Estimating the actual consumption of coal for home use in Great Britain at 110 millions of tons per annum, a rise of eight shillings per ton to consumers is equivalent to a tax of 44 millions per annum. These are the figures taken by Sir William Armstrong in his address at Newcastle last February. As the recent abnormal rise in the value of coal has amounted to more than this, consumers have been paying at some periods above a million per week as premium on fuel, even after making fair deduction for the rise of price necessarily due to the diminishing value of gold. Are we, the consumers of coal, to write off all this as a dead loss, or have we gained any immediate or prospective advantage that may be deducted from the bad side of the account? I suspect that we shall gain sufficient to ultimately balance the loss, and, even after that, to leave something on the profit side. The abundance of our fuel has engendered a shameful wastefulness that is curiously blind and inconsistent. As a typical example of this inconsistency, I may mention a characteristic incident. A party of young people were sitting at supper in the house of a colliery manager. Among them was the vicar of the parish, a very jovial and genial man, but most earnest withal in his vocation. Jokes and banterings were freely flung across the table, and no one enjoyed the fun more heartily than the vicar; but presently one unwary youth threw a fragment of bread-crust at his opposite neighbor, and thus provoked retaliation. The countenance of the vicar suddenly changed, and in stern There are doubtless several combining reasons for this, but I suspect that the principal one is the profound impression which we have inherited from the experience and traditions of the horrors of bread-famine. A score of proverbs express the important practical truth that we rarely appreciate any of our customary blessings until we have tasted the misery of losing them. Englishmen have tasted the consequences of approximate exhaustion of the national grain store, but have never been near to the exhaustion of the national supply of coal. I therefore maintain most seriously that we need a severe coal famine, and if all the colliers of the United Kingdom were to combine for a simultaneous winter strike of about three or six months’ duration, they might justly be regarded as unconscious patriotic martyrs, like soldiers slain upon a battle-field. The evils of such a thorough famine would be very sharp, and proportionally beneficent, but only temporary; there would not be time enough for manufacturing rivals to sink pits, and at once erect competing Nothing short of the practical and impressive lesson of bitter want is likely to drive from our households that wretched fetish of British adoration, the open “Englishman’s fireside.” Reason seems powerless against the superstition of this form of fire-worship. Tell one of the idolaters that his household god is wasteful and extravagant, that five-sixths of the heat from his coal goes up the chimney, and he replies, “I don’t care if it does; I can afford to pay for it. I like to see the fire, and have the right to waste what is my own.” Tell him that healthful ventilation is impossible while the lower part of a room opens widely into a heated shaft, that forces currents of cold air through doors and window leakages, which unite to form a perpetual chilbrain stratum on the floor, and leaves all above the mantel-piece comparatively stagnant. Tell him that no such things as “draughts” should exist in a properly warmed and ventilated house, and that even with a thermometer at zero outside, every part of a well-ordered apartment should be equally habitable, instead of merely a semicircle about the hearth of the fire-worshiper; he shuts his ears, locks up his understanding, because his grandfather and grandmother believed that the open-mouthed chimney was the one and only true English means of ventilation. This popular inconsistency of disregarding the waste of a valuable and necessary commodity, of which the supply is limited and unrenewable, while we have such proper horror of wilfully wasting another similar commodity which can be annually replaced as long as man remains in living contact with the earth, will gradually pass away when rational attention is directed to the subject. If the recent very mild suggestion of a coal-famine does something towards placing coal on a similar pedestal of popular veneration to that which is held by the “staff of life,” the million a week that it has cost the coal consumer will have been profitably invested. Many who were formerly deaf to the exhortations of fuel economists are now beginning to listen. “Forty shillings per ton” has acted like an incantation upon the spirit of Count Rumford. After an oblivion of more than eighty years, his practical lessons have again sprung up among us. Some are already inquiring how he managed to roast 112 lbs. of beef at the Foundling Hospital with 22 lbs. of coal, and to use the residual heat for cooking the potatoes, and why it is that with all our boasted progress we do not now in the latter third of the nineteenth century, repeat that which he did in the eighteenth. The fact that the consumption of coal in London during the first four months of 1873 has, in spite of