house sewer from the house pipes. But in the combined system such a procedure would be dangerous, as the sewer air would be apt to enter the house.
Rain storms are the usual means by which a thorough flushing of the street sewers is effected. There are, however, many devices proposed for flushing sewers; e. g., by special flushing tanks, which either automatically or otherwise discharge a large volume of water, thereby flushing the contents of the street sewers.
CHAPTER VI
Plumbing
Purpose and Requisites for House Plumbing.—A system of house plumbing presupposes the existence of a street sewer, and a water-supply distribution within the house. While the former is not absolutely essential, as a house may have a system of plumbing without there being a sewer in the street, still in the water-carriage system of disposal of sewage the street sewer is the outlet for the various waste and excrementitious matter of the house. The house-water distribution serves for the purpose of flushing and cleaning the various pipes in the house plumbing.
The purposes of house plumbing are: (1) to get rid of all excreta and waste water; (2) to prevent any foreign matter and gases in the sewer from entering the house through the pipes; and (3) to dilute the air in the pipes so as to make all deleterious gases therein innocuous.
To accomplish these results, house plumbing demands the following requisites:
(1) Receptacles for collecting the waste and excreta. These receptacles, or plumbing fixtures, must
(2) Separate Vertical Pipes for sewage proper, for waste water, and for rain water; upright, direct, straight, noncorrosive, water- and gas-tight, well flushed, and ventilated.
(3) Short, direct, clean, well-flushed, gas-tight branch pipes to connect receptacles with vertical pipes.
(4) Disconnection of the house sewer from the house pipes by the main trap on house drain, and disconnection of house from the house pipes by traps on all fixtures.
(5) Ventilation of the whole system by the fresh-air inlet, vent pipes, and the extension of all vertical pipes.
Definitions.—The House Drain is the horizontal main pipe receiving all waste water and sewage from the vertical pipes, and conducting them outside of the foundation walls, where it joins the house sewer.
The Soil Pipe is the vertical pipe or pipes receiving sewage matter from the water-closets in the house.
The Main Waste Pipe is the pipe receiving waste water from any fixtures except the water-closets.
Branch Soil and Waste Pipes are the short pipes between the fixtures in the house and the main soil and waste pipes.
Vent Pipes are the special pipes to which the traps or fixtures are connected by short-branch vent pipes, and serve to ventilate the air in the pipes, and prevent siphonage.
The Rain Leader is the pipe receiving rain and storm water from the roof of the house.
Materials Used for Plumbing Pipes.—The materials from which the different pipes used in house plumbing are made differ according to the use of each pipe, its position, size, etc. The following materials are used: cement, vitrified pipe, lead; cast, wrought, and galvanized iron; brass, steel, nickel, sheet metal, etc.
Cement and Vitrified Pipes are used for the manufacture of street and house sewers. In some places vitrified pipe is used for house drains, but in most cities this is strongly objected to; and in New York City no earthenware pipes are permitted within the house. The objection to earthenware pipes is that they are not strong enough for the purpose, break easily, and cannot be made gas-tight.
Lead Pipe is used for all branch waste pipes and short lengths of water pipes. The advantage of lead pipes is that they can be easily bent and shaped, hence their use for traps and connections. The dis
Brass, Nickel, Steel, and other such materials are used in the manufacture of expensive plumbing, but are not commonly employed.
Sheet Metal and Galvanized Iron are used for rain leaders, refrigerator pipes, etc.
Wrought Iron is used in the so-called Durham system of plumbing. Wrought iron is very strong; the sections of pipe are twenty feet long, the connections are made by screw joints, and a system of house plumbing made of this material is very durable, unyielding, strong, and perfectly gas-tight. The objections to wrought iron for plumbing pipes are that the pipes cannot be readily repaired and that it is too expensive.
Cast Iron is the material universally used for all vertical and horizontal pipes in the house. There are two kinds of cast-iron pipes manufactured for plumbing uses, the "standard and the extra heavy."
The following are the relative weights of each:
Standard. | Extra Heavy. | |
---|---|---|
2-inch pipe, | 4 lbs. per foot | 51/2 lbs. |
3"" | 6""" | 91/2" |
4"" | 9""" | 13" |
5"" | 12""" | 17" |
6"" | 15""" | 20" |
7"" | 20""" | 27" |
8"" | 25""" | 331/2 " |
[Pg 194]
Cast-iron pipes are made in lengths of five feet each, with an enlargement on one end of the pipe, called the "hub" or "socket," into which the other, or "spigot," end is fitted. All cast-iron pipe must be straight, sound, cylindrical and smooth, free from sand holes, cracks, and other defects, and of a uniform thickness.
The thickness of cast-iron pipes should be as follows:
2-inch pipe, | 5/16 inches thick |
3"" | """ |
4"" | 3/8"" |
5"" | 7/16"" |
6"" | 1/2"" |
Cast-iron pipes are sometimes coated by dipping into hot tar, or by some other process. Tar coating is, however, not allowed in New York, because it conceals the sand holes and other flaws in the pipes.
Joints and Connections.—To facilitate connections of cast-iron pipes, short and convenient forms and fittings are cast. Some of these connections are named according to their shape, such as L, T, Y, etc.
DIFFERENT FORMS AND FITTINGS.
Iron Pipe is joined to Iron Pipe by lead-calked joints. These joints are made as follows: the spigot
[Pg 196]
All connections between Lead Pipes and between Lead and Brass or Copper pipes must be made by means of "wiped" solder joints. A wiped joint is made by solder being poured on two ends of the two pipes, the solder being worked about the joint, shaped into an oval lump, and wiped around with a cloth, giving the joint a bulbous form.
All connections between Lead Pipes and Iron Pipes are made by means of brass ferrules. Lead cannot be soldered to iron, so a brass fitting or ferrule is used; it is jointed to the lead pipe by a wiped joint, and to the iron pipe by an ordinary lead-calked joint.
