CHAPTER XX BOAT AND SHIP RAISING LIFTS

Previous

In modern locomotion, whether by land or water, it becomes increasingly necessary to keep the way unobstructed where traffic is confined to the narrow limits of a pair of rails, a road, or a canal channel. We widen our roads; we double and quadruple our rails. Canals are, as a rule, not alterable except at immense cost; and if, in the first instance, they were not built broad enough for the work that they are afterwards called upon to do, much of their business must pass to rival methods of transportation. Modern canals, such as the Manchester and Kiel canals, were given generous proportions to start with, as their purpose was to pass ocean-going ships, and for many years it will not be necessary to enlarge them. The Suez Canal has been widened in recent years, by means of dredgers, which easily scoop out the sandy soil through which it runs and deposit it on the banks. But the Corinth Canal, cut through solid rock, cannot be thus economically expanded, and as a result it has proved a commercial failure.

Even if a canal be of full capacity in its channel-way there are points at which its traffic is throttled. However gently the country it traverses may slope, there must occur at intervals the necessity of making a lock for transferring vessels from one level to the other. Sometimes the ascent or descent is effected by a series of steps, or flight of locks, on account of the magnitude of the fall; and in such cases the loss of time becomes a serious addition to the cost of transport.

In several instances engineers have got over the difficulty by ingenious hydraulic lifts, which in a few minutes pass a boat through a perpendicular distance of many feet. At Anderton, where the Trent and Mersey Canal meets the Weaver Navigation, barges up to 100 tons displacement are raised fifty feet. Two troughs, each weighing with their contents 240 tons, are carried by two cast-iron rams placed under their centres, the cylinders of which are connected by piping. When both troughs are full the pressure on the rams is equal, and no movement results; but if six inches of water be transferred from the one to the other, the heavier at once forces up the lighter. At Fontinettes, on the Neufosse Canal, in France, at La LouviÈre, in Belgium, and at Peterborough, in Canada, similar installations are found; the last handling vessels of 400 tons through a rise of 65 feet.

Fine engineering feats as these are, they do not equal the canal-lift on the Dortmund-Ems Canal, which puts Dortmund in direct water communication with the Elbe, and opens the coal and iron deposits of the Rhine and Upper Silesia to the busy manufacturing district lying between these two localities. About ten miles from its eastern extremity the main reach of the canal forks off at Heinrichenburg, from the northward branch running to Dortmund, its level being on the average some 49 feet lower than the branch. For the transference of boats an "up" and "down" line of four locks each would have been needed; and apart from the inevitable two hours' delay for locking, this method would have entailed the loss of a great quantity of precious water.

Mr. R. Gerdau, a prominent engineer of DÜsseldorf-Grafenburg, therefore suggested an hydraulic lift, which should accommodate boats of 700 tons, and pass them from the one level to the other in five minutes.

This scheme was approved, and has recently been completed. The principle of the lift is as follows:—A trough, 233 feet long, rests on five vertical supports, themselves carried by as many hollow cylindrical floats moving up and down in deep wells full of water. The buoyancy of the five floats is just equal to the combined weight of the trough and its load, so that a comparatively small force causes the latter to rise or fall, as required. By letting off water from the trough—which is, of course, furnished with doors to seal its ends—it would be made to ascend; while the addition of a few tons would cause a descent. But this would mean waste of water; and, were the trough not otherwise governed, a serious accident might happen if a float sprang a leak. Motion is therefore imparted to the trough by four huge vertical screws, resting on solid masonry piers, and turning in large collars attached to the trough near its corners. All the screws work in unison through gearing, as they are sufficiently stout to bear the whole load; even were the floats removed, no tilting or sudden fall is possible. The screws are driven by an electric motor of 150 horse-power, perched on the girders joining the tops of four steel towers which act as guides for the trough to move in, while they absorb all wind-pressure. Under normal circumstances the trough rises or sinks at a speed of four inches per second. The total mass in motion—trough, water, boat, and floats—is 3,100 tons. Our ideas of a float do not ordinarily rise above the small cork which we take with us when we go a-fishing, or at the most above the buoy which bobs up and down to mark a fair-way. These five "floats"—so called—belong to a very much larger class of creations. Each is 30 feet across inside and 46 1 / 2 feet high. Their wells, 138 feet deep, are lined with concrete nearly a yard thick, to ensure absolute water-tightness, inside the stout iron casings, which rise 82 feet above the bottom.

