THE BAROMETER AND THE WEATHER.

Previous

The barometer was invented by Torricelli, an Italian philosopher of the seventeenth century. It consists essentially of a long tube open at one end and closed at the other, and partly filled with mercury; but instead of being filled like ordinary vessels, with the open end or mouth upwards and the closed end or bottom downwards, the barometer-tube is inverted, and has its open mouth downwards. This open mouth is either dipped into a little cup of mercury or bent a little upwards.

Why does not the mercury run out of this lower open end and overflow the little cup when it is inverted after being filled?

The answer to this question includes the whole mystery and principle of the barometer. The mercury does not fall down because something pushes it up and supports it with a certain degree of pressure, and that something is the atmosphere which extends all round the world, and presses downwards and sideways and upwards—in every direction, in fact—with a force equal to its weight, i.e., with a pressure equal to about 15 lbs. on every square inch. A column or perpendicular square stick of air one inch thick each way, and extending from the surface of the sea up to the top of the atmosphere, weighs about 15 lbs.; other columns or sticks next to it on all sides weigh the same, and so on with every portion; and all these are for ever squeezing down and against each other, and, being fluid, transmit their pressure in every direction, and against the earth and everything upon it, and therefore upon the mercury of the barometer-tube.

We have supposed the air to be made up of columns or sticks of air one inch each way, but might have taken any other size, and the weight and pressure would be proportionate. Now mercury, bulk for bulk, is so much heavier than air, that a stick or column of this liquid metal about 30 inches high weighs as much as a stick or column of air of same thickness reaching from the surface of the earth to the top of the atmosphere; therefore, the 30-inch stick of mercury balances the pressure of the many miles of atmosphere, and is supported by it. Thus the column of mercury may be used to counterbalance the atmosphere and show us its weight; and such a column of mercury is a barometer, or “weight measure.” The word barometer is compounded of the two Greek words—baros, weight, and metron, a measure.

If you take a glass tube a yard long, stopped at one end and open at the other, fill it with mercury, stop the open end with your thumb, then invert the tube and just dip the open end in a little cup of mercury, some of the mercury in the tube will fall into the cup, but not all; only six inches will fall, the other 30 inches will remain, with an empty space between it and the stopped end of the tube. When you have done this you will have made a rude barometer. If you prop up the tube, and watch it carefully from day to day, you will find that the height of the column of mercury will continually vary. If you live at the sea-level, or thereabouts, it will sometimes rise more than 30 inches above the level of the mercury in the cup, and frequently fall below that height. If you live on the top of a high mountain, or on any high ground, it will never reach 30 inches, will still be variable, its average height less than if you lived on lower ground; and the higher you go the less will be this average height of the mercury.

The reason of this is easily understood. When we ascend a mountain we leave some portion of the atmosphere below us, and of course less remains above; this smaller quantity must have less weight and press the mercury less forcibly. If the barometer tells the truth, it must show this difference; and it does so with such accuracy that by means of a barometer, or rather of two barometers—one at the foot of the mountain and one at its summit—we may, by their difference, measure the height of the mountain provided we know the rules for making the requisite calculations.

The old-fashioned barometer, with a large dial-face and hands like a clock, is called the “wheel barometer,” because the mercury, in rising and falling, moves a little glass float resting upon the mercury of the open bent end of the tube; to this float and its counterpoise a fine cord is attached; and this cord goes round a little grooved wheel to which the hands are attached. Thus the rising and falling of the mercury moves the float, the float-cord turns the wheel, and the wheel moves the hand that points to the words and figures on the dial. When this hand moves towards the right, or in the direction of an advancing clock-hand, the barometer is rising; when it goes backwards, or opposite to the clock-hand movement, the mercury is falling. By opening the little door at the back of such a barometer, the above-described mechanism is seen. In doing this, or otherwise moving your barometer, be careful always to keep it upright.

It sometimes happens to these wheel barometers that they, suddenly cease to act; and in most cases the owner of the barometer may save the trouble and expense of sending it to the optician by observing whether the cord has slipped from the little wheel, and if so, simply replacing it in the groove upon its edge. If, however, the mischief is caused by the tube being broken, which is seen at once by the mercury having run out, the case is serious, and demands professional aid.