[Pg 198]
Traps.—We have seen that a trap is a bend in a pipe so constructed as to hold a quantity of water sufficient to interpose a barrier between the sewer and the fixture. There are many and various kinds of traps, some depending on water alone as their "seal," others employing mechanical means, such as balls, valves, lips, also mercury, etc., to assist in the disconnection between the house and sewer ends of the pipe system.
The value of a trap depends: (1) on the depth of its water seal; (2) on the strengths and permanency of the seal; (3) on the diameter and uniformity of the trap; (4) on its simplicity; (5) on its accessibility; and (6) on its self-cleansing character.
The depth of a trap should be about three inches for water-closet traps, and about two inches for sink and other traps.
Traps must not be larger in diameter than the pipe to which they are attached.
The simpler the trap, the better it is.
Traps should be provided with cleanout screw openings, caps, etc., to facilitate cleaning.
The shapes of traps vary, and the number of the various kinds of traps manufactured is very great.
Traps are named according to their use: gully, grease, sediment, intercepting, etc.; according to their shape: D, P, S, V, bell, bottle, pot, globe, etc.;
[Pg 200]
The S trap is the best for sink waste pipes; the running trap is the best on house drains.
FORMS OF TRAPS.
FORMS OF TRAPS.
Loss of Seal by Traps.—The seals of traps are not always secure, and the causes of unsealing of traps are as follows:
(1) Evaporation.—If a fixture in a house is not used for a long time, the water constituting the seal in the trap of the fixture will evaporate; the seal will thus be lost, and ingress of sewer air will result. To guard against evaporation, fixtures must be frequently flushed; and during summer, or at such times as the house is unoccupied and the fixtures not used, the traps are to be filled with oil or glycerin, either of which will serve as an efficient seal.
(2) Momentum.—A sudden flow of water from the fixture may, by the force of its momentum, empty all water in the trap and thus leave it unsealed. To prevent the unsealing of traps by momentum, they must be of a proper size, not less than the waste pipe of the fixture, the seal must be deep, and the trap in a perfectly straight position, as a slight inclination will favor its emptying. Care should also be taken while emptying the fixture to do it slowly so as to preserve the seal.
(3) Capillary Attraction.—If a piece of paper, cotton, thread, hair, etc., remain in the trap, and a part
[Pg 202]
Siphonage and Back Pressure.—The water in the trap, or the "seal," is suspended between two columns of air, that from the fixture to the seal, and from the seal of the trap to the seal of the main trap on house drain. The seal in the trap is therefore not very secure, as it is influenced by any and all currents and agitations of air from both sides, and especially from its distal side. Any heating of the air in the pipes with which the trap is connected, any increase of temperature in the air contents of the vertical pipes with which the trap is connected, and any evolution of gases within those pipes will naturally increase the weight and pressure of the air within them, with the result that the increased pressure will influence the contents of the trap, or the "seal," and may dislodge the seal backward, if the pressure is very great, or, at any rate, may force the foul air from the pipes through the seal of the traps and foul the water therein, thus allowing foul odors to enter the rooms from the traps of the fixtures. This condition, which in practice exists oftener than it is ordinarily thought,
NON-SYPHONING TRAP.
Copyright by the J. L. Mott Iron Works.
A condition somewhat similar, but acting in a reverse way, is presented in what is commonly termed "siphonage." Just as well as the seal in traps may
To guard against the loss of seal through siphonage "nonsiphoning" traps have been invented, that is, the traps are so constructed that the seal therein is very large, and the shape of the traps made so that siphonage is difficult. These traps are, however, open to the objection that in the first place they do not prevent the fouling of the seals by back pressure, and in the second place they are not easily cleansable and may retain dirt in their large pockets. The universal method of preventing both siphonage and back pressure is by the system of vent pipes, or
The vent-pipe system is also an additional means of ventilating the plumbing system of the house, already partly ventilated by the extension of the vertical pipes above the roof and by the fresh-air inlet. The principal objection urged against the installation of the vent-pipe system is the added expense, which is considerable; and plumbers have sought therefore to substitute for the vent pipes various mechanical traps, also nonsiphoning traps. The vent pipes are, however, worth the additional expense, as they are certainly the best means to prevent siphonage and back pressure, and are free from the objections against the cumbersome mechanical traps and the filthy nonsiphoning traps.
CHAPTER VII
Plumbing Pipes
The House Drain.—All waste and soil matter in the house is carried from the receptacles into the waste and soil pipes, and from these into the house drain, the main pipe of the house, which carries all waste and soil into the street sewer. The house drain extends from the junction of the soil and waste pipes of the house through the house to outside of the foundations two to five feet, whence it is called "house sewer." The house drain is a very important part of the house-plumbing system, and great care must be taken to make its construction perfect.
Material.—The material of which house drains are manufactured is extra heavy cast iron. Lighter pipes should never be used, and the use of vitrified pipes for this purpose should not be allowed.
Size.—The size of the house drain must be proportional to the work to be performed. Too large a pipe will not be self-cleansing, and the bottom of it will fill with sediment and slime. Were it not for the need of carrying off large volumes of storm water, the house drain could be a great deal smaller than it
[Pg 208]
SYSTEM OF HOUSE DRAINAGE, SHOWING THE PLUMBING OF A HOUSE. (H. Bramley.)
Fall.—The fall or inclination of the house drain depends on its size. Every house drain must be laid so that it should have a certain inclination toward the house sewer, so as to increase the velocity of flow in it and make it self-flushing and self-cleansing. The rate of fall should be as follows:
For 4-inch pipe | 1 in 40 feet |
"5"" | 1" 50" |
"6"" | 1" 60" |
Position.—The house drain lies in a horizontal position in the cellar, and should, if possible, be exposed to view. It should be hung on the cellar wall or ceiling, unless this is impracticable, as when fixtures in the cellar discharge into it; in this case, it must be laid in a trench cut in a uniform grade, walled upon the sides with bricks laid in cement, and provided with movable covers and with a hydraulic-cement base four inches thick, on which the pipe is to rest. The house drain must be laid in straight lines, if possible; all changes in direction must be made with curved pipes, the curves to be of a large radius.