In view of the immense weight which they have to carry, the piers under the screw-spindles are extremely solid. At its base each measures 14 feet by 12 feet 4 inches, and tapers upwards for 36 feet till these dimensions have contracted to 8 feet 10 inches by 6 feet 6 inches. The spindles, 80 feet long and 11 inches in diameter, must be four of the largest screws in existence. To make it absolutely certain that they contained no flaws, a 4-inch central hole was drilled through them longitudinally—another considerable workshop feat. If shafts of such length were left unsupported when the trough was at its highest point, there would be danger of their bending and breaking; and they are, therefore, provided with four sliding collars each, connected each to its fellow by a rod. When the trough has risen a fifth of its travel the first rod lifts the first collar, which moves in the guide-pillars. This in turn raises the second; the second the third; and so on. So that by the time the trough is fully raised each spindle is kept in line by four intermediate supports.

The trough, 233 feet long by 34 1 / 2 feet wide, will receive a vessel 223 feet long between perpendiculars. It has a rectangular section, and is built up of stout plates laid on strong cross-girders, all carried by a single huge longitudinal girder resting on the float columns.

One of the most difficult problems inseparable from a structure of this kind is the provision of a water-tight joint between the trough and the upper and lower reaches of the canal. At each end of the trough is a sliding door faced on its outer edges with indiarubber, which the pressure of the water inside holds tightly against flanges when pressure on the outside is removed. The termination of the canal reaches have similar doors; but as it would be impossible to arrange things so accurately that the two sets of flanges should be water-tight, a wedge, shaped like a big U, and faced on both sides with rubber, is interposed. The wedge at the lower reach gate is thickest at the bottom; the upper wedge the reverse; so that the trough in both cases jams it tight as it comes to rest. The wedges can be raised or lowered in accordance with the fluctuations of the canals.

After thus briefly outlining the main constructional features of the lift, let us watch a boat pass through from the lower to the upper level. It is a steamer of 600 tons burden, quite a formidable craft to meet so far inland; while some distance away it blows a warning whistle, and the motor-man at his post moves a lever which sets the screw in motion. The trough sinks until it has reached the proper level, when the current is automatically broken, and it sinks no further. Its travel is thus controllable to within 3 / 16 of an inch.

An interlocking arrangement makes it impossible to open the trough or reach gates until the trough has settled or risen to the level of the water outside. On the other hand, the motor driving the lifting screws cannot be started until the gates have been closed, so that an accidental flooding of the countryside is amply provided against.

A man now turns the crank of a winch on the canal bank and unlocks the canal gate. A second twist couples the gates between the canal and the trough together and starts the lifting-motors overhead, which raise the twenty-eight ton mass twenty-three feet clear of the water-level. The boat enters; the doors are lowered and uncoupled; the reach gate is locked. The spindle-motor now starts; up "she" goes, and the process of coupling and raising gates is repeated before she is released into the upper reach. From start to finish the transfer occupies about five minutes.

If a boat is not self-propelled, electric capstans help it to enter and leave the trough. Such a vessel could not be passed through in less than twenty minutes.

Putting on one side the ship dry docks, which can raise a 15,000 ton vessel clear of the sea, the Dortmund hydraulic lift is the largest lift in the world, and the novelty of its design will, it is hoped, render the above account acceptable to the reader. Before leaving the subject another canal lift may be noticed—that on the Grand Junction Canal at Foxton, Leicestershire—which has replaced a system of ten locks, to raise barges through a height of 75 feet.