The upright barometer, which shows the surface of the mercury itself, is the most accurate instrument, provided it is carefully read. This form of instrument is always used in meteorological observatories, where minute corrections are made for the expansion and contraction which variations of temperature produce upon the length of the mercury without altering its weight, and for the small fluctuations in the level of the mercury cistern. With such instruments, fitted with an apparatus called a “vernier” the height of the mercury may be read to hundredths of an inch.

The necessity for the 30 inches of mercury renders the mercurial barometer a rather cumbrous instrument: it must be more than 30 inches long, and is liable to derangement from the spilling of the mercury. On this account portable barometers of totally different construction have been invented. The “aneroid” barometer is one of these—the only one that is practically used to any extent. It contains a metal box partly filled with air; one face of the box is corrugated, and so thin that it can rise and fall like a stretched covering of india-rubber. As the pressure of the outside air varies it does rise and fall, and by a beautifully-delicate apparatus this rising and falling is magnified and represented upon the dial. Such barometers are made small enough to be carried in the pocket, and are very useful for measuring the heights of mountains; but they are not quite so accurate as the mercurial barometer, and are therefore not used for rigidly scientific measurements; but for all ordinary purposes they are accurate enough, provided they are occasionally compared with a standard mercurial barometer, and adjusted by means of a watch-key axis provided for that purpose, and seen on the back of the instrument. They are sufficiently delicate to tell the traveller in a railway whether he is ascending or descending an incline, and will indicate the difference of height between the upper and lower rooms of a three-story house. With due allowance for variations of level, the traveler may use them as weather indicators; especially as it is the direction in which the barometer is moving (whether rising or falling) rather than its absolute height that indicates changes of weather. Thus by placing the aneroid in his room on reaching his hotel at night, carefully marking its height then and there, and comparing this with another observation made on the following morning, he may use it as a weather-glass in spite of hill and dale.

Water barometers have been made on the same principle as the mercury barometer; but as water is 13½ times lighter, bulk for bulk, than mercury, the height of the column must be 13½ times 30 inches, or, allowing for variations, not less than 34 feet. This, of course, is very cumbrous; the evaporation of the water presents another considerable difficulty,21 still such a barometer is a very interesting instrument, as it shows the atmospheric fluctuations on 13½ times the scale of the ordinary barometer. A range of about five feet is thus obtained; and not only the great waves, but even the comparatively small ripples of the atmospheric ocean are displayed by it. In stormy weather it may be seen to rise and fall and pulsate like a living creature, so sensitively does it respond to every atmospheric fluctuation.

But why should the height of the barometer vary while it remains in the same place?

If the quantity of air surrounding the earth remains the same, and if the barometer measures its weight correctly, why should the barometer vary?

Does the atmosphere grow bigger and smaller, lighter and heavier, from time to time?

These are fair questions, and they bring us at once to some of the chief uses of the barometer. The atmosphere is a great gaseous ocean surrounding the earth, and we are creeping about on the bottom of this ocean. It has its tides and billows and whirling eddies, but all these are vastly greater than those of the watery ocean. At one time we are under the crest or rounded portion of a mighty atmospheric wave, at another the hollow between two such waves is over our heads, and thus the depth of atmosphere, or quantity of air, above us is variable. This variation is the combined result of many co-operating causes. In the first place, there are great atmospheric tides, caused, like those of the sea, by the attraction of the sun and moon; but these do not directly affect the barometer, because the attracting body supports whatever it lifts. Variations of temperature also produce important fluctuations in the height and density of the atmosphere, some of which are indicated by the barometer—others are not. Thus a mere expansion or contraction of dry air, increasing the depth or the density of the atmospheric ocean, would not affect the barometer, as mere expansion and contraction only alter the bulk without affecting the weight of the air. But our atmosphere consists not only of the permanent gases, nitrogen and oxygen; it contains besides these and carbonic acid, a considerable quantity of gaseous matter, which is not permanent, but which may be a gas at one moment—contributing its whole weight to that of the general atmosphere—and at another moment some of it may be condensed into liquid particles that fall through it more or less rapidly, and thus contribute nothing to its weight.

What, then, is this variable constituent that sometimes adds to the weight of the atmosphere and the consequent height of the barometer, and at others may suddenly cease to afford its full contribution to atmospheric pressure?