Connections.—The house drain must properly connect with the house sewer at a point about two feet outside of the outer front vault or area wall of the
All joints of the pipe must be gas-tight, lead-calked joints, as stated before. The junction of the vertical soil, waste, and rain-leader pipes must not be made by right-angle joints, but by a curved elbow fitting of a large radius, or by "Y" branches and 45° bends.
When the house drain does not rest on the floor, but is hung on the wall or ceiling of the cellar, the connection of the vertical soil and waste pipes must have suitable supports, the best support being a brick pier laid nine inches in cement and securely fastened to the wall.
Near all bends, traps, and connections of other pipes with the house drain suitable hand-holes should be provided, these hand-holes to be tightly covered by brass screw ferrules, screwed in, and fitted with red lead.
"No steam exhaust, boiler blow-off, or drip pipe shall be connected with the house drain or sewer. Such pipes must first discharge into a proper condensing tank, and from this a proper outlet to the house sewer outside of the building must be provided."
Main Traps.—The disconnection of the house pipes from the street sewer is accomplished by a trap on the house drain near the front wall, inside the house, or just outside the foundation wall but
Extension of Vertical Pipes.—By the main trap the house-plumbing system is disconnected from the sewer, and by the traps on each fixture from the air in the rooms; still, as the soil, waste, and drain pipes usually contain offensive solids and liquids which contaminate the air in the pipes, it is a good method to ventilate these pipes. This ventilation of the soil, waste, and house drain pipes prevents the bad effects on health from the odors, etc., given off by the slime and excreta adhering in the pipes, and it is accomplished by two means: (1) by extension of the vertical pipes to the fresh air above the roof, and (2) by the fresh-air inlet on the house drain.
By these means a current of air is established through the vertical and horizontal pipes.
Every vertical pipe must be extended above the roof at least two feet above the highest coping of the roof or chimney. The extension must be far from the air shafts, windows, ventilators, and mouths of chimneys, so as to prevent air from the pipes being drawn into them. The extension must be not less than the full size of each pipe, so as to avoid friction from the circulation of air. The use of covers, cowls,
Fresh-air Inlet.—The fresh-air inlet is a pipe of about four inches in diameter; it enters the house drain on the house side of the main trap, and extends to the external air at or near the curb, or at any convenient place, at least fifteen feet from the nearest window. The fresh-air inlet pipe usually terminates in a receptacle covered by an iron grating, and should be far from the cold-air box of any hot-air furnace. When clean, properly cared for, and extended above the ground, the fresh-air inlet, in conjunction with the open extended vertical pipe, is an efficient means of ventilating the air in the house pipes; unfortunately most fresh-air inlets are constantly obstructed, and do not serve the purpose for which they are made.
The Soil and Waste Pipes.—The soil pipe receives liquid and solid sewage from the water-closets and urinals; the waste pipe receives all waste water from sinks, washbasins, bath tubs, etc.
The material of which the vertical soil and waste pipes are made is cast iron.
The size of main waste pipes is from three to four inches; of main soil pipes, from four to five inches. In tenement houses with five water-closets or more, not less than five inches.
The location of the vertical pipes must never be within the wall, built in, nor outside the house, but preferably in a special three-foot square shaft adjacent to the fixtures, extending from the cellar to the roof, where the air shaft should be covered by a louvered skylight; that is, with a skylight with slats outwardly inclined, so as to favor ventilation.
The vertical pipes must be accessible, exposed to view in all their lengths, and, when covered with boards, so fitted that the boards may be readily removed.
Vertical pipes must be extended above the roof in full diameter, as previously stated. When less than four inches in diameter, they must be enlarged to four inches at a point not less than one foot below the roof surface by an "increaser," of not less than nine inches long.
All soil and waste pipes must, whenever necessary, be securely fastened with wrought-iron hooks or straps.
Vertical soil and waste pipes must not be trapped at their base, as the trap would not serve any purpose, and would prevent a perfect flow of the contents.
Branch Soil and Waste Pipes.—The fixtures must be near the vertical soil and waste pipes in order that the branch waste and soil pipes should be as short as
The minimum sizes for branch pipes should be as follows:
Kitchen sinks | 2 inches |
Bath tubs | 11/2 to 2" |
Laundry tubs | 11/2 to 2" |
Water-closets | not less than 4" |
Branch soil and waste pipes must have a fall of at least one-quarter inch to one foot.
The branch waste and soil pipes and traps must be exposed, accessible, and provided with screw caps, etc., for inspection and cleaning purposes.
Each fixture should be separately trapped as close to the fixture as possible, as two traps on the same line of branch waste or soil pipes will cause the air between the traps to be closed in, forming a so-called "cushion," that will prevent the ready flow of contents.
"All traps must be well supported and rest true with respect to their water level."
Vent Pipes and Their Branches.—The purpose of vent pipes, we have seen, is to prevent siphoning of traps and to ventilate the air in the traps and pipes. The material of which vent pipes are made is cast iron.
The size of vent pipes depends on the number of
The vent pipes should be extended above the roof, several feet above the coping, etc.; and the extension above the roof should not be of less than four inches diameter, so as to avoid obstruction by frost. No return bends or cowls should be tolerated on top of the vent pipes. Sometimes the vent, instead of running above the roof, is connected with the soil pipe several feet above all fixtures.
LEADER PIPE.
Rain Leaders.—The rain leader serves to collect the rain water from the roof and eaves gutter. It usually discharges its contents into the house drain, although some leaders are led to the street gutter, while others are connected with school sinks in the yard. The latter practice is objectionable, as it may lead the foul air from the school sink into the rooms, the windows
CHAPTER VIII
Plumbing Fixtures
The receptacles or fixtures within the house for receiving the waste and excrementitious matter and carrying it off through the pipes to the sewer are very important parts of house plumbing. Great care must be bestowed upon the construction, material, fitting, etc., of the plumbing fixtures, that they be a source of comfort in the house instead of becoming a curse to the occupants.