The new method is the invention of Messrs. G. and C. B. J. Thomas. In principle it consists of an inclined railway, having eight rails, four for the "up" and as many for the "down" traffic. On each set of four rails runs a tank mounted on eight wheels, which is connected with a similar tank on the other set by 7-inch steel-wire ropes passing round winding drums at the top of the incline. The tanks are thus balanced. At the foot of the incline a barge which has to ascend is floated into whichever tank may be ready to receive it, and the end gate is closed. An engine is then started, and the laden tank slides "broadside on" up the 300-foot slope. The summit being reached, the tank gates are brought into register with those of the upper reach, and as soon as they have been opened the boat floats out into the upper canal. Boats of 70 tons can be thus transferred in about twelve minutes, at a cost of but a few pence each. On a busy day 6,000 tons are handled.

A BOAT LIFT
By permission of] [Mr. Gordon Thomas.

A BOAT LIFT

A canal barge lift which has superseded ten locks at Foxton, Leicestershire. Two tanks, balancing one another, run on separate tracks up and down an incline. At the bottom and top of the incline the tank is submerged so that a barge may float in or out.

A SHIP-RAISING LIFT

The writer has treated one form of lift for raising ships out of the water—the floating dry dock—elsewhere,[21] so his remarks in this place will be confined to mechanism which, having its foundations on Mother Earth, heaves mighty vessels out of their proper element by the force of hydraulic pressure. Looking round for a good example of an hydraulic ship-lift, we select that of the Union Ironworks, San Francisco.

Some years ago the works were moved from the heart of the city to the edge of Mission Bay, with the object of carrying on a large business in marine engineering and shipbuilding. For such a purpose a dry dock, which in a short time will lift a vessel clear of the water for cleaning or repairs, is of great importance to both owners and workmen. By the courtesy of the proprietors of Cassier's Magazine we are allowed to append the following account of this interesting lift.

The site available for a dock at the Union Ironworks was a mud-flat. The depth of soft mud being from 80 to 90 feet, would render the working of a graving dock (i.e. one dug out of the ground and pumped dry when the entrance doors have been closed) very disagreeable; as such docks, where much mud is carried in with the water, require a long time to be cleaned and to dry out. Plans were therefore prepared by Mr. George W. Dickie for an hydraulic dock, including an automatic control, which the designer felt confident would meet all the requirements of the situation, and which, after careful consideration, the Union Ironworks decided to build. Work was begun in January, 1886, and the dock was opened for business on June 15th, 1887—a very fine record.

This dock consists of a platform built of cross and longitudinal steel girders, 62 feet wide and 440 feet long, having keel blocks and sliding bilge blocks upon which the ship to be lifted rests. The lifting power is generated by a set of four steam-driven, single-acting horizontal plunger pumps, the diameter of the plungers being 3 1 / 2 inches and the stroke 36 inches. Forty strokes per minute is the regular speed.

There is a weighted accumulator, or regulator, connected with the pumps, the throttle valve of the engines being controlled by the accumulator.[22] The load on the accumulator consists of a number of flat discs of metal, the first one about 14 inches thick and the others about 4 inches thick, the diameter being about 4 feet. The first disc gives a pressure of 300 lbs. per square inch. This is sufficient to lift the dock platform without a ship, and is always kept on.

In lifting a ship, as she comes out of the water and gets heavier on the platform, additional discs are taken on by the accumulator ram as required. The discs are suspended by pins on the side catching into links of a chain. The engineer, to take on another disc, unhooks the throttle from the accumulator rod, runs the engine a little above the normal speed, the accumulator rises and takes the weight of the disc to be added; the link carrying that disc is thus relieved and is withdrawn. The engineer again hooks the accumulator rod to the engine throttle, and the whole is self-acting again until another weight is required. When all the discs are on the ram the full pressure of 1,100 lbs. per square inch is reached, which enables a ship of 4,000 tons weight to be raised.

There are eighteen hydraulic rams on each side of the dock. These rams are each 30 inches in diameter and have a stroke of 16 feet; and as the platform rises 2 feet for 1 foot movement of the rams, the total vertical movement of the platform is 32 feet. When lowered to the lowest limit there are 22 feet of water over the keel blocks at high tide.