increasing population, amounted to 49,707 tons less than the corresponding period of 1872, shows that some feeble attempts have been made to economize the domestic consumption of fuel. One very useful result of the recent scarcity of coal has been the awakening of a considerable amount of general There are many discrepancies in the estimates that have been made of the total available quantity of British coal. The speculative nature of some of the data renders this inevitable, but all authorities appear to agree on one point, viz., that the amount of our supplies will not be determined by the actual total quantity of coal under our feet, but by the possibilities of reaching it. This is doubtless correct, but how will these possibilities be limited, and what is the extent or range of the limit? On both these points I venture to disagree with the eminent men who have so ably discussed this question. First, as regards the nature of the limit or barrier that will stop our further progress in coal-getting. This is generally stated to be the depth of the seams. The Royal Commissioners of 1870 based their tables of the quantity of available coal in the visible and concealed coal-fields upon the assumption that 4000 feet is the limit of possible working. This limit is the same that was taken by Mr. Hull ten years earlier. Mr. Hull, in the last edition of “The Coal Fields of Great Britain,” p. 326, referring to Professor Ramsay’s estimate, says, “These estimates are drawn up for depths down to 4000 feet below the surface, and even beyond this limit; but with this latter quantity it is scarcely necessary that we should concern ourselves.” I shall presently show reasons for believing that the time may ultimately arrive when we shall concern ourselves with this deep coal, and actually get it; while, on the other hand, that remote epoch will be preceded by another period of practical approximate exhaustion of British coal supply, which is likely to arrive long before we reach a working depth of 4000 feet. The Royal Commissioners estimate that within the limits of 4000 feet we have hundreds of square miles of attainable coal capable of yielding, after deducting 40 per cent for loss in getting, etc., 146,480 millions of tons; or, if we take this with Mr. Hull’s deduction of one-twentieth for seams under two feet in thickness, there remains 139,000 The latest returns show, for 1872, an output of 123,546,758 tons, which, compared with 1871, gives a rate of increase of more than double the estimate of Mr. Hull, and indicate that prices have not yet risen sufficiently to check the geometrical rate of increase.24 Mr Hull very justly points out the omission in those estimates which do not “take into account the diminishing ratio at which coal must be consumed when it becomes scarcer and more expensive;” but, on the other hand, he omits the opposite influence of increasing prices on production, which has been strikingly illustrated by the extraordinary number of new The action of increasing prices has been but lightly considered hitherto, though its importance is paramount in determining the limits of our coal supply; I even venture so far as to affirm that it is not the depth of the coal seams, not the increasing temperature nor pressure as we proceed downwards, nor even thinness of seam, that will practically determine the limits of British coal-getting, but simply the price per ton at the pit’s mouth. In proof of this, I may appeal to actual practice. Mr. Hull and others have estimated the working limit of thinness at two feet, and agree in regarding thinner seams than this as unworkable. This is unquestionably correct so long as the getting is effected in the usual manner. A collier cannot lie down and hew a much thinner seam than this, if he works as colliers work at present. But the lead and copper miners succeed in working far thinner lodes, even down to the thickness of a few inches, and the gold-digger crushes the hardest component of the earth’s crust to obtain barely visible grains of the precious metal. This extension of effort is entirely determined by market value. At a sufficiently high price the two-feet limit of coal-getting would vanish, and the collier would work after the manner of the lead-miner. The obstacles which are assumed to determine the 4000 feet limit are increasing density due to greater pressure, and the elevation of temperature which proceeds as we go downwards. The first of these difficulties has, I suspect, been very much overstated, if not altogether misunderstood; though it is but fair to add that Mr. Hull, who most prominently dwells upon it, does so with all just and philosophic caution. He says that “it is impossible to speak with certainty of the effect of the accumulative weight of 3000 or 4000 feet of strata on mining operations. In all probability one effect would be to increase the density of the coal itself, and of its accompanying strata, so as to increase the difficulty of excavating,” and he concludes by stating that “in the face of these two obstacles—temperature and pressure, ever increasing with the depth—I have considered it utopian to include in calculations having reference to coal supply any quantity, however considerable, which lies at a greater depth than 4000 feet. Beyond that depth I do