Sinks.—The waste water from the kitchen is disposed of by means of sinks. Sinks are usually made of cast iron, painted, enameled, or galvanized. They are also made of wrought iron, as well as of earthenware and porcelain. Sinks must be set level, and provided with a strainer at the outlet to prevent large particles of kitchen refuse from being swept into the pipe and obstructing it. If possible the back and sides of a sink should be cast from one piece; the back and sides, when of wood, should be covered by nonabsorbent material, to prevent the wood from becoming saturated with waste water.
Washbasins.—Washbasins are placed in bathrooms, and, when properly constructed and fitted, are a source of comfort. They should not be located in bedrooms, and should be open, without any woodwork around them. The washbowls are made of porcelain or marble, with a socket at the outlet, into which a plug is fitted.
Wash Tubs.—For laundry purposes wooden, iron-enameled, stone, and porcelain tubs are fitted in the kitchen or laundry room. Porcelain is the best material, although very expensive. The soapstone tub is the next best; it is clean, nonabsorbent, and not too expensive. Wood should never be used, as it soon becomes saturated, is foul, leaks, and is offensive. In old houses, wherever there are wooden tubs, they should be covered with zinc or some nonabsorbent material. The wash tubs are placed in pairs, sometimes three in a row, and they are generally connected with one lead waste pipe one and a half to two inches in diameter, with one trap for all the tubs.
Bath Tubs.—Bath tubs are made of enameled iron or porcelain, and should not be covered or inclosed by any woodwork. The branch waste pipe should be
Refrigerators.—The waste pipes of refrigerators should not connect with any of the house pipes, but should be emptied into a basin or pail; or, if the refrigerator is large, its waste pipe should be conducted to the cellar, where it should discharge into a properly trapped, sewer-connected and water-supplied open sink.
Boilers.—The so-called sediment pipe from the hot-water boiler in the kitchen should be connected with the sink trap at the inlet side of the trap.
Urinals.—As a rule, no urinals should be tolerated within a house; they are permissible only in factories and office buildings. The material is enameled iron or porcelain. They must be provided with a proper water supply to flush them.
Overflows.—To guard against overflow of washbasins, bath tubs, etc., overflow pipes from the upper portion of the fixtures are commonly provided. These pipes are connected with the inlet side of the trap of the same fixture. They are, however, liable to become a nuisance by being obstructed with dirt and not being constantly flushed; whenever possible they should be dispensed with.
Safes and Wastes.—A common usage with plumb
Water-closets.—The most important plumbing fixtures within the house are the water-closets. Upon the proper construction and location of the water-closets greatly depends the health of the inhabitants of the house. Water-closets should be placed in separate, well-lighted, perfectly ventilated, damp-proof, and clean compartments, and no water-closet should be used by more than one family in a tenement house. The type and construction of the water-closets should be carefully attended to, as the many existing, old, and obsolete types of water-closets are still being installed in houses, or are left there to foul the air of rooms and apartments. There are many water-closets
PAN WATER-CLOSET. (Gerhard.)
The Pan Closet.—The water-closet most commonly used in former times was a representative of the group of water-closets with mechanical contrivances. This is the pan closet, now universally condemned and prohibited from further use. The pan closet consists of four principal parts: (1) basin of china, small and round; (2) a copper six-inch pan under the basin; (3) a large iron container, into which the basin with the pan under it is placed; and (4) a D trap, to which the container is joined. The pan is attached with a lever to a handle, which, when pulled, moves the pan; this describes a half circle and drops the contents into the
(1) There being a number of parts and mechanical contrivances, they are liable to get out of order.
(2) The bowl is set into the container and cannot be inspected, and is usually very dirty beneath.
(3) The pan is often missing, gets out of order, and is liable to be soiled by adhering excreta.
(4) The container is large, excreta adhere to its upper parts, and the iron becomes corroded and coated with filth.
(5) With every pull of the handle and pan, foul air enters rooms.
(6) The junctions between the bowl and container, and the container and trap, are usually not gas-tight.
(7) The pan breaks the force of the water flush, and the trap is usually not completely emptied.
Valve and Plunger Closets are an improvement upon the pan closets, but are not free from several objections enumerated above. As a rule, all water-closets with mechanical parts are objectionable.
Hopper Closets are made of iron or earthenware. Iron hopper closets easily corrode; they are usually enameled on the inside. Earthenware hoppers are preferable to iron ones. Hopper closets are either long or short; when long, they expose a very large surface to be fouled, require a trap below the floor, and are, as a rule, very difficult to clean or to keep clean. Short hopper closets are preferable, as they are easily kept
The washout and washdown water-closets are an improvement upon the hopper closets. They are manufactured from earthenware or porcelain, and are so shaped that they contain a water seal, obviating the necessity of a separate trap under the closet.
LONG HOPPER WATER-CLOSET. (Gerhard.)
SHORT HOPPER WATER-CLOSET. (Gerhard.)
STYLES OF WATER-CLOSETS.
Flush Tanks.—Water-closets must not be flushed directly from the water-supply pipes, as there is a possibility of contaminating the water supply. Water-closets should be flushed from flush tanks, either of iron or of wood, metal lined; these cisterns should be
The cistern is fitted with plug and handle, so that by pulling at the handle the plug is lifted out of the socket of the cistern and the contents permitted to rush through the pipe and flush the water-closet. A separate ball arrangement is made for closing the water supply when the cistern is full. The cistern must have a capacity of at least three to five gallons of water; the flush pipe must have a diameter of not less than one and one-quarter inch, and the pipe must be straight, without bends, and the arrangement within the closets such as to flush all parts of the bowl at the same time.
FLUSHING CISTERN.
