More than three hundred years have elapsed since the influence and actinism of light on chloride of silver was observed by the alchemists of the sixteenth century. This discovery was unquestionably the first thing that suggested to the minds of succeeding chemists and men of science the possibility of obtaining pictures of solid bodies on a plane surface previously coated with a silver salt by means of the sun’s rays; but the alchemists were too much absorbed in their vain endeavours to convert the base metals into royal ones to seize the hint, and they lost the opportunity of turning the silver compounds with which they were acquainted into the mine of wealth it eventually became in the nineteenth century. Curiously enough, a mechanical invention of the same period was afterwards employed, with a very trifling modification, for the production of the earliest sun-pictures. This was the camera-obscura invented by Roger Bacon in 1297, and improved by a physician in Padua, Giovanni Baptista Porta, about 1500, and afterwards remodelled by Sir Isaac Newton. Two more centuries passed away before another step was taken towards the revelation of the marvellous fact that Nature possessed within herself the power to delineate her own beauties, and, as has recently been proved, that the sun could The observations of the celebrated Swedish chemist, Scheele, formed the next interesting link between the simple and general blackening of a lump of chloride of silver, and the gradations of blackening which ultimately produced the photographic picture on a piece of paper possessing a prepared surface of nitrate of silver and chloride of sodium in combination. Scheele discovered in 1777 that the blackening of the silver compound was due to the reducing power of light, and that the black deposit was reduced silver; and it is precisely the same effect of the action of light upon chloride of silver passing through the various densities of the negative that produces the beautiful photographic prints with which we are all familiar at the present time. Scheele was also the first to discover and make known the fact that chloride of silver was blackened or reduced to various depths by the varying action of the prismatic colours. He fixed a glass prism in a window, allowed the refracted sunbeams to fall on a piece of paper strewn with luna cornua—fused chloride of silver—and saw that the violet ray was more active than any of the other colours. Anyone, with a piece of sensitised paper and a prism, or piece of a broken lustre, can repeat and see for themselves Scheele’s interesting discovery; and anyone that can draw a head or Charles William Scheele was born at Stralsund, Sweden, December 19th, 1742, and died at Koeping, on lake Moeler, May 21st, 1786. He was the real father of photography, for he produced the first photographic picture on record without camera and without lens, with the same chemical compound and the same beautiful and wonderful combination of natural colours which we now employ. Little did he dream what was to follow. But photography, like everything else in this world, is a process of evolution. Senebier followed up Scheele’s experiments with the solar spectrum, and ascertained that chloride of silver was darkened by the violet ray in fifteen minutes, while the red rays were sluggish, and required twenty minutes to produce the same result. John Wm. Ritter, born at Samitz, in Silesia, corroborated the experiments of Scheele, and discovered that chloride of silver was blackened beyond the spectrum on the violet side. He died in 1810; but he had observed what is now called the fluorescent rays of the spectrum—invisible rays which unquestionably exert themselves in the interests and practice of photography. Many other experiments were made by other chemists and philosophers on the influence of light on various substances, but none of them had any direct bearing on the subject under consideration until Count Rumford, in 1798, communicated to the Royal Society his experiments with chloride of gold. Count Rumford wetted a piece of taffeta ribbon with a solution of chloride of gold, held it horizontally over the clear flame of a wax candle, and saw that the heat decomposed the gold solution, and stained the ribbon a beautiful purple. Though In 1800, Dr. Herschel’s “Memoirs on the Heating Power of the Solar Spectrum” were published, and out of his observations on the various effects of differently coloured darkening glasses arose the idea that the chemical properties of the prismatic colours, and coloured glass, might be as different as those which related to heat and light. His suspicions were ultimately verified, and hence the use of yellow or ruby glass in the windows of the “dark room,” as either of those coloured glasses admit the luminous ray and restrain the violet or active photographic ray, and allow all the operations that would otherwise have to be performed in the dark, to be seen and done in comfort, and without injury to the sensitive film. The researches of Dr. Wollaston, in 1802, had very little reference to photography beyond his examination of the chemical action of the rays of the spectrum, and his observation that the yellow stain of gum guaiacum was converted to a green colour in the violet rays, and that the red rays rapidly destroyed the green tint the violet rays had generated. 