not believe that it will be found practicable to penetrate. Nature rises up, and presents insurmountable barriers.”26 On one point I differ entirely from Mr. Hull, viz., the conclusion that the increased “density of the coal itself and of its accompanying strata” will offer any serious obstacle. On the contrary, there is good reason to believe that such density is one of the essential conditions for working deep coal. Even at present depths of working, density and hardness of the accompanying strata is one of the most important aids to easy and cheap coal-getting. With a dense roof and floor the collier works vigorously and fearlessly, and he escapes the serious cost of timbering. A very interesting subject for investigation is hereby suggested. Do rocks of given composition and formation increase in density as they dip downwards; and if so, does this increase of density follow any law by which we may determine whether their power of resisting superincumbent pressure increases in any approach to the ratio of the increasing pressure to which they are naturally subjected? If the increasing density and power of resistance reaches or exceeds this ratio, deep mining has nothing to fear from pressure. If they fall short of it, the difficulties arising from pressure may be serious. Friability, viscosity, and power of resisting a crushing strain must be considered in reference to this question. Mr. Hull has collected a considerable amount of data Mr. Leifchild, in the last number of the “Edinburgh Review,” in discussing this question, tells us that “the normal heat of our blood is 98°, and fever heat commences at 100°, and the extreme limit of fever heat may be taken at 112°. Dr. Thudichum, a physician who has specially investigated this subject, has concluded from experiments on his own body at high temperatures, that at a heat of 140° no work whatever could be carried on, and that at a temperature of from 130° to 140° only a very small amount of labor, and that at short periods, was practicable; and further, that human labor daily, and at ordinary periods, is limited by 100° of temperature, as a fixed point, and then the air must be dry, for in moist air he did not think men could endure ordinary labor at a temperature exceeding 90°.” It may be presumptuous on my part to dispute the conclusions During the hottest days of the summer of 1868 I was engaged in making some experiments in the re-heating furnaces at Sir John Brown & Co.’s works, Sheffield, and carried a thermometer about with me which I suspended in various places where the men were working. At the place where I was chiefly engaged (a corner between two sets of furnaces), the thermometer, suspended in a position where it was not affected by direct radiations from the open furnaces, stood at 120° while the furnace doors were shut. The radiant heat to which the men themselves were exposed while making their greatest efforts in placing and removing the piles was far higher than this, but I cannot state it, not having placed the thermometer in the position of the men. In one of the Bessemer pits the thermometer reached 140°, and men worked there at a kind of labor demanding great muscular effort. It is true that during this same week the puddlers were compelled to leave their work; but the tremendous amount of concentrated exertion demanded of the puddler in front of a furnace, which, during the time of removing the balls, radiates a degree of heat quite sufficient to roast a sirloin of beef if placed in the position of the puddles hands, is beyond comparison with that which would be demanded of a collier working even at a depth giving a theoretical rock temperature of 212°, and aided by the coal-cutting and other machinery that sufficiently high prices would readily command. In some of the operations of glass-making, the ordinary summer working temperature is considerably above 100°, and the radiant neat to which the workmen are subjected far exceeds 212°. This is the case during a “pot setting,” and in the ordinary work of flashing crown glass. As regards the mere endurance of a high temperature, the well-known experiments of Blagden, Sir Joseph Banks, and others have shown that the human body can endure for short periods a temperature of 260° F., and upwards. My own experience of furnace-work, and of Turkish baths, In order to obtain further information on this point, I have written to Mr. Tyndall, the proprietor of the Turkish baths at Newington Butts. He is an architect, who has had considerable experience in the employment of workmen and in the construction of Turkish baths and other hot-air chambers. He says: “Shampooers work in my establishment from four to five hours at a time in a moist atmosphere at a temperature ranging from 105° to 110°. I have myself worked twenty hours out of twenty-four in one day in a temperature over 110°. Once for one half-hour I shampooed in 185°. At the enamel works in Pimlico, belonging to Mr. Mackenzie, men work daily in a heat of over 300°. The moment a man working in a 110° heat begins to drink alcohol, his tongue gets parched, and he is obliged to continue drinking while at work, and the brain gets so excited that he cannot do half the amount. I painted my skylights, taking me about four hours, at a temperature of about 