[Pg 225]
The school sink is an iron trough from five to twelve or more feet long, and one to two feet wide and one foot deep, set in a trench several feet below the surface with an inclination toward the exit; on one end of the trough there is a socket fitted with a plug, and on the other a flushing apparatus consisting simply of a water service-pipe. Above the iron trough brick walls are built up, inclosing it; over it are placed wooden seats, and surrounding the whole is a wooden
(1) The excreta lies exposed in the iron trough, and may decompose even in one day; and it is always offensive.
(2) The iron trough is easily corroded.
(3) The iron trough, being large, presents a large surface for adherence of excreta.
(4) The brickwork above the trough is not flushed when the school sink is emptied, and excreta, which usually adheres to it, decomposes, creating offensive odors.
(5) The junction of the iron trough with the brickwork, and the brickwork itself, is usually defective, or becomes defective, and allows foul water and sewage to pass into the yard, or into the wall adjacent to the school sink. By the Tenement House Law of New York, the use of school sinks is prohibited even in old buildings.
SCHOOL SINK AFTER SEVERAL MONTHS' USE.
(J. Sullivan.)
Yard Hopper Closets.—Where the water-closet accommodations cannot, for some reason, be put within the house, yard hopper closets are commonly employed. These closets are simply long, iron-enameled hoppers,
[Pg 230]
J. SULLIVAN'S IMPROVED YARD HOPPER CLOSET.
A MODERN WATER-CLOSET.
(J. L. Mott Iron Works.)
Yard and Area Drains.—The draining of the surface of the yard or other areas is done by tile or iron pipes connecting with the sewer or house drain in the cellar. The "bell" or the "lip" traps are to be condemned and should not be used for yard drains. The gully and trap should be made of one piece; the trap should be of the siphon type and should be deep enough in the ground to prevent the freezing of seal in winter.
FOOTNOTES:
CHAPTER IX
Defects in Plumbing
The materials used in house plumbing are many and various, the parts are very numerous, the joints and connections are frequent, the position and location of pipes, etc., are often inaccessible and hidden, and the whole system quite complicated. Moreover, no part of the house construction is subjected to so many strains and uses, as well as abuses, as the plumbing of the house. Hence, in no part of house construction can there be as much bad work and "scamping" done as in the plumbing; and no part of the house is liable to have so many defects in construction, maintenance, and condition as the plumbing. At the same time, the plumbing of a house is of very great importance and influence on the health of the tenants, for defective materials, bad workmanship, and improper condition of the plumbing of a house may endanger the lives of its inhabitants by causing various diseases.
Defects in Plumbing.—The defects usually found in plumbing are so many that they cannot all be enumerated here. Among the principal and most common defects, however, are the following:
Location and Position.—Pipes may be located within the walls and built in, in which case they are inaccessible, and may be defective without anyone being able to discover the defects. Pipes may be laid with a wrong or an insufficient fall, thus leaving them unflushed, or retarding the proper velocity of the flow in the pipes. Pipes may be put underground and have no support underneath, when some parts or lengths may sink, get out of joint, and the sewage run into the ground instead of through the pipes. The pipes may be so located as to require sharp bends and curves, which will retard the flow in them.
Joints.—Joints in pipes may be defective, leaking, and not gas-tight because of imperfect calking, insufficient lead having been used; or, no oakum having been used and the lead running into the lumen of the pipe; or, not sufficient care and time being taken for the work. Joints may be defective because of iron ferrules being used instead of brass ferrules; through improperly wiped joints; through bad workmanship, bad material, or ignorance of the plumber. Plumbers often use T branches instead of Y branches; sharp bends instead of bends of forty-five degrees or more;
Traps.—The traps may be bad in principle and in construction; they may be badly situated or connected, or they may be easily unsealed, frequently obstructed, inaccessible, foul, etc.
Ventilation.—The house drain may have no fresh-air inlet, or the fresh-air inlet may be obstructed; the vent pipes may be absent, or obstructed; the vertical pipes may not be extended.
Condition.—Pipes may have holes, may be badly repaired, bent, out of shape, or have holes patched up with cement or putty; pipes may be corroded, gnawed by rats, or they may be obstructed, etc.
The above are only a few of the many defects that may be found in the plumbing of a house. It is, therefore, of paramount importance to have the house plumbing regularly, frequently, and thoroughly examined and inspected, as well as put to the various tests, so as to discover the defects and remedy them.
Plumbing Tests.—The following are a few minor points for testing plumbing:
(1) To test a trap with a view to finding out whether its seal is lost or not, knock on the trap with a piece of metal; if the trap is empty, a hollow sound will be given out; if full, the sound will be dull. This is not reliable in case the trap is full or half-full with slime, etc. Another test for the same purpose is as
(2) Defects in leaded joints can be detected if white lead has been used, as it will be discolored in case sewer gas escape from the joints.
(3) The connection of a waste pipe of a bath tub with the trap of the water-closet can sometimes be discovered by suddenly emptying the bath tub and watching the contents of the water-closet trap; the latter will be agitated if the waste pipe is discharged into the trap or on the inlet side of trap of the water-closet.
(4) The presence of sewer gas in a room can be detected by the following chemical method: saturate a piece of unglazed paper with a solution of acetate of lead in rain or boiled water, in the proportion of one to eight; allow the paper to dry, and hang up in the room where the escape of sewer gas is suspected; if sewer gas is present, the paper will be completely blackened.
The main tests for plumbing are: (1) the Hydraulic or water-pressure test; (2) the Smoke, or sight test, and (3) the Scent, or peppermint, etc., test.
The Water-pressure Test is used to test the vertical and horizontal pipes in new plumbing before the fixtures have been connected. It is applied as follows: the end of the house drain is plugged up with a proper air-tight plug, of which there are a number on the market. The pipes are then filled with water to a
The Smoke Test is also a very good test. It is applied as follows: by means of bellows, or some exploding, smoke-producing rocket, smoke is forced into the system of pipes, the ends plugged up, and the escape of the smoke watched for, as wherever there are defects in the pipes the smoke will appear. A number of special appliances for this test are manufactured, all of them more or less ingenious.