1802 is, however, a memorable year in the dark ages of photography, and the disappointment of those enthusiastic and indefatigable pursuers of the sunbeam must have been grievous indeed, when, after years of labour, they found the means of catching shadows as they fell, and discovered that they could not keep them. “White paper, or white leather moistened with solution of nitrate of silver, undergoes no change when kept in a dark place, but on being exposed to the daylight it speedily changes colour, and after passing through different shades of grey and brown becomes at length nearly black.... In the direct beams of the sun, two or three minutes are sufficient to produce the full effect, in the shade several hours are required, and light transmitted through different coloured glasses acts upon it with different degrees of intensity. Thus it is found “No attempts that have been made to prevent the uncoloured parts of the copy or profile from being acted upon by the light have as yet been successful. They have been covered by a thin coating of fine varnish, but this has not destroyed their susceptibility of becoming coloured, and even after repeated washings, sufficient of the active part of the saline matter will adhere to the white parts of leather or paper to cause them to become dark when exposed to the rays of the sun.... “The images formed by means of a camera-obscura have been found to be too faint to produce, in any moderate time, an effect upon the nitrate of silver. To copy these images was the first object of Mr. Wedgwood, in his researches on the subject, and for this purpose he first used the nitrate of silver, which was mentioned to him by a friend, as a substance very sensible to the influence of light; but all his numerous experiments as to their primary end proved unsuccessful.” From the foregoing extracts from the first lecture on From the time that Wedgwood and Davy relinquished their investigation, the subject appears to have lain dormant until 1814, when Joseph NicÉphore NiÉpce, of Chalons-sur-SaÔne, commenced a series of experiments with various resins, with the object of securing or retaining in a permanent state the pictures produced in the camera-obscura, and in 1824, L. J. M. Daguerre turned his attention to the same subject. These two investigators appear to have carried on their experiments in different ways, and in total ignorance of the existence and pursuits of the other, until the year 1826, when they accidentally became acquainted with each other and the nature of their investigations. Their introduction and reciprocal admiration did not, however, induce them to exchange their ideas, or reveal the extent of their success in the researches on which they were occupied, and which both were pursuing so secretly and guardedly. They each preserved a marked reticence on the subject for a considerable time, and it was not until a deed of partnership was executed between them that they confided their hopes and fears, their failures with this substance, and their prospects of Towards the close of 1827 M. NiÉpce visited England, and we receive the first intimation of his success in the production of light-drawn pictures from a note addressed to Mr. Bauer, of Kew. It is rather curious and flattering to find that the earliest intimation of the Frenchman’s success is given in England. The note which M. NiÉpce wrote to Mr. Bauer is in French, but the following is a translation of the interesting announcement:—“Kew, 19th November, 1827. Sir,—When I left France to reside here, I was engaged in researches on the way to retain the image of objects by the action of light. I have obtained some results which make me eager to proceed.... NicÉphore NiÉpce.” This is the first recorded announcement of his partial success. In the following December he communicated with the Royal Society of London, and showed several pictures on metal plates. Most of these pictures were specimens of his successful experiments with various resins, and the subjects were rendered visible to the extent which the light had assisted in hardening portions of the resin-covered plates. Some were etchings, and had been subjected to the action of acid after the design had been impressed by the action of light. Several of these specimens, I believe, are still extant, and may be seen on application to the proper official at the British Museum. M. NiÉpce named these results of his researches Heliography, and Mr. Robert Hunt gives their number, and a description of each subject, in his work entitled, “Researches on Light.” M. NiÉpce met with some disappointment in England on account of the Royal Society refusing to receive his communication as a secret, and he returned to France rather hurriedly. In a letter dated “Chalons-sur-SaÔne, 1st March, 1828,” he says, “We arrived here 26th February”; and, in a letter written by Daguerre, February 3rd, 1828, we find that savant consoling his brother experimentalist for his lack of encouragement in