It is simply water, which, as we all know, exists as solid, liquid, or gas, according to the temperature and pressure to which it is exposed. We all know that steam when it first issues from the spout of a tea-kettle is a transparent gas, or true vapor, but that presently, by contact with the cool air, it becomes white, cloudy matter, or minute particles of water; and that, if these are still further cooled, they will become hoar-frost or snow, or solid ice. Artificial hoar-frost and snow may be formed by throwing a jet of steam into very cold, frosty air. If you take a tin canister or other metal vessel, fill it with a mixture of salt with pounded ice or snow, and then hold the outside of the canister against a jet of steam, such as issues from the spout of a tea-kettle, a snowy deposit of hoar-frost will coat the outside of the tin. Now let us consider what takes place when a warm south-westerly wind, that has swept over the tropical regions of the Atlantic ocean, reaches the comparatively cold shores of Britain. It is cooled thereby, and some of its gaseous water is condensed—forming mists, clouds, rain, hoar-frost or snow. The greater part of this forms and falls on the western coasts, on Cornwall, Ireland, the Western Highlands of Scotland. Ireland gets the lion’s share of this humidity, and hence her “emerald” verdure. The western slope of a mountain, in like manner, receives more rain than the side facing the east.

How does this condensation affect the barometer?

It must evidently cause it to fall, inasmuch as the air must be lightened to the exact extent of all that is taken out of it and precipitated. But the precipitation is not completed immediately the condensation occurs. It takes some time for the minute cloudy particles to gather into rain drops and fall to the earth, while the effect of the condensation upon the barometer is instantaneous; the air begins to grow lighter immediately the gas is converted into cloud or mist, and the barometer falls just at the same time and same rate as this is produced; but the rain comes some time afterwards. Hence the use of the barometer as a “weather glass.” When intelligently and properly used it is very valuable in this capacity; but, like most things, it may easily be misunderstood and misused.

The most common error in the use of the barometer is that to which people are naturally led by the words engraved upon it, “Stormy, Much Rain, Rain, Change, Fair, Set Fair,” etc. A direct and absolute blunder or falsehood is usually short-lived, and deceives but few people; but a false statement, with a certain amount of superficial truth, may survive for ages, and deceive whole generations. Now this latter is just the character of the weather signs that are engraved on our popular barometers; they are unsound and deceptive, but not utterly baseless.

Stormy, Much Rain, and Rain are marked against the low readings of the barometer, and Very Dry, Set Fair, and Fair against the higher readings. A low barometer is not a reliable sign of wet or stormy weather, neither is a high barometer to be depended upon for expecting fine weather; and yet it is true that we are more likely to have fine weather with a high than with a low barometer, and also the liability to rain and storms is greater with a low than with a high barometer.

The best indications of the weather are those derived from the direction in which the barometer is moving—whether rising or falling—rather than its mere absolute height.

A sudden and considerable fall is an almost certain indication of strong winds and stormy weather. This is the most reliable of the prophetic warnings of the barometer, and the most useful, inasmuch as it affords the mariner just the warning he requires when lying off a dangerous coast, or otherwise in peril by a coming gale. Many a good ship has been saved by intelligent attention to the barometer, and by running into haven, or away from a rocky shore when the barometer has fallen with unusual rapidity.

The next in order of reliability is the indication afforded by a steady and continuous fall after a long period of fine weather. This is usually followed by a decided change of weather, and the greater the fall the more violent the change. If the fall is slow, and continues steadily for a long time, the change is likely to be less sudden but more permanent, i.e., the rain will probably arrive after some time, and then continue steadily for a long period.

In like manner, a steady, regular rise, going on for some days in the midst of wet weather, may be regarded as a hopeful indication of coming continuous fine weather—the more gradual and steady the rise, the longer is the fine weather likely to last.

The least reliable of all the barometric changes is a sudden rise. In winter it may be followed by hard and sudden frost, in summer by sultry weather and thunder-storms. All that may be safely said of such sudden rise is, that it indicates a change of some sort.

The barometer is usually high with N.E. winds, and low with S.W. winds. The preceding explanations show the reason of this. In a given place the extreme range of variation is from 2 to 2½ inches.

It has been proposed that the following rules should be engraved on barometer-plates instead of the usual words:—

1st. Generally, the rising of the mercury indicates the approach of fair weather; the falling of it shows the approach of foul weather.

2d. In sultry weather, the fall of the barometer indicates coming thunder. In winter, the rise of the mercury indicates frost. In frost, its fall indicates thaw, and its rise indicates snow.

3d. Whatever change in the weather suddenly follows a change in the barometer, may be expected to last but a short time.