The Scent Test is made by putting into the pipes a certain quantity of some pungent chemical, like peppermint oil, etc., the odor of which will escape from the defects in the pipes, if there are any. Oil of peppermint is commonly used in this country for the test. The following is the way this test is applied: all the openings of the pipes on the roof, except one, are closed up tightly with paper, rags, etc. Into the one open pipe is poured from two to four ounces of peppermint oil, followed by a pail of hot water, and then the pipe into which the oil has been put is also plugged up. This is done, preferably, by an assistant. The inspector then proceeds to slowly follow the course of the various pipes, and will detect the smell of the oil wherever
Instead of putting the oil into the opening of a pipe on the roof, it may be put through a fixture on the top floor of the house, although this is not so satisfactory.
Various appliances have been manufactured to make this test more easy and accurate. Of the English appliances, the Banner patent drain grenade, and Kemp's drain tester are worthy of mention. The former consists "of a thin glass vial charged with pun
Recently Dr. W. G. Hudson, an inspector in the Department of Health of New York, has invented a very ingenious "peppermint cartridge" for testing plumbing. The invention is, however, not yet manufactured, and is not on the market.
CHAPTER X
Infection and Disinfection
Disinfection is the destruction of the infective power of infectious material; or, in other words, disinfection is the destruction of the agents of infection.
An infectious material is one contaminated with germs of infection.
The germs of infection are organic microÖrganisms, vegetable and animal—protozoa and bacteria.
The germs of infection once being lodged within the body cause certain reactions producing specific pathological changes and a variety of groups of symptoms which we know by the specific names of infectious diseases, e. g., typhoid, typhus, etc.
Among the infectious diseases known to be due to specific germs are the following: typhoid, typhus, relapsing fevers, cholera, diphtheria, croup, tuberculosis, pneumonia, malaria, yellow fever, erysipelas, septicÆmia, anthrax, tetanus, gonorrhea, etc.; and among the infectious diseases the germs of which have not as yet been discovered are the following: scarlet fever, measles, smallpox, syphilis, varicella, etc.
The part of the body and the organs in which the
The agents carrying the germs of infection from one person to the other may be the infected persons themselves, or anything which has come in contact with their bodies and its secretions and excretions; thus, the air, room, furniture, vessels, clothing, food and drink, also insects and vermin, may all be carriers of infection.
Sterilization is the absolute destruction of all organic life, whether infectious or not; it is therefore more than disinfection, which destroys the germs of infection alone.
A Disinfectant is an agent which destroys germs of infection.
A Germicide is the same; an agent destroying germs.
An Insecticide is an agent capable of destroying insects; it is not necessarily a disinfectant, nor is a disinfectant necessarily an insecticide.
An Antiseptic is a substance which inhibits and stops the growth of the bacteria of putrefaction and decomposition. A disinfectant is therefore an antiseptic, but an antiseptic may not be a disinfectant.
A Deodorant is a substance which neutralizes or destroys the unpleasant odors arising from matter un
The ideal disinfectant is one which, while capable of destroying the germs of disease, does not injure the bodies and material upon which the germs may be found; it must also be penetrating, harmless in handling, inexpensive, and reliable. The ideal disinfectant has not as yet been discovered.
For successful scientific disinfection it is necessary to know: (1) the nature of the specific germs of the disease; (2) the methods and agents of its spread and infection; (3) the places where the germs are most likely to be found; (4) the action of each disinfectant upon the germs; and (5) the best methods of applying the disinfectant to the materials infected with germs of disease.
Disinfection is not a routine, uniform, unscientific process; a disinfector must be conversant with the basic principles of disinfection, must make a thorough study of the scientific part of the subject, and moreover must be thoroughly imbued with the importance of his work, upon which the checking of the further spread of disease depends.
Physical Disinfectants
The physical disinfectants are sunlight, desiccation, and heat.
Sunlight is a good disinfectant provided the in
Desiccation is a good means of disinfection, but can be applied only to very few objects; all bacteria need moisture for their existence and multiplication, hence absolute dryness acts as a good germicide. Meat and fish, certain cereals, and also fruit, when dried, become at the same time disinfected.
Heat is the best, most valuable, all-pervading, most available, and cheapest disinfectant. The various ways in which heat may be used for disinfection are burning, dry heat, boiling, and steam.
Burning is of course the best disinfectant, but it not only destroys the germs in the infected materials, but the materials themselves; its application is therefore limited to articles of little or no value, and to rags, rubbish, and refuse.
Dry Heat.—All life is destroyed when exposed to
Boiling.—Perhaps the best and most valuable disinfectant in existence is boiling, because it is always at command, is applicable to most materials and objects, is an absolutely safe sterilizer and disinfectant, and needs very little if any preparation and apparatus for its use. One half hour of boiling will destroy all life; and most bacteria can be killed at even a lower temperature. Subjection to a temperature of only 70° C. for half an hour suffices to kill the germs of cholera, tuberculosis, diphtheria, plague, etc. Boiling is especially applicable to textile fabrics and small objects, and can readily be done in the house where the infection exists, thus obviating the necessity of conveying the infected objects elsewhere, and perhaps for some distance, to be disinfected.
Steam.—Of all the physical disinfectants steam is the most valuable because it is very penetrating, reliable, and rapid; it kills all bacteria at once and all spores in a few minutes, and besides is applicable to a great number and many kinds of materials and objects. Steam is especially valuable for the disinfection of clothing, bedding, carpets, textile fabrics, mattresses, etc. Steam can be used in a small way, as well as in
Gaseous Chemical Disinfectants
Physical disinfectants, however valuable and efficient, cannot be employed in many places and for many materials infected with disease germs, and therefore chemicals have been sought to be used wherever physical disinfectants could not for one or more reasons be employed. Chemicals are used as disinfectants either in gaseous form or in solutions; the gaseous kinds are of especial value on account of their penetrating qualities, and are employed for the disinfection of rooms, holds of ships, etc. There are practically but two chemicals which are used in gaseous
Sulphur Dioxide.—Sulphur dioxide (SO2) is a good surface disinfectant, and is very destructive to all animal life; it is one of the best insecticides we have, but its germicidal qualities are rather weak; it does not kill spores, and it penetrates only superficially. The main disadvantages of sulphur dioxide as a disinfectant are: (1) that it weakens textile fabrics; (2) blackens and bleaches all vegetable coloring matter; (3) tarnishes metal; and (4) is very injurious and dangerous to those handling it.