The foundations consist of seventy-two cylinders of iron, which extend from the top girders to several feet below the mud line. These cylinders are driven full of piles, no pile being shorter than 90 feet. The cylinders are to protect the piles from the teredo (the timber-boring worm), which is very destructive in San Francisco Harbour. A heavy cast-iron cap completes each of the foundation piers, and two heavy steel girders extend the full length of the dock on each side, resting on the foundation piers and uniting them all longitudinally. The hydraulic cylinders are carried by large castings resting on the girders, each having a central opening to receive a cylinder, which passes down between the piers. There are thirty-six foundation piers, and eighteen hydraulic cylinders on each side of the dock.

On the top of each hydraulic ram is a heavy sheave or pulley, 6 feet in diameter, over which pass eight steel cables, 2 inches in diameter, making in all 288 cables. One end of each cable is anchored in the bed-plates supporting the hydraulic cylinders, while the other end is secured to the side girders of the platform. Each of the cables has been tested with a load of 80 tons, so that the total test load for the ropes has been 21,000 tons.

In lifting a ship the load is never evenly distributed on the platform. There is, in fact, often more than one ship on the platform at once. Some rams, therefore, may have a full load and others much less. Under these conditions, to keep the platform a true plane, irrespective of the irregular distribution of the load, Mr. Dickie designed a special valve gear to make the action of the dock perfectly automatic. Down each side of the dock a shaft is carried, operated by a special engine in the power house. At each hydraulic ram this shaft carries a worm, gearing with a worm-wheel on a vertical screw extending the full height reached by the stroke of the ram. This screw works in a nut on the end of a lever, the other end of which is attached to the ram. Between the two points of support a rod, working the valves—also carried by the ram—engages with the lever. If at a given moment the screw-end is raised, say, six inches, the lever opens the valve. As the ram rises, the lever, having its other end similarly lifted by the rise, gradually assumes a horizontal position, and the valve closes.

To lift the dock the engine working the valve shaft is started, and with it the operating screws. These, through the levers, open the inlet valves. The rams now begin to move up: if any one has a light load it will move up ahead of the other, but in doing so it lifts the other end of the lever and closes the valve. In fact, the screws are continually opening the valves, while the motion of the rams is continually closing them, so that no ram can move ahead of its screw, and the speed of the screw determines the rate of movement of the lifting platform.

To lower the dock, the engine operating the valve shaft is reversed, and the screws and levers then control the outlet valves as they controlled the inlet valves in raising. When the platform has reached the limit of its movement, a line of locks on top of the foundation girders, thirty-six on each side, are pushed under the platform by an hydraulic cylinder, and the platform is lowered on to them, where it rests until the work is done on the ship; then the platform is again lifted, the locks are drawn back, and the platform with its load is lowered until the ship floats out. All the operations are automatic.

Since the dock was opened well over a thousand ships have been lifted in it without any accident whatever; the total register tonnage approaching 2,000,000. The great favour in which the dock is held by shipowners and captains is partly due to the fact already mentioned, that the ship is lifted above the level of tide water, where the air can circulate freely under the bottom, thus quickly taking up all the moisture, and where the workmen can carry on operations with greater comfort.

When extensive repairs have to be undertaken on iron or steel vessels, the fact that this dock forms part of an extensive shipbuilding plant, and is located right in the yard, enables such repairs to be executed with despatch and economy. Several large steamships have had the under-water portions of their hulls practically rebuilt in this dock. The steamship Columbia, of the Oregon Line, had practically a new bottom, including the whole of the keel, completed in twenty-six days. This is possible, because every facility is alongside the dock and the bottom of the vessel is on a level with the yard.

This being the only hydraulic dock controlled automatically (in 1897), it has attracted a large amount of attention from engineering experts in this class of work. English, French, German, and Russian engineers have visited the Union Iron Works to study its working, and their reports have done much to bring the facilities offered to shipping for repairs by the Union Iron Works to the notice of shipowners all the world over.

FOOTNOTES:

21. The Romance of Modern Engineering, pp. 383 foll.

22. For explanation of the "accumulator," see the chapter on Hydraulic Tools (p. 81).


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page