145°; also the hottest room skylights, which took me one hour, coming out at intervals for “a cooler,” at a temperature of 180°. I may add in conclusion, that a man can work well in a moist temperature of 110° if he perspires freely.” The following, by a writer whose testimony may be safely accepted, is extracted from an account of ordinary passenger ships of the Red Sea, in the “Illustrated News,” of November 9, 1872: “The temperature in the stoke-hole was 145°. The floor of this warm region is close to the ship’s keel, so it is very far below. There are twelve boilers, six on each side, each with a blazing furnace, which has to be opened at regular intervals to put in new coals, or to be poked up with long iron rods. This is the It must be remembered that the theoretical temperature of 116° at 4000 feet, the 133° at 5000 feet, or the 150° at 6000 feet, are the temperatures of the undisturbed rock; that this rock is a bad conductor of heat, whose surface may be considerably cooled by radiation and convection; and therefore we are by no means to regard the rock temperature as that of the air of the roads and workings of the deep coal-pits of the future.27 It is true that the Royal Commissioners have collected many facts showing that the actual difference between the face of the rocks of certain pits and the air passing through them is but small; but these data are not directly applicable to the question under consideration for the three following reasons: First. The comparisons are made between the temperature of the air and the actual temperature of the opened Second. The cooling effect of ventilation must (as the Commissioners themselves state) increase in a ratio which “somewhat exceeds the ratio of the difference between the temperature of the air and that of the surrounding surface with which it is in contact.” Thus, the lower we proceed the more and more effectively cooling must a given amount of ventilation become. The third, and by far the most important, reason is, that in the deep mining of the future, special means will be devised and applied to the purpose of lowering the temperature of the workings; that as the descending efforts of the collier increase with the ascending value of the coal, a new problem will be offered for solution, and the method of working coal will be altered accordingly. In the cases quoted by the Commissioners, the few degrees of cooling were effected by a system of ventilation that was devised to meet the requirements of respiration, and not for the purpose of cooling the mine. It would be very presumptuous for anyone in 1873 to say how this special cooling will actually be effected, but I will nevertheless venture to indicate one or two principles which may be applied to the solution of the problem. First of all, it must be noted that very deep mines are usually dry; and there is good reason to believe that, before reaching the Commissioners’ limit of 4000 feet, dry mining would be the common, and at and below 4000 feet the universal, case. At present we usually obtain coal from water-bearing strata, and all our arrangements are governed by this very serious contingency. With water removed, the whole system of coal-mining may be revolutionized, and thus the aspect of this problem of cooling the workings would become totally changed. Those who are acquainted with the present practice of mining are aware that when an estate is taken, and about to be worked for coal, the first question to be decided is the dip of the measures, in order that the sinking may be made The modern practice is to sink “a pair of pits,” both on the deep, and within a short distance of each other. The object of the second is ventilation. By contrivances, which I need not here detail, the air is made to descend one of the pits, “the downcast shaft,” then to traverse the roads and workings wherein ventilation is required, and return by a reverse route to the “upcast shaft,” by which it ascends to the surface. Thus it will be seen that, whenever the temperature of the roads and workings exceeds that of the outer atmosphere; the air currents have to be forced to travel through the mine in a direction contrary to their natural course. The cooler air of the downcast shaft has to climb the inclined roads, and then after attaining its maximum temperature in the fresh workings must descend the roads till it reaches the upcast shaft. The cool air must rise and the warmer air descend. What, then, would be the course of the mining engineer when all the existing difficulties presented by water-bearing strata should be removed, and their place taken by a new and totally different obstacle, viz., high temperature? Obviously to reverse the present mode of working—to sink on the upper part of the range and drive downwards. In such a system of working the ventilation of the pit will be most powerfully aided or altogether effected by natural atmospheric currents. An upcast once determined by artificial means, it will thereafter proceed spontaneously, But this is not all; the heat and dryness of these deep workings of the future place at our disposal another and still more efficient cooling agency than even that of a hurricane of dry-air ventilation. In the first part of the sinking of the deep shafts the usual water-bearing strata