In the previous essay, entitled ‘The Duration of Life,’ I have endeavoured to show that the limitation of life in single individuals by death is not, as has been hitherto assumed, an inevitable phenomenon, essential to the very nature of life itself; but that it is an adaptation which first appeared when, in consequence of a certain complexity of structure, an unending life became disadvantageous to the species. I pointed out that we could not speak of natural death among unicellular animals, for their growth has no termination which is comparable with death. The origin of new individuals is not connected with the death of the old; but increase by division takes place in such a way that the two parts into which an organism separates are exactly equivalent one to another, and neither of them is older or younger than the other. In this way countless numbers of individuals arise, each of which is as old as the species itself, while each possesses the capability of living on indefinitely, by means of division. I suggested that the Metazoa have lost this power of unending life by being constructed of numerous cells, and by the consequent division of labour which became established between the various cells of the body. Here also reproduction takes place by means of cell-division, but every cell does not possess the power of reproducing the whole organism. The cells of the organism are differentiated into two essentially different groups, the reproductive cells—ova or spermatozoa, and the somatic cells, or cells of the body, in the narrower sense. The immortality of the unicellular organism has only passed over to the former; the others must die, and since the body of the individual is chiefly composed of them, it must die also. I have endeavoured to explain this fact as an adaptation to the general conditions of life. In my opinion life became limited in Natural death appeared to me to be explicable on the principle of utility, as an adaptation. These opinions, to which I shall return in greater detail in a later part of this paper, have been opposed by GÖtte It is obvious, from this short rÉsumÉ, that GÖtte’s view is totally opposed to mine. Inasmuch as only one of these views can be fundamentally right, it is worth while to compare the two; and although we cannot at present hope to explain the ultimate physiological processes which involve life and death, I think nevertheless that it is quite possible to arrive at definite conclusions as to the general causes of these phenomena. At any rate, existing facts The question—what do we understand by death? must be decided before we can speak of the origin of death. GÖtte says, ‘we are not able to explain this general expression quite definitely and in all its details, because the moment of death, or perhaps more exactly the moment when death is complete, can in no case be precisely indicated. We can only say that in the death of the higher animals, all those phenomena which make up the life of the individual cease, and further that all the cells and elements of tissue which form the dead organism, die, and are resolved into their elements.’ This definition would suffice if it did not include that which is to be defined. For it assumes that under the expression ‘dead organism’ we must include those organisms which have brought to an end the whole of their vital functions, but of which the component cells and elements may still be living. This view is afterwards more accurately explained, and in fact there is no doubt that the cessation of the activity of life in the multicellular organism rarely implies any direct connection with the cessation of vital functions in all its constituents. The question however arises, whether it is right or useful to limit the conception of death to the cessation of the functions of the organism. Our conceptions of death have been derived from the higher organisms alone, and hence it is quite possible that the conception may be too limited. The limitation might perhaps be removed by accurate and scientific comparison with the somewhat corresponding phenomena among unicellular organisms, and we might then arrive at a more comprehensive definition. Science has without doubt the right to make use of popular terms and conceptions, and by a more profound insight to widen or restrict them. But the main idea must always be retained, so that nothing quite new or strange may appear in the widened conception. The conception of death, as it has been expressed with perfect uniformity in all languages, has arisen from observations on the higher animals alone; and it signifies not only the cessation of the vital functions of the whole organism, but at the same time the cessation of life in its single parts, as is shown by the impossibility of revival. The post-mortem death of the cells is also part of death, and was so, long before science established the fact that an organism is built up of numerous very minute living elements, We cannot escape this danger if we look upon the post-mortem death of the cells of the body as a phenomenon which may accompany death, but which may sometimes be wanting. An experiment might be made in which some part of a dead animal, such as the comb of a cock, might be transplanted, before the death of the cells, to some other living animal: such a part might live in its new position, thus showing that single members may survive after the appearance of death, as I understand it. But the objection might be raised that in such a case the cock’s comb has become a member of another organism, so that it would be lost labour to insert a clause in our definition of death which would include this phenomenon. The same objection might be GÖtte is decidedly in error when he considers that the idea of death merely expresses an ‘arrest of the sum of vital actions in the individual,’ without at the same time including that definite arrest which involves the impossibility of any revival. Decomposition is not quite essential to our definition, inasmuch as death may be followed by drying-up We must now consider whether this definition, derived from observation of higher animals, may be also applied without alteration to the lower, or whether the corresponding phenomena which arise in these latter, differ in detail from those of the higher animals, so that a narrower limitation of the above definition is rendered necessary. GÖtte believes the process of encystment which takes place in so many unicellular animals (Monoplastides) to be the analogue of death. According to this authority, the individuals in question, not only undergo a kind of winter sleep—a period of latent life—but when surrounded by the cyst they lose their