4th. If fair weather continues for several days, during which the mercury continually falls, a long succession of foul weather will probably ensue; and again, if foul weather continues for several days, while the mercury continually rises, a long succession of fair weather will probably follow. 5th. A fluctuating and unsettled state of the mercurial column indicates changeable weather.

As the barometer is subject to slight diurnal variations, irrespective of those atmospheric changes which affect the weather, it is desirable in making comparative observations to do so at fixed hours of the day. Nine or ten in the morning and same hour in the evening are good times for observations that are to be recorded. These are about the hours of daily maxima or highest readings due to regular diurnal variation.

The true reading of the barometer is the height at which it would stand if placed at the level of the sea at high tide; but, as barometers are always placed more or less above this level, a correction for elevation is necessary. When the height of the place is known this correction may be made by adding one tenth of an inch to the actual reading for every 85 feet of elevation up to 510 feet; the same for every 90 feet between 510 and 1140 feet, for every 95 feet between 1140 and 1900 feet, and for every 100 feet above this and within our mountain limits. This simple and easy rule is sufficiently accurate for practical purposes. Thus, a barometer on Bray Head, or any place 800 feet above the sea, would require a correction of six-tenths for the first 510 feet, and a little more than three-tenths more for the remaining 290 feet. Therefore, if such a barometer registered the pressure at 29-1/10, the proper sea-level reading would be a little above 30 inches.

The most important prognostications of the barometer are those afforded by what is called the “barometric gradient or incline,” showing the up-hill and down-hill direction of the atmospheric inequalities; but this can only be ascertained by comparing the state of the barometer at different stations at the same time. Thus, if the barometer is one-fourth of an inch higher at Dublin than at Galway, and the intermediate stations show intermediate heights, there must be an atmospheric down-hill gradient from Dublin to Galway; Dublin must be under the upper and Galway under the lower portion of a great atmospheric wave or current. It is evident that when there is thus more air over Dublin than over Galway, there must follow (if nothing else interferes) a flow of air from Dublin towards Galway. It is also evident that, in order to tell what else may interfere, we must know the atmospheric gradients beyond and around both Dublin and Galway, and for considerable distances.

We are now beginning to obtain such information by organizing meteorological stations and observatories, and transmitting the results of simultaneous observations by means of the electric telegraph to certain head-quarters.

The subject is occupying much attention, and the managers of those splendid monuments of British energy—our daily newspapers—are publishing daily weather charts, and therefore a few simple explanations of the origin, nature, and significance of such charts will doubtless be appreciated by our readers.

The grand modern improvement of the barometer, the thermometer, the anemometer, the pluviometer, etc., is that of making them “self-registering.” We are told that Cadmus invented the art of writing, and we honor his memory accordingly. But he ventured no further than teaching human beings to write. Modern meteorologists have gone much further; they have taught the winds and the rains and the subtle heavings of the invisible air to keep their own diaries, to write their own histories on paper that is laid before them, with pencils that are placed in their fleshless, boneless, and shapeless fingers. This achievement is wrought by comparatively simple means. The paper is wound upon an upright drum or cylinder, and this cylinder is made to revolve by clock-work, in such a manner that a certain breadth travels on during the twenty-four hours. This breadth of paper is divided by vertical lines into twenty-four parts, each of which passes onward in one hour. Connected with the barometer is a pencil which, by means of a spring, presses lightly upon the revolving sheet, and this pencil, while thus pressing, rises and falls with the mercury. It is obvious that, in this manner, a line will be drawn as the paper moves. If the mercury is stationary, the line will be horizontal—only indicating the movement of the drum; if the mercury falls, the line will slope downwards; if it rises, it will incline upwards. By ruling horizontal lines upon the paper, representing inches, tenths, and smaller fractions, if desired, the whole history of the barometrical movements will be graphically recorded by the waving or zigzag lines thus drawn by the atmosphere itself.

The subjoined copy of the Daily Telegraph Barometer Chart represents, on a small scale, a four days’ history of barometrical movements:

The large figures at the side (29 and 30) represent inches; the smaller figures tenths of inches.

The pressure of the wind is similarly pictured by means of a large vane which turns with the wind, and to the windward face of which a flat board or plate of metal, one foot square, is attached perpendicularly. As the wind strikes this it presses against it with a force corresponding to a certain number of pounds, ounces, and fractions of an ounce. A spring like that of an ordinary spring letter-balance is compressed in proportion to this pressure. This movement of the spring is transmitted mechanically to another pencil like the above described, working against the same drum; thus another history is written on the same paper—the horizontal lines now representing fractions of pounds of pressure, instead of fractions of inches of mercury.