England. As M. NiÉpce died at Chalons-sur-SaÔne in 1833, and does not appear to have improved his process much, if any, after entering into partnership with M. Daguerre, and as I may not have occasion to allude to him or his researches again, I think this will be the most fitting place to give a brief description of his process, and his share in the labours of bringing up the wonderful baby of science, afterwards named Photography, to a safe and ineffaceable period of its existence. The Heliographic process of M. NiÉpce consists of a solution of asphaltum, bitumen of Judea, being spread on metal or glass plates, submitted to the action of light either by superposition “I about half fill a wine-glass with this pulverised bitumen; I pour upon it, drop by drop, the essential oil of lavender until the bitumen is completely saturated. I afterwards add as much more of the essential oil as causes the whole to stand about three lines above the mixture, which is then covered and submitted to a gentle heat until the essential oil is fully impregnated with the colouring matter of the bitumen. If this varnish is not of the required consistency, it is to be allowed to evaporate slowly, without heat, in a shallow dish, care being taken to protect it from moisture, by which it is injured and at last decomposed. In winter, or in rainy weather, the precaution is doubly necessary. A tablet of plated silver, or well cleaned and warm glass, is to be highly polished, on which a thin coating of the varnish is to be applied cold, with a light roll of very soft skin; this will impart to it a fine vermilion colour, and cover it with a very thin and equal coating. The plate is then placed upon heated iron, which is wrapped round with several folds of paper, from which, by this method, all moisture had been previously expelled. When the varnish has ceased to simmer, the plate is withdrawn from the heat, and left to cool and dry in a gentle temperature, and protected from a damp atmosphere. In this part of the operation a light disc of metal, with a handle in the centre, should be held before the mouth, in order to condense the moisture of the breath.” In the foregoing description it will be observed how much importance M. NiÉpce attached to the necessity of protecting the solution and prepared plate from moisture, and that no precautions are given concerning the effect of white light. It After the plate was prepared and dried, it was exposed in the camera, or by superposition, under a print, or other suitable subject, that would lie flat. For the latter, an exposure of two or three hours in bright sunshine was necessary, and the former required six or eight hours in a strong light. Even those prolonged exposures did not produce a visible image, and the resultant picture was not revealed to view until after a tedious process of dissolving, for it could scarcely be called development. M. NiÉpce himself says, “The next operation then is to disengage the shrouded imagery, and this is accomplished by a solvent.” The solvent consisted of one measure of the essential oil of lavender and ten of oil of white petroleum or benzole. On removing the tablet from the camera or other object, it was plunged into a bath of the above solvent, and left there until the parts not hardened by light were dissolved. When the picture was fully revealed, it was placed at an angle to drain, and finished by washing it in water. Except for the purpose of after-etching, M. NiÉpce’s process was of little commercial value then, but it has since been of some service in the practice of photo-lithography. That, I think, is the fullest extent of the commercial or artistic advantages derived from the utmost success of M. NiÉpce’s discoveries; but what he considered his failures, the fact that he employed M. NiÉpce appears to have done very little more towards perfecting the heliographic process after joining Daguerre; but the latter effected some improvements, and substituted for the bitumen of Judea the residuum obtained by evaporating the essential oil of lavender, without, however, attaining any important advance in that direction. After the death of M. NicÉphore NiÉpce, a new agreement was entered into by his son, M. Isidore NiÉpce, and M. Daguerre, and we must leave those two experimentalists pursuing their discoveries in France while we return to England to pick up the chronological links that unite the history of this wonderful discovery with the time that it was abandoned by Wedgwood and Davy, and the period of its startling and brilliant realization. In 1834, Mr. Henry Fox Talbot, of Lacock Abbey, Wilts, “began to put in practice,” as he informs us in his memoir read before the Royal Society, a method which he “had devised some time previously, for employing to purposes of utility the very curious property which has been long known to chemists to be possessed by the nitrate of silver—namely, to discolouration when exposed to the violet rays of light.” The statement just quoted places us at once on the debateable ground of our subject, and compels us to pause and consider to what extent photography is indebted to Mr. Talbot for its further development at