would be encountered, and the ordinary means of “tubbing” or “coffering” would probably be adopted for temporary convenience during sinking. Doorways, however, would be left in the tubbing at suitable places for tapping at pleasure the wettest and most porous of the strata. Streams of cold water could thus be poured down the sides of the shaft, which, on reaching the bottom, would flow by a downhill road into the workings. The stream of air rushing by the same route and becoming heated in its course would powerfully assist the evaporation of the water. The deeper and hotter the pit, the more powerful would be these cooling agencies. As the specific heat of water is about five times that of The workings once opened (I assume as a matter of course that by this time pillar-and-stall working will be entirely abandoned for long-wall or something better), there would be no difficulty in thus pouring streams of water and torrents of air through the workings during the night, or at any suitable time preparatory to the operations of the miner, who long before the era of such deep workings will be merely the director of coal-cutting and loading machinery. Given a sufficiently high price for coal at the pit’s mouth to pay wages and supply the necessary fixed capital, I see no insuperable difficulty, so far as mere temperature is concerned, in working coal at double the depth of the Royal Commissioners’ limit of possibility. At such a depth of 8000 feet the theoretical rock-temperature is 183°. By the means above indicated, I have no doubt that this could be reduced to an air temperature below 110°—that at which Mr. Tyndall’s shampooers ordinarily work. Of course the newly-exposed face of the coal would have its initial temperature of 183°; but this is a trivial heat compared to the red-hot radiant surfaces to which puddlers, shinglers, glassmakers, etc., are commonly exposed. Divested of the incumbrance of clothing, with the whole surface of the skin continuously fanned by a powerful stream of air—which, during working hours need be but partly saturated with vapor—a sturdy midland or north-countryman would work merrily enough at short hours and high wages, even though the newly-exposed face of coal reached 212°; for we must remember that this new coal-face would only correspond to the incomparably hotter furnace-doors and fires of the steamship stoke-holes. The high temperature at 8000 or even 10,000 feet would present a really serious difficulty during the first opening of communications between the two pits. A spurt of brave If I am right in the above estimates of working possibilities, our coal resources may be increased by about forty thousand millions of tons beyond the estimate of the Commissioners. To obtain such an additional quantity will certainly be worth an effort, and unless we suffer a far worse calamity than the loss of all our minerals, viz., a deterioration of British energy, the effort will assuredly be made. I have said repeatedly that it is not physical difficulties but market value that will determine the limits of our coal-mining. This, like all other values, is of course determined by the relation between demand and supply. Fuel being one of the absolute necessaries of life, the demand for it must continue so long as the conditions of human existence remain as at present, and the outer limits of the possible value of coal will be determined by that of the next cheapest kind of fuel which is capable of superseding it. We begin by working the best and most accessible seams, and while those remain in abundance the average value of coal will be determined by the cost of producing it under these easy conditions. Directly these most accessible seams cease to supply the whole demand, the market value rises until it becomes sufficient to cover the cost of working the less accessible; and the average value will be regulated not by the cost of working what remains of the first or easy mines, but by that of working the most difficult that must be worked in order to meet the demand. This is a simple case falling under the well-established economic law, that the natural or cost value of any commodity is determined by the cost value of the most costly portion of it. Thus, the only condition under which we can proceed to sink deeper and deeper, is a demand of sufficient energy to keep pace with the continually increasing cost of production. The question then resolves itself into this: Is any source of supply likely to intervene that will prevent the value of coal from rising sufficiently to cover the cost of working the coal seams of 4000 feet and greater depth? Without entering upon the question of peat and wood fuel, both of which will for some uses undoubtedly come into competition with British coal as it rises in value, I believe that there are sound reasons for concluding that our London fireplaces, and those of other towns situated on the sea-coast and the banks of navigable rivers, will be supplied with transatlantic coal long before we reach the Commissioner’s limit of 4000 feet. The highest prices of last winter, if steadily maintained, would be sufficient to bring about this important change. Temporary upward jerks of the price of coal have very little immediate effect upon supply, as the surveying, conveyance, boring, sinking, and