former specific organization; they become a ‘homogeneous substance,’ and are resolved into a germ, from which, by a process of development, a new individual of the same species once more arises. The division of the contents of the cyst, viz. its multiplication, is, according to this view, of secondary importance, and the essential It is certainly surprising that GÖtte should identify encystment with a cessation of life, and we may well inquire for the evidence which is believed to support such a view. The only evidence lies in a certain degree of degeneration in the structure of the individual, and in the cessation of the visible external phenomena of life, such as feeding and moving. Does GÖtte really believe that it is an incorrect interpretation of the facts to assume that a vita minima continues to exist in the protoplasm, after its complexity has diminished? Are we compelled to invoke a mystical explanation of the facts, by an appeal to such an indefinite principle as GÖtte’s rejuvenescence? Would not the oxygen, dissolved in the water, affect the organic substance the life of which it formerly maintained, and would it not cause its decomposition, if it were in reality dead? I, too, hold that the division of the encysted mass is of secondary importance, and that the encystment itself, without the resulting multiplication, is the original and essential part of the phenomenon. But it does not follow from this that the encystment should be considered as a process of rejuvenescence. What is there to be rejuvenated? Certainly not the substance of the animal, for nothing is added to it, and it can therefore acquire no new energy; and the forms of energy which it manifests cannot be changed, since the form of the matter is just the same after quitting the cyst as it was before. Rejuvenescence has also been mentioned in connection with the process of conjugation, but this is quite another thing. It is quite reasonable, at least in a certain sense, to maintain the connection of rejuvenescence with conjugation; for a fusion of the substance of two individuals takes place, to a greater or lesser extent, in conjugation, and the matter which composes each individual is therefore really altered. But in simple It is much more simple and natural to regard encystment as adapted for the protection of certain individuals in a colony from destruction by being dried up or frozen, or for the protection of the individual during multiplication by division, when it is helpless, and would easily fall a prey to enemies, or to secure advantages in some other way There are, however, numerous cases which prove that the bodies of encysted animals may retain, during the whole process, exactly the same structure and differentiation, which were previously characteristic of them. Thus the large Infusorian Tillina magna, described by Gruber, can be seen through the thin-walled cyst to retain the characteristic structure of its ectoplasm, and the whole of its organization. Even the movements of the enclosed animal do not cease; it continues to rotate actively in the narrow cyst, as do the two or four parts into which it subsequently divides. Such observations prove that GÖtte’s view that ‘every characteristic of the previous organization is lost,’ is quite out of the question It is evident from the above considerations that encystment in no way corresponds with that which every one, including myself, understands by death, because during encystment one and the same being is first apparently dead and then again alive; and we merely witness a condition of rest, from which active life will again emerge. This would remain true even if it were proved that life is, in reality, suspended for a time. But such proof is still wanting, and GÖtte was apparently only influenced by theoretical considerations, when he imagined that death intervened where unprejudiced observers have only recognised a condition of rest. He apparently entirely overlooked the fact that it is possible to test his views; for all unicellular beings are in reality capable of dying: we can kill them, for example, by boiling, and they are then really dead and cannot be revived. But this state of the organism differs chemically and physically from the encysted condition, although we do not know all the details of the difference. The encysted animal, when placed in fresh water, presently originates a living individual, but the one killed by boiling only results in decomposition of the dead organic matter. Hence we see that the same external conditions give rise to different results in two different states of the organism. It cannot be right to apply the same term to two totally different states. There is only one phenomenon which can be called death, although it may be produced by widely different causes. But if the encysted condition is not identical with the death which we can produce at will, then natural death, viz. that arising from internal causes, does not exist at all among unicellular organisms. These facts refute GÖtte’s peculiar view, which depends on the First, the question arises as to how death could have been transmitted from the Monoplastides GÖtte believes that death is always connected with reproduction, and is a consequence of the latter in both Protozoa and Metazoa. Reproduction has, in his opinion, a directly ‘fatal effect,’ and the reproducing individual must die. Thus the may-fly and the butterfly die directly after laying their eggs, and the male bee dies immediately after pairing; the Orthonectides expire after expelling their germ-cells, while Magosphaera resolves itself into germ-cells, and nothing persists except these elements. It is but a step from this latter organism to the unicellular animals which transform themselves as a whole into germ-cells; but in order to achieve this they must undergo the process of rejuvenescence, which GÖtte assumes to be the same as death. These views contain many fallacies quite apart from the soundness or unsoundness of their foundation. The process of encystment, as GÖtte thinks, represents, in the Monoplastides, true reproduction to which multiplication by means of division has been secondarily added. This encystment cannot be dispensed with, for internal causes determine that it must occasionally interrupt the process of multiplication by simple division. But, on the other hand, GÖtte also considers the division of the contents of the cyst to be a secondary process. The essential characteristic of encystment is a simple process of rejuvenescence without multiplication. Hence we are forced to accept a primitive condition in which simple division as well as the division of the encysted individual were