The muscular system is not only the oldest machine in existence, but also the most complex. Moreover, it is otherwise entitled to precedence, for even to-day, in this so-called age of steam and electricity, the muscular system remains by far the most important of all machines. In the United States alone there are some twenty million horses doing work for man; and of course no machine of any sort is ever put in motion or continues indefinitely in operation without aid supplied by human muscles. All in all, then, it is impossible to overestimate the importance of this muscular machine which is at once the oldest and the most lasting of all systems of utilizing energy. The physical laws that govern the animal machine are precisely similar to those that are applied to other mechanisms. All the laws that have been called to our attention must therefore be understood as applying fully to the muscular mechanism. But in addition to these the muscular system has certain laws or methods of action of its own, some of which are not very clearly understood. The prime mystery concerning the muscle is its wonderful property of contracting. For practical purposes we may say that it has no other property; the A moment's consideration of the mechanism of the arm, having regard to the biceps muscle which flexes the elbow, will make this clear. If a weight is held in the hand it is perhaps twelve inches from the elbow. A similar consideration of the muscles of the legs will show how the muscular system which is susceptible of but trifling variation in size, gives to the animal great locomotive power. With the aid of a series of levers, represented by the bones of our thighs, legs, and feet, we are able to stride along, covering three or four feet at each step, while no set of the muscles that effect this propulsion varies in length by more than two or three inches. It appears, then, that the muscular system gives a marvelous illustration of capacity for storing energy in a compact form and utilizing it for the development of motion. THE TWO TYPES OF MUSCLESThe muscles of animals and men alike are divided into two systems, one called voluntary, the other involuntary. The voluntary muscles, as their name implies, are subject The strictly involuntary muscles, however, are placed absolutely beyond control of the will. The most important of these muscles are those that constitute the heart and the diaphragm, and that enter into the substance of the walls of blood vessels, and of the abdominal organs. It is obvious that the functioning of these important organs could not advantageously be left to the direction of the will; and so, in the long course of evolution they have learned, as it were, to take care of themselves, and in so doing to take care of the organism, to the life of which they are so absolutely essential. As the physiologist views the matter, no organism could have developed which did not correspondingly develop such involuntary action of the vital organs. It will be seen that the involuntary muscles differ from the voluntary muscles in that they are not connected with bones. Instead of being thus attached to solid levers, they are annular in structure, and in contracting virtually change the size of the ring which their substance constitutes. Each fibre in contracting may be thought of as pulling against other fibres, instead of against a bony surface, and the joint action changes the size of the organ, as is obvious in the pulsing of the heart. Though the rhythmical contractions of the involuntary muscles are independent of voluntary control, it must not be supposed that they are independent of the control of the central nervous mechanism. On the contrary, the nerve supply sent out from the brain to the heart and to the abdominal organs is as plentiful and as important as that sent to the voluntary muscles. There That the voluntary muscles are controlled by the central nervous mechanism needs no proof beyond the appeal to our personal experiences of every moment. You desire some object that lies on the table in front of you, and immediately your hand, thanks to the elaborate muscular mechanism, reaches out and grasps it. And this act is but typical of the thousand activities that make up our every-day life. Everyone is aware that the channel of communication between the brain and the muscular system is found in a system of nerves, which it is natural now-a-days to liken to a system of telegraph wires. We speak of the impulse generated in the brain as being transmitted along the nerves to the muscle, causing that to contract. We are even able to measure the speed of transfer of such an impulse. It is found to move with relative slowness, compassing only about one hundred and twelve feet per second, being in this regard very unlike the electric current with which it is so often compared. But the precise nature of this impulse is unknown. Its effect, however, is made tangible in the muscular contraction which it is its sole purpose to produce. The essential influence THE NATURE OF MUSCULAR ACTIONPaying heed, now, to the muscle itself, it must be freely admitted that, in the last analysis, the activities of the substance are as mysterious and as inexplicable as are those involved in the nervous mechanism. It is easy to demonstrate that what we have just spoken of as a muscle fibre consists in reality of a little tube of liquid protoplasm, and that the change in shape of this protoplasm constitutes the contraction of which we are all along speaking. But just what molecular and atomic changes are involved in this change of form of the protoplasm, we cannot say. We know that the power to contract is the one