fully opening of a new coal estate is a work of some years. The Royal Commissioners estimate that the North-American coal-fields contain an untouched coal area equal to seventy times the whole of ours. Further investigation is likely to increase rather than diminish this estimate. An important portion of this vast source of supply is well situated for shipment, and may be easily worked at little cost. Hitherto, the American coal-fields have been greatly neglected, partly on account of the temptations to agricultural occupation which are afforded by the vast area of the American continent, and partly by the barbarous barriers of American politics. Large amounts of capital which, under the social operation of the laws of natural selection, would have been devoted to the unfolding of the vast mineral resources of the United States, are still wastefully invested in the maintenance of protectively nursed and sickly imitation of English manufactures. When the political civilization of the United States become sufficiently advanced to establish a national free-trade policy, this perverted capital will flow into its natural channels, and the citizens of the States will be supplied with the more highly When this time arrives, and it may come with the characteristic suddenness of American changes, the question of American versus English coal in the English markets will reduce itself to one of horizontal versus vertical difficulties. If at some future period the average depth of the Newcastle coal-pits becomes 3000 feet greater than those of the pits near the coast of the Atlantic or American lakes, and if the horizontal difficulties of 3000 miles of distance are less than the vertical difficulties of 3000 feet of depth, then coals will be carried from America to Newcastle. They will reach London and the towns on the South Coast before this, that is, when the vertical difficulties at Newcastle plus those of horizontal traction from Newcastle to the south, exceed those of eastward traction across the Atlantic. As the cost of carriage increases in a far smaller ratio than the open ocean distance, there is good reason for concluding that the day when London houses will be warmed by American coal is not very far distant. We, in England, who have outgrown the pernicious folly of “protecting native industry” will heartily welcome so desirable a consummation. It will render unnecessary any further inquiry into the existence of London “coal rings” or combinations for restricted output among colliers or their employers. If any morbid impediments to the free action of the coal trade do exist, the stimulating and purgative influence of foreign competition will rapidly restore the trade to a healthy condition. The effect of such introduction of American coal will not be to perpetually lock up our deep coal nor even to stop our gradual progress towards it. We shall merely proceed downwards at a much slower rate, for in America, as with ourselves, the easily accessible coal will be first worked, and as that becomes exhausted, the deeper, more remote, thinner, and inferior will only remain to be worked at continually increasing cost. When both our own and foreign As this rise of value must of necessity be gradual, and as the superseding of British by foreign coal, as well as the final disuse of coal, will gradually converge from the circumference towards the centres of supply, from places distant from coal-pits to those close around them, we shall have ample warning and opportunity for preparing for the social changes that the loss of the raw material will enforce. The above-quoted writer, in the “Edinburgh Review,” expresses in strong and unqualified terms an idea that is very prevalent in England and abroad: he says that, “The course of manufacturing supremacy of wealth and of power is directed by coal. That wonderful mineral, of the possession of which Englishmen have thought so little but wasted so much, is the modern realization of the philosopher’s stone. This chemical result of primeval vegetation has been the means by its abundance of raising this country to an unprecedented height of prosperity, and its deficiency might have the effect of lowering it to slow decline.” *** “It raises up one people and casts down another; it makes railways on land and paths on the sea. It founds cities, it rules nations, it changes the course of empires.” The fallacy of these customary attributions of social potency to mere mineral matter is amply shown by facts that are previously stated by the reviewer himself. He tells us that “the coal-fields of China extend over an area of 400,000 square miles; and a good geologist, Baron Von Richthofen, has reported that he himself has found a coal-field in the province of Hunau covering an area of 21,700 square miles, which is nearly double our British coal area of 12,000 square miles. In the province of Shansi, the Baron discovered nearly 30,000 square miles of coal with unrivaled facilities for mining. But all these vast coal-fields, capable of supplying the whole world for some thousands of years to come, are lying unworked.” If “the course of manufacturing supremacy of wealth Every addition to our knowledge of the mineral resources of other parts of the world carries us nearer and nearer