It has been found that if a semi-globular cup of thin metal is exposed to the wind, the pressure upon the round or convex side of the hemisphere is equal to two thirds of that upon the hollow or concave side. By placing four such cups upon cross-arms, and the arms on a pivot, the wind, from whatever quarter it may come, will always blow them round with their convex faces foremost; and they will move with one third of the actual velocity of the wind. By a simple clock-work arrangement, these arms move another pencil, in such a manner that it strikes the paper hammer-fashion every time the wind has completed a journey of one mile, or other given distance; and thus a series of dots upon the revolving paper records the velocity of the wind according to their distances apart. As the pressure of the wind is governed by two factors, viz., the density and velocity of the moving air, the relations between the barometer curve, the pressure curve, and the velocity dots, are very interesting.

The direction of the wind is written by a pencil fixed to a quick worm—a screw-thread upon the axis of the vane. As the vane turns round—N., E., S., or W.—it screws the pencil up or down, and thus the horizontal lines first described as registering tenths of inches of barometric pressure do duty as showing the points of the compass from which the wind is blowing; and, by reference to the zigzag line drawn by this pencil of the wind, its direction at any particular time of day may be ascertained as certified by its own sign-manual.

The wind-gauge is called an anemometer. Connected with this is the pluviometer, or rain-gauge—an upright vessel with an open mouth of measured area—say 100 square inches. This receives the rain that falls. By means of a pipe the water is conveyed to a vessel having a surface of—say one square inch. By this arrangement, when sufficient rain has fallen to cover the surface of the earth to the depth of one hundredth of an inch, the little vessel below will contain water one inch in depth. By balancing this vessel at the end of a long arm, it is made to preponderate gradually as the weight of water it receives increases, and finally, when filled, it tips over altogether, empties itself, and then rises to its starting place in equilibrium. To the other end of this arm a pencil is attached, which inscribes all these movements on the revolving paper, and thus tells the history of the rainfall. The line is zigzag while the rain is falling, and horizontal while the weather is fair. The amount of inclination of the zigzag line measures the depth of rain by means of the same ruled lines on the paper as measure the height of the barometer, etc. Every time the measuring vessel tips over a perpendicular line is drawn, and the pencil resumes its starting level. The papers containing these autographs of the elements may, of course, be kept as permanent records for reference whenever needed, or the results may be tabulated in other forms.

There are many modifications in the details of these self-registering instruments. In some of them photography is made to do a part of the work. The above description indicates the main principles of their construction, without attempting to enter upon minute details.

Meteorological observatories are provided with these instruments, and all nations worthy of the name of civilized co-operate with more or less efficiency in providing and endowing such establishments. They are placed in suitable localities, and communicate with each other, and with certain head-quarters, by means of the electric telegraph. One of these head-quarters is the Meteorological Office, at No. 116 Victoria Street, Westminster, S.W., which daily receives the results of the observations taken at about fifty stations on the British Islands and the Continent. The chief observations are made simultaneously—at 8 A.M.—and telegraphed in cypher to London, where they usually arrive before 10 A.M. As they come in they are marked down in their proper places upon a large chart, and when this chart is sufficiently completed, a condensed or abstract copy is made containing as much information as may be included in the small newspaper charts. This is copied mechanically on a reduced scale on a slab on which the outline chart has been already engraved. This engraving completed, casts are made in fusible metal with the black lines in relief, for printing with ordinary type, and the casts are set up with the ordinary newspaper types, and printed with the letterpress matter.

The engravings overleaf are taken from two of the newspaper weather charts for the dates of October 5th and 6th. They are enlarged and printed more clearly than the originals, with an explanation of signs at foot of the charts.