universal attribute of living protoplasm. This power is equally wonderful and equally inexplicable, whether manifested in the case of the muscle cell or in the case of such a formless single-celled creature as the amoeba. When we know more of molecular and atomic force, we may perhaps be able to form a mental picture of what goes on in the structure of protoplasm when it thus changes the shape of its mass. Until then, we must be content to accept the fact as being the vital one upon which all the movements of animate creatures depend. But if, here as elsewhere, the ultimate activities of But this constant outflow of waste products from the muscle necessitates, of course, in accordance with the laws of the conservation of matter and of energy, an equally constant supply of new matter to take the place of the old. This supply of what is virtually fuel to be consumed, enabling the muscle to perform its In this view, the muscular apparatus is a species of heat engine. In point of fact, it is a curiously delicate one as regards the range of conditions within which it is able to act. The temperature of any given organism is almost invariable; the human body, for example, maintains an average temperature of 98-2/5 degrees, Fahrenheit. The range of variation from this temperature in conditions of health is rarely more than a fraction of a degree; and even under stress of the most severe fever the temperature never rises more than about eight degrees without a fatal result. That an organism which is producing heat in such varying quantities through its varying muscular activities should maintain such an equilibrium of temperature, would seem one of the most marvelous of facts, were it not so familiar. The physical means by which the heat thus generated is rapidly given off, on occasion, to meet the varying The flushed, perspiring face of a person who has violently exercised gives a familiar proof of these physiological changes; and the contrary condition, in which the peripheral circulation is restricted, and in which the pores are closed, is equally familiar. Moreover, the same cutaneous mechanism is efficient in affording the organism protection from the changes of external temperature; though the human machine, thanks to the pampering influence of civilization, requires additional protection in the form of clothing. APPLICATIONS OF MUSCULAR ENERGYHaving thus outlined the conditions under which the muscular machine performs its work, we have now to consider briefly the external mechanisms with the aid of which muscular energy is utilized. Of course, the simplest application of this power, and the one universally We may well suppose that the primitive man continued for a long period of time to perform all such labors as he undertook without the aid of any artificial mechanism; that is to say, without having learned to gain any power beyond that which the natural levers of his body provided. A brief observation of the actions of a man performing any piece of manual labor will, however, quickly demonstrate how ingeniously the bodily levers are employed, and how by shifting positions the worker unconsciously makes the most of a given expenditure of energy. By bending the arms and bringing them close to the body, he is able to shorten his levers so that he can lift a much greater weight than he could possibly raise with the arms extended. On the other hand, with the extended arm he can strike a These aids are chiefly of three types, namely, inclined planes, friction reducers, and levers. The use of the inclined plane was very early discovered and put into practise in chipped implements, which took the form of the wedge, in such modifications as axes, knives, and spears of metal. All of these implements, it will be observed, consist essentially of inclined planes, adapted for piercing relatively soft tissues of wood or flesh, and hence serving purposes of the greatest practical utility. The knife-blade is an extremely thin wedge, to be utilized by force of pushing, without any great aid from acquired momentum. The hatchet, on the other hand—and its modification the axe—has its blunter blade fastened to a handle; that the principle of the wedge may be utilized at the long end of a lever and with the momentum of a swinging blow. Ages before anyone could have explained the principle involved in such obscuring terms as that, the implement itself was in use for the same purpose to which it is still applied. Indeed, there is probably no other implement that has played a larger part in the history of human industry. Even in the Rough Stone Age it was in full favor, and the earliest metallurgists produced it in bronze and then in iron. The blade of to-day is made of the best tempered The saw, consisting essentially of a thin elongated blade, one ragged or toothed edge, is a scarcely less primitive and an equally useful and familiar application of the principle of the inclined plane—though it requires a moment's reflection to see the manner of application. Each tooth, however minute, is an inclined plane, calculated to slide over the tissue of wood or stone or iron even, yet to tear at the tissue with its point, and, with the power of numbers, ultimately wear it away. THE WHEEL AND AXLEThe primitive friction reducer, which continues in use to the present day unmodified in principle, is the wheel revolving on an axle. Doubtless man had reached a very high state of barbarism before he invented such a wheel. The American Indian, for example, knew no better method than to carry his heavy burdens on his shoulders, or drag them along the ground, with at most a pair of parallel poles or runners to modify the friction; every