A good motto to blazon over the doors of a fire-brigade station would be "He gives help twice who gives help quickly." The spirit of it is certainly shown by the brave men who, as soon as the warning signal comes, spring to the engines and in a few minutes are careering at full speed to the scene of operations.
Speed and smartness have for many years past been associated with our fire brigades. We read how horses are always kept ready to be led to the engines; how their harness is dropped on to them and deft fingers set the buckles right in a twinkling, so that almost before an onlooker has time to realise what is happening the sturdy animals are beating the ground with flying hoofs. And few dwellers in large cities have not heard the cry of the firemen, as it rises from an indistinct murmur into a loud shout, before which the traffic, however dense, melts away to the side of the road and leaves a clear passage for the engines, driven at high speed and yet with such skill that accidents are of rare occurrence. The noise, the gleam of the polished helmets, the efforts of the noble animals, which seem as keen as the men themselves to reach the fire, combine to paint a scene which lingers long in the memory.
But efficient as the "horsed" engine is, it has its limitations. Animal strength and endurance are not an indefinite quantity; while the fireman grudges even the few short moments which are occupied by the inspanning of the team. In many towns, therefore, we find the mechanically propelled fire engine coming into favour. The power for working the pumps is now given a second duty of turning the driving-wheels. A parallel can be found in the steam-engine used for threshing-machines, which once had to be towed by horses, but now travels of itself, dragging machine and other vehicles behind it.
The earlier types of automobile fire engines used the boiler's steam to move them over the road. Liverpool, a very enterprising city as regards the extinction of fire, has for some time past owned a powerful steamer, which can be turned out within a minute of the call, can travel at any speed up to thirty miles an hour, and can pump 500 gallons per minute continuously. Its success has led to the purchase of other motor engines, some fitted with a chemical apparatus, which, by the action of acid on a solution of soda in closed cylinders, is enabled to fling water impregnated with carbonic acid gas on to the fire the moment it arrives within working distance of the conflagration, and gives very valuable "first aid" while the pumping apparatus is being got into order.
TWO MOTOR FIRE-ENGINES Two Motor Fire-engines built by Messrs. Merryweather, London. That on the left is driven by petrol, and in addition to pumping-gear carries a wheeled fire-escape. That on the right is driven by steam. Both types are much faster than horses, being able to travel at a rate of over 20 miles an hour.
As might reasonably be expected, the petrol motor has found a fine field for its energies in connection with fire extinction. Since it occupies comparatively little space, more accommodation can be allowed for the firemen and gear. Furthermore, a petrol engine can be started in a few seconds by a turn of a handle, whereas a steamer is delayed until steam has been generated. Messrs. Merryweather have built a four-cylindered, 30 h.p. petrol fire engine capable of a speed of forty miles an hour. It has two systems of ignition—the magneto (or small dynamo) and the ordinary accumulator and coil—so that electrical breakdowns are not likely to occur. A fast motor of this kind, with a pumping capacity of 300 gallons per minute, is peculiarly suited for large country estates, where it can be made to perform household or farm duties when not required for its primary purpose. Considering the great number of country mansions, historically interesting, and full of artistic treasures, which England boasts, it is a matter for regret that such an engine is not always included among the appliances with which every such property is furnished. How often we read "Old mansion totally destroyed by fire," which usually means that in a few short hours priceless pictures, furniture, and other objects of art have been destroyed, because help, when it did come, arrived too late. Owners are, however, more keenly alive to their responsibilities now than formerly. The small hand-worked engine, or the hydrant of moderate pressure, is not considered a sufficient guard for the house and its contents. In many establishments the electric lighting engines are designed to work either the dynamo or a set of pumps as occasion may demand; or the motor is mounted on wheels so that it may be easily dragged by hand to any desired spot.