this period and five years subsequently. In the first place, it is not to be supposed for a moment that a man of Mr. Talbot’s position and education could possibly be ignorant of what had been done by Mr. Thomas Wedgwood and Sir Humphry Davy. Their experiments were published in the Journal of the Royal To the late Rev. J. B. Reade is incontestably due the honour of having first applied tannin as an accelerator, and hyposulphite of soda as a fixing agent, to the production and retention of light-produced pictures; and having first obtained an ineffaceable photograph upon paper. Mr. Talbot’s gallate of silver process was not patented or published till 1841; whereas the Rev. J. B. Reade produced paper negatives by means of gallic acid and nitrate of silver in 1837. It will be remembered that Mr. Wedgwood had discovered and stated that the chloride of silver was more sensitive when applied to white leather, and Mr. Reade, by inductive reasoning, came to the conclusion that tanned paper and silver would be more sensitive to light than ordinary paper coated with nitrate of silver could possibly be. As the reverend philosopher’s ideas on that subject are probably the first that ever impregnated the mind of man, and as his experiments and observations are the very earliest in the pursuit of a gallic acid accelerator and developer, I will give them in his own words.—“No one can dispute my claim to be the first to “Naturally enough, the solution which I used at first was too strong, but, if you have ever been in what I may call the agony of a find, you can conceive my sensations on witnessing the unwilling paper become in a few seconds almost as black as my hat. There was just a passing glimpse of outline, ‘and in a moment all was dark.’ It was evident, however, that I was in possession of all, and more than all, I wanted, and that the dilution of so powerful an accelerator would probably give successful results. The large amount of dilution greatly surprised me; and, indeed, before I obtained a satisfactory picture, the quantity of gallic acid in the infusion must have been quite homoeopathic; but this is in exact accordance with modern practice and known laws. In reference to this point, Sir John Herschel, writing from Slough, in April, 1840, says to Mr. Redman, then of Peckham (where I had resided), ‘I am surprised at the weak solution employed, and how, with such, you have been able to get a depth of shadow sufficient for so very sharp a re-transfer is to me marvellous.’ I may speak of Mr. Redmond as a photographic pupil of mine, and at my request, he communicated the process to Sir John, which, ‘on account of the extreme clearness and sharpness of the results,’ to use Sir John’s words, much interested him. “Dr. Diamond also, whose labours are universally appreciated, first saw my early attempts at Peckham in 1837, and heard of my use of gallate of silver, and was thus led to adopt what Admiral Smyth then called ‘a quick mode of taking bad pictures’; but, as I told the Admiral in reply, he was born a baby. Whether our philosophical baby is ‘out of its teens’ may be a question; at all events, it is a very fine child, and handles the pencil of nature with consummate skill. “But of all the persons who heard of my new accelerator, it is “The three known papers were those impregnated with the nitrate, chloride, and the iodide of silver—the two former used by Wedgwood and Young, and the latter by Davy. It is true that Talbot says of the iodide of silver that it is quite insensitive to light, and so it is as he makes it; but when he reduces it to the condition described by Davy—viz., affected by the presence of a little free nitrate of silver—then he must acknowledge, with Davy, that ‘it is far more sensitive to the action of light than either the nitrate or the muriate, and is evidently a distinct compound.’ In this state, also, the infusion of galls or gallic acid is, as we all know, most decided and instantaneous, and so I found it to be in my early experiments. Of course I tried the effects of my accelerator on many salts of silver, but especially upon the iodide, in consequence of my knowledge of Davy’s papers on iodine in the ‘Philosophical Transactions.’ These I had previously studied, in conjunction with my chemical friend, Mr. Hodgson, then of Apothecaries’ Hall. I did not, however, use iodised paper, which is well described by Talbot in the Philosophical Magazine for March, 1838, as a substitute for other sensitive papers, but only as one among many experiments alluded to in my letter to Mr. Brayley. “My pictures were exhibited at the Royal Society, and also at Lord Northampton’s, at his lordship’s request, in April, 1839, “It is obvious that, in the process so conducted by me with the solar microscope, I was virtually within my camera, standing between the object and the prepared paper. Hence the exciting and developing processes were conducted under one operation (subsequently patented by Talbot), and the fact of a latent image being brought out was not forced upon my attention. I did, however, perceive this phenomenon upon one occasion, after I had been suddenly called away, when taking an impression