move representing a very wasteful expenditure of energy. But the pre-historic man of the old world had made the wonderful discovery that a wheel revolving on an axle vastly reduces the friction The more one considers the mechanism, the more one must marvel at the ingenuity of the pre-historic man who invented the wheel and axle. Its utility is sufficiently obvious once the thing has been done. In point of fact, it so enormously reduces the friction that a man may convey ten times the burden with its aid that he can without it. But how was the primitive man, with his small knowledge of mechanics, to predict such a result? In point of fact, of course, he made no such prediction. Doubtless his attention was first called to the utility of rolling bodies by a chance observation of dragging a burden along a pebbly beach, or over rolling stones. The observation of logs or round stones rolling down a hill might also have stimulated the imagination of some inventive genius. A BELGIAN MILK-WAGON. Probably logs placed beneath heavy weights, such as are still employed sometimes in moving houses, were utilized now and again for many generations before the idea of a narrow section of a log adjusted on an axis was evolved. But be that as it may, this idea was put into practise before the historic period begins, and we find the earliest civilized races of which we have MODIFIED LEVERSFor the rest, the mechanisms which primitive man learned early to use in adding to his working efficiency, and which are still used by the hand laborer, are virtually all modifications of our familiar type-implement, the lever. A moment's reflection will show that the diversified purposes of the crowbar, hoe, shovel, hammer, drill, chisel, are all accomplished with the aid of the same principles. The crowbar, for example, enables man to regain the power which he lost when his members were adapted to locomotion. His hands, left to themselves, as we have already pointed out, give but inadequate expression to the power of his muscles. But by grasping the long end of such a lever as the crowbar, he is enabled to utilize his entire weight in addition to his muscular strength, and, with the aid of this lever, to lift many times his weight. The hoe, on the other hand, becomes virtually a lengthened arm, enabling a very slight muscular motion Even such elaborately modified implements as the treadmill and the rowboat are operated on the principle of the lever. These also are mechanisms that have come down to us from a high antiquity. Their utility, however, has been greatly decreased in modern times, by the substitution of more elaborate and economical mechanisms for accomplishing their respective purposes. The treadmill, indeed—which might be likened to an overshot waterwheel in which the human foot supplied the place of the falling water in giving power—has become obsolete, though a modification of it, to be driven by animal power, is still sometimes used, as we shall see in a moment. All these are illustrations of mechanisms with the aid of which human labor is made effective. They show the devices by which primitive man used his ingenuity in making his muscular system a more effective machine for the performance of work. But perhaps the most DOMESTICATED ANIMALSThe first animal domesticated is believed to have been the dog, and this animal is still used, as everyone knows, as a beast of burden in the far North, and in some European cities, particularly in those of Germany. Subsequently the ox was domesticated, but it is probable that for a vast period of time it was used for food purposes, rather than as a beast of burden. And lastly the horse, the worker par excellence, was made captive by some Asiatic tribes having the genius of invention, and in due course this fleetest of carriers and most efficient of draught animals was introduced into all civilized nations. Doubtless for a long time the energy of the horse was utilized in an uneconomical way, through binding the burden on its back, or causing it to drag the burden along the ground. But this is inferential, since, as we have seen, the wheel was invented in pre-historic times, and at the dawn of history we find the Babylonians driving harnessed horses attached to wheeled vehicles. From that day to this the method of using To a certain extent horse-power is still used with the aid of the modified treadmill just referred to—consisting essentially of an inclined plane of flexible mechanism made into an endless platform, which the horse causes to revolve as he goes through the movements of walking upon it. In agricultural districts this form of power is still sometimes used to run threshing machines, cider mills, wood-saws, and the like. Another application of horse-power to the same ends is accomplished through harnessing a horse to a long lever like the spoke of a wheel, fastened to an axis, which is made to revolve as the horse walks about it. Several horses are sometimes hitched to such a mechanism, which becomes then a wheel of several spokes. But this mechanism, which was common enough in agricultural districts two or three decades ago, has been practically superseded in recent years by the perambulatory steam engine. TWO APPARATUSES FOR THE UTILIZATION OF ANIMAL POWER. TWO APPARATUSES FOR THE UTILIZATION OF ANIMAL POWER. It is obvious that the amount of work which a horse can accomplish must vary greatly with the size and quality of the horse, and with the particular method by which its energy is applied. For the purposes of comparison, however, an arbitrary amount of work has been fixed upon as constituting what is called a horse-power. This amount is the equivalent of raising |