It will be observed that, in the chart for October 5th, an isobar of 29.2 runs up in a N.E. direction from between the Orkney and Shetland islands, crosses the North Sea, strikes the coast of Norway near Bergen, and then proceeds onwards towards Throndhjem. An isobar of 29.5 crosses Scotland, following very nearly the line of the Grampians, enters the North Sea about Aberdeen, and crosses to Christiansund; then runs up the Skager Rack and Christiania Fjord towards Christiania. Another isobar of 29.8 crosses Ireland through Connaught to Dublin, onward across England by Liverpool and the Humber, over the North Sea, and through Sleswig to the Baltic. These three are nearly parallel; but now we find another isobar—that of 30.2—taking quite a different course, by starting from the Bay of Biscay about Nantes; running on towards Paris and Strasbourg, and then bending sharp round, as though frightened by the Germans, and retreating to the Gulf of Lyons by an opposite course to that on which it started. On the following day all has changed; the northern isobars are running down south-eastwards instead of north-east, and are remarkably parallel. In the left-hand upper corner of this chart is a note that “our west, north, and eastern coasts were warned yesterday.” Why was this? It was mainly because the barometric gradient or incline was so steep. On the 5th there was one inch of difference between the Orkneys and the Bay of Biscay, or between Bergen and Paris, while the barometer was still falling in Norway and at the same moment rising in Ireland and France. On the following day these movements culminated in a gradient of 1.4—nearly one and a half inches—between Cornwall and the ancient capital of Norway.

WEATHER CHART, OCTOBER 5, 1875.
WEATHER CHART, OCTOBER 6, 1875.

Explanation of Weather Chart.

In these charts the state of the sea—whether “rough,” “smooth,” “moderate,” “slight,” etc., is marked in capital letters; and the state of the weather—as “clear,” “dull,” “cloudy,” “showery,” etc., in small letters. The direction of the wind is indicated by the arrows. Unlike the arrows of a vane, these do not point towards the direction from which the wind is coming, but are flying arrows represented as moving with the wind, and consequently pointing to where the wind is going. The force of the wind is represented in five degrees of strength. 1st. A calm, by a horizontal line and zero—0 thus 0; 2nd. A light wind, by an arrow with one barb and no feathers _____\; 3rd. A fresh to strong breeze, by an arrow with two barbs and no feathers ——>; 4th. A gale, by an arrow with two feathers >——>; and 5th. A violent gale, by an arrow with four feathers >>——>. The temperature—in the shade—is marked in figures with a small circle to the right, indicating degrees—as 60°. These figures stand in the places where the observations are made. The other figures—usually with decimals, and placed at the end of the dotted lines—give the height of the barometer—the dotted line showing where this particular height remained the same at the time of observation. These dotted lines are called “isobars,” or equal weights—the weight or over-head pressure of the atmosphere being the same all along the line.

What must follow from this condition of the atmosphere? Clearly a great flow or rush of air from the south towards the comparatively vacuous regions of the north. The gases of our atmosphere, like the waters of the ocean, are always struggling to find their level, and thereby the winds are produced. The air flows from all sides towards the lowest isobar. But what, then, must be the course of the wind? Will it be in straight lines towards this point? If so, a strange conflict must result when all these currents meet from opposite directions. What will follow from this conflict? A skillful physicist can work out this problem mathematically, but we are not all mathematicians, some of us are not able to follow his formulÆ, and, therefore, will do better by resorting to simple observation of other analogous and familiar phenomena. A funnel or any vessel with a hole in the bottom will answer our purpose. Let us fill such a vessel with water, then open the hole, and see what will be the course of the water when it is struggling to flow from all sides to the one point of vacuity. It will very soon establish a vortex or whirlpool, i.e., the water instead of flowing directly by straight lines from the sides to the centre of the funnel, will take a roundabout, spiral course, and thus screw its way down the outlet of the funnel.

This is just what occurs when the air is rushing to fill a comparatively vacuous atmospheric space. It moves in a spiral; and in the Northern Hemisphere this spiral always turns in the same way, viz., in the opposite direction to the hands of a clock when flowing inwards, and vice versÂ, or with the clock hands, when the air is overflowing from a centre of high pressure.

In the chart for October 5th both these cases are illustrated. North of Dublin there is a curvature of isobars and an inrush of winds towards a northward low pressure, or vacuous region; while south of Dublin the isobar tends sharply round a high-pressure focus, and the overflowing wind is correspondingly reversed in direction, as shown by the arrows.

The next chart, for October 6th, shows that the overflow has spread northwards as far as Dublin, and the high-pressure focus has also moved northwards. It follows from this that if you know the barometric gradient, and stand with your left hand to the region of low barometer and your right hand to that of the high barometer, the wind will blow against your back, i.e., you will face the direction of the wind, or of those flying arrows on the chart. This interesting and important generalization is called “Buys Ballot’s Law.” In spite of the proverbial fickleness of the winds this simple law is rarely infringed, though it may require a slight modification of statement—inasmuch as the wind does not move in circles round the vacuous space, but in spirals, and thus it blows not quite square to the back, but rather obliquely, or a little on the right side. This is shown by the arrows in the charts, and is most strikingly displayed in the chart for October 6th, between the isobars of 30.3 and 30.5. To take, in Ireland, the position required by Buys Ballot’s Law, one must have stood facing the east, and accordingly, the westerly wind would then blow upon one’s back. In Paris, at the same moment, the position would be facing south-east, and the wind was curving round accordingly. Further south—at Bordeaux or the Pyrenees—the position becomes almost reversed, i.e., facing south-west, and the wind is reversed in equal degree.