of the Trientalis EuropÆa—and surprised enough I was, and stood in astonishment to look at it. But with all this, I was only, as the judge said, “very hot.” I did not realize the master fact that the latent image which had been developed was the basis of photographic manipulation. The merit of this discovery is Talbot’s, and his only, and I honour him greatly for his skill and earlier discernment. I was, indeed, myself fully aware that the image darkened under the influence of my sensitiser, while I placed my hand before the lens of the instrument to stop out the light; and my solar mezzotint, as I then termed it, was, in fact, brought out and perfected under my own eye by the agency of gallic acid in the infusion, rather than by the influence of direct solar action. But the notion of developing a latent image in these microscopic photographs never crossed my mind, even after I had witnessed such development “Talbot did not patent my valuable fixer. Here I had the advantage of having published my use of hyposulphite of soda, which Mr. Hodgson made for me in 1837, when London did not contain an ounce of it for sale. The early operators had no fixer; that was their fix; and, so far as any record exists, they got no further in this direction than ‘imagining some experiments on the subject!’ I tried ammonia, but it acted too energetically on the picture itself to be available for the purpose. It led me, however, to the ammonia nitrate process of printing positives, a description of which process (though patented by Talbot in 1843) I sent to a photographic brother in 1839, and a quotation from my letter of that date has already appeared in one of my communications to Notes and Queries. On examining Brande’s Chemistry, under the hope of still finding the desired solvent which should have a greater affinity for the simple silver compound on the uncoloured part of the picture than for the portion blackened by light, I happened to see it stated, on Sir John Herschel’s authority, that hyposulphite “Such is a short account of my contribution to this interesting branch of science, and, in the pleasure of the discovery, I have a sufficient reward.” These lengthy extracts from the Rev. Mr. Reade’s published letter render further comment all but superfluous, but I cannot resist taking advantage of the opportunity here afforded of pointing out to all lovers of photography and natural justice that the progress of the discovery has advanced to a far greater extent by Mr. Reade’s reasoning and experiments than it was by Mr. Talbot’s ingenuity. The latter, as Mr. Reade observes, only “caught the ball” and threw it into the Patent Office, with some improvements in the manipulations. Mr. Reade generously ascribes all honour and glory to Mr. Talbot for his shrewdness in seizing what he had overlooked, viz., the development of the latent image; but there is a quiet current of rebuke running all through Mr. Reade’s letter about the justice of patenting a known sensitiser and a known accelerator, which he alone had combined and applied to the successful production of a negative on paper. Mr. Talbot’s patent process was nothing more, yet he The Rev. J. B. Reade lived to see the process he discovered and watched over in its embryo state, developed with wondrous rapidity into one of the most extensively applied arts of this marvellous age, and died, regretted and esteemed by all who knew him, December 12th, 1870. Photographers, your occupations are his monument, but let his name be a tablet on your hearts, and his unselfishness your emulation! The year 1838 gave birth to another photographic discovery, little thought of and of small promise at the time, but out of which have flowed all the various modifications of solar and mechanical carbon printing. This was the discovery of Mr. Mungo Ponton, who first observed and announced the effects of the sun’s rays upon bichromate of potash. But that gentleman was unwise in his generation, and did not patent his discovery, so a whole host of patent locusts fell upon the field of research in after years, and quickly seized the manna he had left, to spread on their own bread. Mr. Mungo Ponton spread a solution of bichromate of potash upon paper, submitted it under a suitable object to the sun’s rays, and told all the world, without charge, that the light hardened the bichromate to the extent of its action, and that the unacted-upon portions could be dissolved away, leaving the During the years that elapsed between the death of M. NiÉpce and the period to which I have brought these records, little was heard or known of the researches of M. Daguerre, but he was not idle, nor had he abandoned his iodine ideas. He steadily pursued his subject, and worked with a continuity that gained him the unenviable reputation of a lunatic. His persistency created doubts of his sanity, but he toiled on solus, confident that he was not in pursuit of an impossibility, and sanguine of success. That success came, hastened by lucky chance, and early in January, 1839, M. Daguerre announced the interesting and important fact that the problem was solved. Pictures in the camera-obscura could be, not only seen, but