There are several methods of employing sulphur in the disinfection of rooms and objects, e. g., the pot, candle, liquid, and furnace methods.
In the pot methods crude sulphur, preferably ground, is used; it is placed in an iron pot and ignited by the aid of alcohol, and in the burning evolves the sulphur dioxide gas. About five pounds of sulphur are to be used for every 1,000 cubic feet of space. As moisture plays a very important part in developing the disinfecting properties of sulphur dioxide, the anhydrous gas being inactive as a disinfectant, it is advisable to place the pot in a large pan filled with water, so that the evaporated water may render the gas active. For the purpose of destroying all insects in a room an exposure of about two hours to the gas are necessary, while for the destruction of bacteria an exposure of at least fifteen to sixteen hours is required.
When sulphur is used in candle form the expense is considerably increased without any additional efficiency. When a solution of sulphurous acid is employed, exposure of the liquid to the air suffices to disengage the sulphur dioxide necessary for disinfection. The quantity of the solution needed is double that of the crude drug, i. e., ten pounds for every 1,000 cubic feet of room space.
Formaldehyde.—At present the tendency is to employ formaldehyde gas instead of the sulphur so popular some time ago. The advantages of formaldehyde over sulphur are: (1) its nonpoisonous nature; (2) it is a very good germicide; (3) it has no injurious effect upon fabrics and objects; (4) it does not change colors; and (5) it can be used for the disinfection of rooms with the richest hangings, bric-a-brac, etc., without danger to these. Formaldehyde is evolved either
Formaldehyde gas has not very great penetrating power; it is not an insecticide, but kills bacteria in a very short time, and spores in an hour or two.
Paraform (polymerized formaldehyde; trioxymethylene) is sold in pastilles or in powder form, and when heated reverts again to formaldehyde; it must not burn, for no gas is evolved when the heating reaches the stage of burning. The lamps used for disinfection with paraform are very simple in construction, but as the evolution of the gas is very uncertain, this method is used only for small places, and it demands two ounces of paraform for every 1,000 cubic feet of space, with an exposure of twelve hours. Formaldehyde is also used in the form of the liquid formalin either by spraying and sprinkling the objects to be disinfected with the liquid, and then placing them in a tightly covered box, so that they are disinfected by the evolution of the gas, or by wetting sheets with a formalin solution and letting them hang in the room to be disinfected.
The method most frequently employed is to generate the formaldehyde in generators, retorts, and in the so-called autoclaves, and then to force it through apertures into the room.
Of the other gaseous disinfectants used, hydrocyanic acid and chlorine may be mentioned, although they
Hydrocyanic Acid is frequently used as an insecticide in ships, mills, and greenhouses, but its germicidal power is weak.
Chlorine is a good germicide, but is very irritating, poisonous, and dangerous to handle; it is evolved by the decomposition of chlorinated lime with sulphuric acid. Chlorine gas is very injurious to objects, materials, and colors, and its use is therefore very limited.
Chemicals Used as Disinfectants
Solution of chemicals, in order to be effective, must be used generously, in concentrated form, for a prolonged time, and, if possible, warm or hot. The strength of the solution must depend upon the work to be performed and the materials used. The method of applying the solution differs. It may consist in immersing and soaking the infected object in the solution; or the solution may be applied as a wash to surfaces, or used in the form of sprays, atomizers, etc. The most important solutions of chemicals and the ones most frequently employed are those of carbolic acid and bichloride of mercury.
Carbolic Acid.—In the strength of 1:15,000 carbolic acid prevents decomposition; a strength of 1:1,000 is needed for the destruction of bacteria, and a three per cent to five per cent solution for the destruc
Bichloride of Mercury (corrosive sublimate) is a potent poison and a powerful germicide; in solutions of 1:15,000 it stops decomposition; in solutions of 1:2,000 it kills bacteria in two hours; and in a strength of 1:500 it acts very quickly as a germicide for all bacteria, and even for spores. Corrosive sublimate dissolves in sixteen parts of cold and three parts of boiling water, but for disinfecting purposes it should be colored so that it may not be inadvertently used for other purposes, as the normal solutions are colorless and may accidentally be used internally. The action of the bichloride is increased by heat.
Formalin is a forty per cent solution of formaldehyde gas, and its uses and methods of employment have already been considered.
Potassium Permanganate is a good germicide, and weak solutions of it are sufficient to kill some bacteria, but the objections against its use are that solutions of potassium permanganate become inert and decompose on coming in contact with any organic matter. Furthermore, the chemical would be too expensive for disinfecting purposes.
Lime.—When carbonate of lime is calcined the product is common lime, which, upon being mixed with water, produces slaked lime; when to the latter considerable water is added, the product is milk of lime, and also whitewash. Whitewash is often used to disinfect walls and ceilings of cellars as well as of rooms; milk of lime is used to disinfect excreta in privy vaults, school sinks, etc. Whenever lime is used for disinfecting excreta it should be used generously, and be thoroughly mixed with the material to be disinfected.