to the conclusion that the old idea of the superlative abundance of the natural mineral resources of England is a delusion. We are gradually discovering that, with the one exception of tin-stone, we have but little if any more than an average supply of useful ores and mineral fuel. It is a curious fact, and one upon which we may profitably ponder, that the poorest and the worst iron ores that have ever been commercially reduced, are those of South Staffordshire and the Cleveland district, and these are the two greatest iron-making centres of the world. There are no ores of copper, zinc, tin, nickel, or silver in the neighborhood of Birmingham, nor any golden sands upon the banks of the Rea, yet this town is the hardware metropolis of the world, the fatherland of gilding and plating, and is rapidly becoming supreme in the highest art of gold and silver work. These, and a multitude of other analogous facts, abundantly refute the idea that the native minerals, the natural fertility, the navigable rivers, or the convenient seaports, determine the industrial and commercial supremacy of nations. The moral forces exerted by the individual human molecules are the true components which determine the resulting force and direction of national progress. It is the industry and skill of our workmen, the self-denial, the enterprise, and organizing ability of our capitalists, that has brought our coal so precociously to the surface and redirected for human advantage the buried energies of ancient sunbeams, while the fossil fuel of other lands has remained inert. Fuel and steam-power have been urgently required by all mankind. Englishmen supplied these wants. Their urgency was primary and they were first supplied, even though the bowels of the earth had to be penetrated in order to obtain them. In the present exceptional and precocious degree of exhaustion of our coal treasures, we have the effect not the cause of British industrial success. If in a ruder age our greater industrial energy enabled us to take the lead in supplying the ruder demands of our fellow-creatures, why should not a higher culture of those same abundant energies qualify us to maintain our position and enable us to minister to the more refined and elaborate wants of a higher civilization? There are other necessary occupations quite as desirable as coal-digging, furnace-feeding, and cotton-spinning. The approaching exhaustion of our coal supplies should therefore serve us as a warning for preparation. Britain will be forced to retire from the coal trade, and should accordingly prepare her sons for higher branches of business,—for those in which scientific knowledge and artistic training will replace mere muscular strength and mechanical skill. We have attained our present material prosperity mainly by our excellence in the use of steam-power; let us now struggle for supremacy in the practical application of brain-power. We have time and opportunity for this. The exhaustion of our coal supplies will go on at a continually retarding pace—we shall always be approaching the end, but shall First of all we shall cease to export coal; then we shall throw up the most voracious of our coal-consuming industries, such as the reduction of iron-ore in the blast-furnace; then copper-smelting and the manufacture of malleable iron and steel from the pig, and so on progressively. If we keep in view the natural course and order of such progress, and intelligently prepare for it, the loss of our coal need not in the smallest degree retard the progress of our national prosperity. If, however, we act upon the belief that the advancement of a nation depends upon the mere accident of physical advantages, if we fold our arms and wait for Providence to supply us with a physical substitute for coal, we shall become Chinamen, minus the unworked coal of China. If our educational efforts are conducted after the Chinese model; if we stultify the vigor and freshness of young brains by the weary, dull, and useless cramming of words and phrases; if we poison and pervert the growing intellect of British youth by feeding it upon the decayed carcases of dead languages, and on effete and musty literature, our progress will be proportionately Chinaward; but if we shake off that monkish inheritance which leads so many of us blindly to believe that the business of education is to produce scholars rather than men, and direct our educational efforts towards the requirements of the future rather than by the traditions of the past, we need have no fear that Great Britain will decline with the exhaustion of her coal-fields. The teaching and training in schools and colleges must be directly and designedly preparatory to those of the workshop, the warehouse, and the office; for if our progress is to be worthy of our beginning, the moral and intellectual dignity of industry must be formally acknowledged and systematically sustained and advanced. Hitherto, we have been the first and the foremost in utilizing the fossil forces which the miner has unearthed; hereafter we must in like With such teaching and training the future generations of England will make the best and most economical use of their coal while it lasts, and will still advance in material and moral prosperity in spite of its progressive exhaustion. |