caught and retained. M. Daguerre had laboured, sought, and found, and the bare announcement of his wonderful discovery electrified the world of science. The electric telegraph could not then flash the fascinating intelligence from Paris to London, but the news travelled fast, nevertheless, and the unexpected report of M. Daguerre’s triumph hurried Mr. Talbot forward with a similar statement of success. Mr. Talbot declared his triumph on the 31st of January, 1839, and published in the following month the details of a process which was little, if any, in advance of that already known. Daguerre delayed the publication of his process until a pension of six thousand francs per annum had been secured to himself, and four thousand francs per annum to M. Isidore NiÉpce for life, with a reversion of one-half to their widows. In the midst of political and social struggles France was proud of the glory of such a marvellous discovery, and liberally rewarded her fortunate sons of science with honourable distinction and In July, 1839, M. Daguerre divulged his secret at the request and expense of the French Government, and the process which bore his name was found to be totally different, both in manipulation and effect, from any sun-pictures that had been obtained in England. The Daguerreotype was a latent image produced by light on an iodised silver plate, and developed, or made visible, by the fumes of mercury; but the resultant picture was one of the most shimmering and vapoury imaginable, wanting in solidity, colour, and firmness. In fact, photography as introduced by M. Daguerre was in every sense a wonderfully shadowy and all but invisible thing, and not many removes from the dark ages of its creation. The process was extremely delicate and difficult, slow and tedious to manipulate, and too insensitive to be applied to portraiture with any prospect of success, from fifteen to twenty minutes’ exposure in bright sunshine being necessary to obtain a picture. The mode of proceeding was as follows:—A copper plate with a coating of silver was carefully cleaned and polished on the silvered side, that was placed, silver side downwards, over a vessel containing iodine in crystals, until the silvered surface assumed a golden-yellow colour. The plate was then transferred to the camera-obscura, and submitted to the action of light. After the plate had received the requisite amount of exposure, it was placed over a box containing mercury, the fumes of which, on the application The development of the latent image by mercury subliming was the most marvellous and unlooked-for part of the process, and it was for that all-important thing that Daguerre was entirely indebted to chance. Having put one of his apparently useless iodized and exposed silver plates into a cupboard containing a pot of mercury, Daguerre was greatly surprised, on visiting the cupboard some time afterwards, to find the blank looking plate converted into a visible picture. Other plates were iodized and exposed and placed in the cupboard, and the same mysterious process of development was repeated, and it was not until this thing and the other thing had been removed and replaced over and over again, that Daguerre became aware that quicksilver, an article that had been used for making mirrors and reflecting images for years, was the developer of the invisible image. It was indeed a most marvellous and unexpected result. Daguerre had devoted years of labour and made numberless experiments to obtain a transcript of nature drawn by her own hand, but all his studied efforts and weary hours of labour had only resulted in repeated failures and disappointments, and it appeared that Nature herself had grown weary of his bungling, and resolved to show him the way. The realization of his hopes was more accidental than inferential. The compounds with which he worked, neither produced a visible nor a latent image capable of being developed with any of the chemicals with which he was experimenting. At last accident rendered him more service than reasoning, and occult properties produced the effect his mental and inductive faculties failed to accomplish; and here we observe the great That was a discovery, it is true; but a bungling one, at best. Daguerre only worked intelligently with one-half of the elements of success; the other was thrust in his way, and the most essential part of his achievement was a triumphant accident. Daguerre did half the work—or, rather, one-third—light did the second part, and chance performed the rest, so that Daguerre’s share of the honour was only one-third. Reade did two-thirds of the process, the first and third, intelligently; therefore to him alone is due the honour of discovering practical photography. His was a successful application of known properties, equal to an invention; Daguerre’s was an accidental result arising from unknown causes and effects, and consequently a discovery of the lowest order. To England, then, and not to France, is the world indebted for the discovery of photography, and in the order of its earliest, greatest, and most successful discoverers and advancers, I place the Rev. J. B. Reade first and highest.
|