Disinfection of Rooms
Practical disinfection is not a routine, uniform, and thoughtless process, but demands the detailed, conscientious application of scientific data gained by research and laboratory experiments. Disinfection to be thorough and successful cannot be applied to all objects, material, and diseases in like manner, but must be adjusted to the needs of every case, and must be performed conscientiously. Placing a sulphur candle in a room, spilling a quart of carbolic acid or a couple
Rooms.—In the disinfection of rooms the disinfectant used varies with the part of the room as well as with the character of the room. When a gaseous disinfectant is to be used sulphur dioxide or formaldehyde is employed, with the tendency lately to replace the former by the latter. Wherever there are delicate furnishings, tapestries, etc., sulphur cannot be used on account of its destructive character; when sulphur is employed it is, as a rule, in the poorer class of tenement houses where there is very little of value to be injured by the gas, and where the sulphur is of additional value as an insecticide. Whenever gaseous disinfectants are used the principal work of the disinfector is in the closing up of the cracks, apertures, holes, and all openings from the room to the outer air, as otherwise the gaseous disinfectant will escape. The closing up of the open spaces is accomplished usually by means of gummed-paper strips, which are obtainable in rolls and need only to be moistened and applied to the cracks, etc. Openings into chimneys, ventilators, transoms, and the like must not be overlooked by the disinfector. After the openings have already been closed up the disinfectant is applied and the disinfector quickly leaves the room, being careful to close the door
Walls and Ceilings of rooms should be disinfected by scrubbing with a solution of corrosive sublimate or carbolic acid; and in cases of tuberculosis and wherever there is fear of infection adhering to the walls and ceilings, all paper, kalsomine, or paint should be scraped off and new paper, kalsomine, or paint applied.
Metal Furniture should first be scrubbed and washed with hot soapsuds, and then a solution of formalin, carbolic acid, or bichloride applied to the surfaces and cracks.
Wooden Bedsteads should be washed with a disinfecting solution and subjected to a gaseous disinfectant in order that all cracks and openings be penetrated and all insects be destroyed.
Bedding, Mattresses, Pillows, Quilts, etc., should be packed in clean sheets moistened with a five per cent solution of formalin, and then carted away to be thoroughly disinfected by steam in a special apparatus.
Sheets, Small Linen and Cotton Objects, Tablecloths, etc., should be soaked in a carbolic-acid solution and then boiled.
Rubbish, Rags, and Objects of Little Value found in an infected room are best burned.
Glassware and Chinaware should either be boiled or subjected to dry heat.
Woolen Goods and Wool are injured by being steamed, and hence may be best disinfected by formalin solutions or by formaldehyde gas.
Books are very difficult to disinfect, especially such books as were handled by the patient, on account of the difficulty of getting the disinfectant to act on every page of the book. The only way to disinfect books is to hang them up so that the leaves are all open, and then to subject them to the action of formaldehyde gas for twelve hours. Another method sometimes employed is to sprinkle a five per cent solution of formalin on every other page of the book; but this is rather a slow process.
Stables need careful and thorough disinfection. All manure, hay, feed, etc., should be collected, soaked in oil, and burned. The walls, ceilings, and floors should then be washed with a strong disinfecting solution applied with a hose; all cracks are to be carefully cleaned and washed. The solution to be used is preferably lysol, creolin, or carbolic acid. After this
Food cannot be very well disinfected unless it can be subjected to boiling. When this is impossible it should be burned.
Cadavers of infected persons ought to be cremated, but as this is not always practicable, the next best way is to properly wash the surface of the body with a formalin or other disinfecting solution, and then to have the body embalmed, thus disinfecting it internally and externally.
Disinfectors, coming often as they do in contact with infected materials and persons, should know how to disinfect their own persons and clothing. So far as clothing is concerned the rule should be that those handling infected materials have a special uniform
FOOTNOTES:
CHAPTER XI
Cost of Conveyed Heating Systems
In our variable climate, with its sudden and extreme changes in temperature, the matter of heating and ventilation demands the serious attention of all houseowners and housebuilders.
The most common method of heating the modern dwelling is by a hot-air furnace in the cellar, with sheet-metal ducts for conveying the heated air to the various rooms. The advantages of a furnace are cheapness of installation and, in moderate weather, a plentiful supply of warm but very dry air. The disadvantages are the cost of fuel consumed, the liability of the furnace to give off gas under certain conditions, and the inability to heat certain rooms with some combinations of temperature and wind. The cost of installing a furnace and its proper ducts in a ten-room house is from $250 to $350; such a furnace will consume fifteen to twenty tons of anthracite coal in a season in the latitude of New York City. The hot-air system works better with compact square houses than with long, "rangy" structures. For a
Perhaps the next most popular arrangement is a sectional cast-iron hot-water heater, with a system of piping to and from radiators in the rooms to be heated. Hot-water heating has many advantages, some of which are the warmth of the radiators almost as soon as the fire is started and after the fire is out; the moderation of the heat; the freedom from sudden changes in amount of heat radiated; the absence of noise in operation, and the low cost in fuel consumed. Some of the disadvantages are the high cost of installation and the lack of easy or ready control (as the hot water cools slowly, and shutting the radiator valves often puts the whole system out of adjustment). A hot-water heating plant for a ten-room house will cost $400 to $600, according to the type of boiler; the corresponding fuel consumption will be twelve to sixteen tons of coal per season.
The third system in common use is by steam through radiators or coils of pipe connected to a cast-iron sectional boiler, or a steel tubular boiler set in brickwork. This system is in use in practically all large buildings; and its advantages are the moderate cost of installation (as the single-pipe system is very efficient and the pressure to be provided against in connections and fittings is slight); the ease of control (since any good equipment will furnish steam in twenty minutes from the time the fire is
The disadvantages of steam heat are no heat, or next to none, without the production of steam, involving some noise in operation, and danger of explosion. Steam equipment in a ten-room house will cost $300 to $550, the lower price being for a sectional boiler and the higher for a steel boiler set in brickwork. The fuel consumed will be from ten to fifteen tons per season.
Both hot-water and steam systems require supplementary means of ventilation. Placing the radiators in exposed places, as beneath windows, in the main hall near the front door, in northwest corners and near outside walls, will insure some circulation of air; and, if one or two open fire places be provided on each floor, there will be, in most cases, sufficient ventilation without the use of special ducts.