The "latest thing" in motor fire engines is one which carries a fire-escape with it, in addition to water-flinging machinery. An engine of this type is to be found in some of the London suburbs. A chemical cylinder lies under the driver's seat, where it is well out of the way, and coiled beside it is its reel of hose. The "escape" rests on the top of the vehicle, the wheels hanging over the rear end, while the top projects some distance in front of the steering wheels. The ladder, of telescopic design, can be extended to fifty feet as soon as it has been lowered to the ground. Since the saving of life is even more important than the saving of property, it is very desirable that a means of escape should be at hand at the earliest possible moment after an outbreak. This combination apparatus enables the brigade to nip a fire in the bud, if it is still a comparatively small affair, and also to rescue any people whose exit may have been cut off by the fire having started on or near the staircases.
The Wolseley Motor-Car Company has established a type of chemical motor fire engine which promises to be very successful. A 20 h.p. motor is placed forward under the frame to keep the centre of gravity low. When fully laden, it carries a crew of eight men, two 9-foot ladders, two portable chemical extinguishers, a 50-gallon chemical cylinder, and a reel on which is wound a hose fifty-three yards long. The wheels are a combination of the wooden "artillery" and the wire "spider," wires being strung from the outer end of the hub to the outer ends of the wooden spokes to give them increased power to resist the strain of sudden turns or collisions. An artillery wheel, not thus reinforced, is apt to buckle sideways and snap its spokes when twisted at all.
England has always led the way in matters relating to fire extinction, and to her is due the credit of first harnessing mechanical motive power to the fire engine. Other countries are following her example, and consequently we find fire apparatus moved by the petrol motor in places so far apart as Cape Town, Valparaiso, Mauritius, Sydney, Berlin, New York, Montreal. There can be no doubt but that in a very few years horse-traction will be abandoned by the brigades of our large towns. It has been suggested that the fire-pump of the future will be driven by electricity drawn from switches on the street mains; enough current being stored in accumulators to move the pump from station to fire. In such a case it would be possible to use very powerful pumps, as an electric motor is extremely vigorous for its size and weight. Even to-day steam fire engines can fling 2,000 gallons per minute, and fire floats (for use on the water) considerably more. Possibly the engine of to-morrow will pour 5,000 gallons a minute on the flames if it can get that amount from the water mains, and so render it unnecessary to summon in a large number of engines to quell a big conflagration. Three hundred thousand gallons an hour ought to check a very considerable "blaze."
The force with which a jet of water leaves the huge nozzle of a powerful engine is so great that it would seriously injure a spectator at a distance of fifty yards. The "kick-back" of the water on the nozzle is sometimes sufficient to overcome the power of one man to hold the nozzle in position with his hands, and it becomes needful to provide supports with pointed ends to stick into the ground, or hooks which can be attached to the rungs of a ladder. For an attack on the upper storeys of a house a special "water tower" is much used in America. It consists of a lattice-work iron frame, about twenty-five feet long, inside which slides an extensible iron tube five inches in diameter. The tower is attached to one end of a wagon of unusual length and breadth, and is raised to a vertical position by a rack gearing with a quadrant built into its base below the trunnions or pivots on which it swings. Carbonic acid gas, generated in a cylinder carried on the wagon, works a piston connected with the racks, and on a tap being turned slowly brings the tower to the perpendicular, when it is locked. The telescopic tube, carrying the hose inside it, is then pulled up by windlasses, until the 2 1 / 2 -inch nozzle is nearly fifty feet from the ground. The nozzle itself can be rotated from below by rods and gearing, and the angle of the stream regulated by a rope. If several engines simultaneously deliver their water to the tower hoses 1,000 gallons a minute can be concentrated in a continuous 2 1 / 2 -inch jet on to the fire.
The ordinary horsed fire engine is simple in its design and parts. The vertical boiler contains a number of nearly horizontal water tubes, which offer a great surface to the furnace gases, so that it may raise steam very quickly. The actual water capacity of the boiler is small, and therefore it must be fed continuously by a special pump. The pumps, two or three in number, usually have piston rods working direct from the steam cylinders on the plungers of the pumps. Between cylinders and pumps are slots in the rods in which rotate cranks connected with one another and with a fly-wheel which helps to keep the running steady. After leaving the pumps the water enters a large air vessel, which reduces the sudden shocks of delivery by the cushioning effect of the air, and causes a steady pressure on the water in the hoses.