Here, then, on these days we had the chief conditions of wind and rain, a steep and increasing barometric gradient, and a flow over our islands of humid air from the south and west regions of the great Atlantic. Strong winds and heavy rains did follow accordingly; and the prophetic warnings of the Meteorological Office, which are conveyed by means of signals displayed on prominent parts of the coast, were fulfilled.

Mr. Scott, the Director of the Meteorological Office, tells us that “The degree of success that has attended our warnings in these islands, on the average of the last two years, has been that over 45 per cent have been followed by severe gales; and over 33 per cent in addition have been followed by wind too strong for fishing-boats and yachts, though in themselves not severe gales; this gives a total percentage of success of nearly 80.”

In winter the movements of the air are more decided, and the changes are often so rapid that the warning sometimes comes too late. With increased means—i.e., more money to cover additional work, and more stations—better results might be obtained. The United States expend 50,000l. a year in weather telegraphy, exclusive of salaries, while the United Kingdom only devotes 3,000l. a year to the same purpose. The difficulties on our side of the Atlantic are greater than on the American coasts, on account of the greater changeableness of our weather—mainly due to the more irregular distribution of land and water on this side. This, however, instead of discouraging national effort, should be regarded as a reason for increasing it. The greater the changes, the greater is the need for warnings, and the greater the difficulty the greater should be the effort. With our multitude of coastguard stations and naval men without employment, we ought to surpass all the world in such a work as this.

Those among our readers who are sufficiently interested in this subject to devote a little time to it, may make a very interesting weather scrap-book by cutting out the newspaper chart for each day, pasting it in a suitable album, and appending their own remarks on the weather at the date of publication, i.e. the day after the chart observations are made. Such an album would be far more interesting than the postage stamp and monogram albums that are so abundant.

Parents who desire their children to acquire habits of systematic observation, and to cultivate an intelligent interest in natural phenomena, will do well to supply such albums to their sons or daughters, and to hand over to them the daily paper for this purpose.

The Meteorological Office supplies by post copies of “Daily Weather Reports” to any subscriber who pays five shillings per quarter in advance; such subscriptions payable to Robt. H. Scott, Esq., Director Meteorological Office, 116 Victoria Street, Westminster, S.W.

These daily reports are printed on a large double sheet, on one half of which are four charts, representing separately the four records which are included in the one smaller newspaper chart—viz., those of the barometer, the thermometer, the rain-gauge, and the anemometer. On the other half of the sheet is a detailed separate tabular statement of the results of observations made at the following stations:

Haparanda
HernÖsand
Stockholm
Wisby
Christiansund
Skudesnaes
OxÖ (Christiansund)
Skagen (The Skaw)
FanÖ
Cuxhaven
Sumburgh Head
Stornoway
Thurso
Wick
Nairn
Aberdeen
Leith
Shields
York
Scarborough
Nottingham
Ardrossan
Greencastle
Donaghadee
Kingstown
Holyhead
Liverpool
Valencia
Roche’s Point
Pembroke
Portishead
Scilly
Plymouth
Hurst Castle
Dover
London
Oxford
Cambridge
Yarmouth
The Helder
Cape Griznez
Brest
L’Orient
Rochefort
Biarritz
Corunna
Brussels
Charleville
Paris
Lyons
Toulon

On Winds and Currents, from the Admiralty Physical Atlas.

In the Northern Hemisphere the effect of the veering of the wind on the barometer is according to the following law:

With East, South-east, and South winds, the barometer falls.

With South-west winds, the barometer ceases to fall and begins to rise.

With West, North-west, and North winds, the barometer rises.

With North-east winds, the barometer ceases to rise and begins to fall.

In the Northern Hemisphere the thermometer rises with East, South-east, and South winds; with a South-west wind it ceases to rise and begins to fall; it falls with West, North-west, and North winds; and with a North-east wind it ceases to fall and begins to rise.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page