OILING THE WAVES.

Previous

The recent gales have shown that if “Britannia rules the waves” her subjects are very turbulent and costly. Our shipping interests are now of enormous magnitude, and they are growing year by year. We are, in fact, becoming the world’s carriers on the ocean, and are thus ruling the waves in a far better sense than in the old one. Our present mercantile rule adds to the wealth of our neighbors instead of destroying it, as under the old warlike rule.

Everything concerning these waves is thus of great national interest, the loss of life and sacrifice of wealth by marine casualties being so great. Some curious old stories are extant, describing the exploits of ancient mariners in stilling the waves by pouring oil upon them. Both Plutarch and Pliny speak of it as a regular practice. Much later than this, in a letter dated Batavia, January 5, 1770, written by M. Tengragel, and addressed to Count Bentinck, the following passage occurs:—“Near the islands Paul and Amsterdam we met with a storm, which had nothing particular in it worthy of being communicated to you, except that the captain found himself obliged, for greater safety in wearing the ship, to pour oil into the sea to prevent the waves breaking over her, which had an excellent effect, and succeeded in preserving us. As he poured out but a little at a time, the East India Company owes, perhaps, its ship to only six demi-aumes of olive oil. I was present on deck when this was done, and should not have mentioned this circumstance to you, but that we have found people here so prejudiced against the experiment as to make it necessary for the officers on board and myself to give a certificate of the truth on this head, of which we made no difficulty.”

The idea was regarded with similar prejudice by scientific men until Benjamin Franklin had his attention called to it, as he thus narrates:—“In 1757, being at sea in a fleet of ninety-six sail, bound for Louisbourg, I observed the wakes of two of the ships to be remarkably smooth, while all the others were ruffled by the wind, which blew fresh. Being puzzled with the differing appearance, I at last pointed it out to the captain, and asked him the meaning of it. ‘The cooks,’ said he, ‘have, I suppose, been just emptying their greasy water through the scuppers, which has greased the sides of the ships a little.’ And this answer he gave me with an air of some little contempt, as to a person ignorant of what everybody else knew. In my own mind, I first slighted the solution, though I was not able to think of another.” Franklin was not a man to remain prejudiced; he accordingly investigated the subject, and the results of his experiments, made upon a pond on Clapham Common, were communicated to the Royal Society. He states that after dropping a little oil on the water, “I saw it spread itself with surprising swiftness upon the surface, but the effect of smoothing the waves was not produced; for I had applied it first upon the leeward side of the pond, where the waves were largest, and the wind drove my oil back upon the shore. I then went to the windward side, where they began to form; and there the oil, though not more than a teaspoonful, produced an instant calm over a space several yards square, which spread amazingly, and extended itself gradually till it reached the lee side, making all that quarter of the pond (perhaps half an acre) as smooth as a looking-glass.”

Franklin made further experiments at the entrance of Portsmouth Harbor, opposite the Haslar Hospital, in company with Sir Joseph Banks, Dr. Blagden, and Dr. Solander. In these experiments the waves were not destroyed, but were converted into gentle swelling undulations with smooth surfaces. Thus it appeared that the oil destroys small waves, but not large billows.

Franklin’s explanation is, “that the wind blowing over water covered with a film of oil cannot easily catch upon it, so as to raise the first wrinkles, but slides over it and leaves it smooth as it finds it.”

Further investigations have since been made which confirm this theory. The first action of the wind in blowing up what the sailors call “a sea,” is the production of a ripple on the surface of the water. This ripple gives the wind a strong hold, and thus larger waves are formed, but on these larger there are smaller waves, and on these smaller waves still smaller ripples. All this roughness of surface goes on helping the wind, till at last the mightiest billows are formed, which then have an oscillation independent of the wind that formed them. Hence the oil cannot at once subdue the great waves that are already formed, but may prevent their formation if applied in time. Even the great waves are moderated by the oil stopping the action of the wind which sustains and augments them.

Quite recently, Captain David Gray made some experiments at the north bar of Peterhead, where a very heavy surf breaks over in rough weather. On a rough day he dropped a bottle full of oil into the sea. The oil floating out of the bottle, converted the choppy waves over a large area “into an expanse of long undulating rollers, smooth and glassy, and so robbed of all violence that a small open boat could ride on them in safety.”

This result is quite in accordance with what we are told respecting the ancient practice of the fishermen of Lisbon, who were accustomed to empty a bottle of oil into the sea when they found on their return to the river that there was a dangerous surf on the bar, which might fill their boats in crossing it.

As regards Peterhead, it is proposed to lay perforated pipes across the mouth of the harbor, and to erect tanks from which these pipes may be supplied with oil, and thus pour a continuous and widely distributed stream into the sea in bad weather. The scheme was mooted some time ago, but I am not aware whether it has yet been carried out. Its success or failure must mainly be determined by the cost, and this will largely depend upon the kind of oil that is used. A series of well-conducted experiments upon the comparative areas protected by different kinds of oil would be very interesting and practically useful, for, until this has been ascertained, a proper selection cannot be made. How long will it last? is another question.

I have frequently seen such tracks as Franklin observed out at sea, and have climbed to the masthead in order to sight the ship that produced them, without seeing any. Several of such smooth shining tracks have been observed at the same time, but no ship visible, and this in places where no sail has been seen for days before or after. The poet’s description of “the trackless ocean” is by no means “founded on fact.”

The Plymouth Breakwater contains 3,369,261 tons of stone, and cost the British Government a million and a half. The interest on this at 4 per cent amounts to 60,000l. per annum. If the above statements are reliable, some of the wholesale oil merchants who read this might contract to becalm a considerable area of the Channel for a smaller amount.

Further experiments have been made at Peterhead since the above was written. The following account, from the Times of those made on February 27, 1882, is interesting:

“On Monday the long-wished-for easterly gale to test the experiment of throwing oil on the troubled waters reached Peterhead. It may be mentioned that the harbor of Peterhead is singularly exposed, and with an east or north-east gale is very dangerous of approach. Mr. Shields, of Perth, has laid the oil apparatus to be used in quelling the troubled waters. It consists of an iron pipe which conveys oil and extends from a wooden house behind the seawall at Roanhead down through a natural gullet in the rocks about 150 yards long and about 50 yards beyond the mouth of the gullet into about seven fathoms of water; at this point the iron pipe is joined to a guttapercha pipe, which extends across the harbor entrance outside the bar and is perforated at distances 12½ yards apart. Through the guttapercha pipe the oil reaches the sea. On Monday the wind was not so strong as to make the experiment so complete as could have been wished; still, there was a heavy swell. Early in the forenoon the pumps were put in motion and the leakage space in the pipe filled; but unfortunately it was found, soon after the oil began to rise to the surface of the bay, that the supply in the cask had become exhausted, and those who were conducting the experiment did not consider themselves at liberty to order a fresh cask of oil without Mr. Shield’s sanction. But while the experiment was only partial it was highly satisfactory. At the same time, the film did not extend sufficiently far to prevent the waves forming and curving to broken water. As soon, however, as they reached the oil-covered neck the observers from the pier-head could easily discern the influence at work. Waves which came in crested gradually assumed the shape of undulating bodies of water, and, once formed, they rolled unbroken towards the breakwater. On Wednesday morning there was a heavy sea at the north breakwater. The oil valves were opened, and immediately the effect was manifest. The waves, which had before clashed with fury against the breakwater, assumed a rolling motion and were quite crestless. Indeed, it was admitted that the oil had rendered the entrance comparatively safe, but the effect was not so abiding as could have been wished.”

As regards the want of duration there noted, I venture to make a suggestion.

Oils vary so greatly in their rate of outspreading over water and the character of the film they form, that some years ago Mr. Moffatt, of Glasgow, proposed to use these differences as a test for the adulterations of one kind of oil with other and cheaper kinds.

I made a number of experiments verifying some of his results.

From these it is evident that the duration of the becalming effect will vary with different oils, and therefore further experiments upon these difference should be made, in order to select that kind which is the most effective, with due regard, of course, to cost.

The oil indicated by my experiments as combining permanency and cheapness, and altogether the most suitable and attainable is the “dead oil” refuse of the gas-works. This may be used in its crude and cheapest condition.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page