Even if the process of rejuvenescence in the Monoplastides were really equivalent to the death of the higher animals, we could not conclude from this that it is necessarily associated with reproduction. Encystment alone is not reproduction, and it first Hence we see that among the Monoplastides reproduction is not connected with death, even if we accept GÖtte’s view and allow that encystment represents death. I shall return later on to the relation between death and reproduction in the Metazoa; but the question first arises whether encystment, if it is not death, has any analogue in the higher animals, and further whether death takes that place in their development which is occupied by encystment in the Monoplastides. Among the higher Metazoa there can be no doubt as to what we mean by death, but the precise nature of that which dies is not equally evident, and the popular conception is not sufficient for us. It is necessary to distinguish between the mortal and the immortal part of the individual—the body in its narrower sense (soma) and the germ-cells. Death only affects the former; the germ-cells are potentially immortal, in so far as they are able, under favourable circumstances, to develope into a new individual, or, in other words, to surround themselves with a new body (soma) But how is it with the lowest Polyplastides in which there is no antithesis between the somatic and germ-cells, and among which each of the component cells of the multicellular body has retained all the animal functions of the Monoplastides, even including reproduction? GÖtte believes that the natural death of these organisms (which he rightly calls Homoplastides) consists in ‘the dissolution of the cell-colony.’ As an example of such dissolution GÖtte takes HÄckel’s Magosphaera planula, a marine free-swimming organism in the form of a sphere composed of a single layer of ciliated cells, Development of Magosphaera Planula (after HÄckel). According to GÖtte, the natural death of Magosphaera consists, as in the undoubted Protozoa, in a process of rejuvenescence by encystment. The dissolution of the ciliated sphere into single cells ‘cannot be identical with natural death. For the regular and Nothing can be said against this, if we agree in identifying death with the encystment of the Monoplastides. Now we could, as GÖtte rightly remarks, derive the lower forms of Polyplastides from Magosphaera if ‘the connection between the cells of the ciliated sphere were retained until encystment, viz. until the reproduction of the single cells had taken place According to GÖtte’s This is quite logical, although in my opinion it is both unproved and incorrect. But, on the other hand, it is certainly illogical for GÖtte to derive the death of the Metazoa in a totally different way, i. e. from the dissolution of their cell-colonies. It is quite plain that the death of the Metazoa does not especially concern the reproductive cells, but the individual which bears them; GÖtte must therefore seek for some other origin of death—an origin which will enable it to reach the body (soma)—as opposed to the germ-cells. If there still remained any doubt about the failure to establish a correspondence between death and the encystment of the Monoplastides, we have here, at any rate, a final demonstration of the failure! But there is yet another great fallacy concealed in this derivation of the death of the Polyplastides. Among the lowest Polyplastides, where all the cells still remain similar, and where each cell is also a reproductive cell, the dissolution of the cell-colony is, according to GÖtte, to be regarded as death, inasmuch as ‘the integrity of the mother-individual absolutely It is more to the purpose that GÖtte has sought for an illustration of death among those remarkable parasites, the Orthonectides, because in them we do at any rate meet with real death. They are indeed very low organisms; but nevertheless they stand far above Magosphaera, even if the latter were hypothetically perfected up to the level of a true Homoplastid, for the cells which compose the body of the Orthonectides are not all similar, but are so far differentiated that they are even arranged in the primitive germ-layers, and a form results which has rightly been compared with that of the Gastrula. It is true they are not quite so simple as GÖtte Orthonectides (after Julin). There is nevertheless no doubt that in the first female form, when sexually mature, the greater part, not only of the endoderm but of the whole body, is made up of ova, so that the animal resembles a thin-walled sac full of eggs. The ova escape by the bursting of the thin ectoderm, and when they have all Arguments such as these pass over the presence of a mesoderm; but apart from this omission, it does not appear to me so self-evident from a purely physiological standpoint, that the ectodermal sheath with its muscle layer must die after the extrusion of the germ-cells. In those females to which GÖtte refers in this passage, the whole sheath remains at first quite uninjured, with the exception of a small cap at the anterior end, which is pushed off to give exit to the ova; and inasmuch as the sheath continues to swim about in the nutritive fluids after this has taken place, the proof is at any rate wanting that it cannot support itself quite as well as before, although it has lost the germ-cells. Then why does it die? My answer to this is simple:—because it has lived its time; because its length of life is limited to a period which corresponds with the time necessary for complete reproduction. The physical constitution of the body is so regulated that it remains capable of living until the extrusion of the reproductive cells, and then dies, however favourable external conditions may be for its further support. The correctness of this explanation is shown by a consideration of the males and the second form of females; for in these cases the body falls to pieces, not as a consequence of reproduction, but as a preparation for it! GÖtte only mentions the second female form in a note, in which he says, it appears ‘that in the second female form of these animals In the male, the mass of spermatozoa does not swell out the body to such an extent that its walls must give way and thus permit an exit, but the large ectoderm cells atrophy spontaneously at the time of maturity, and as they fall off, exit is given to the spermatozoa here and there. In this instance also the dissolution of the body is not a consequence of reproduction, but reproduction can only take place when the dissolution of the body has preceded it! But even if we assume, that the death of the Orthonectides is, in GÖtte’s sense, a consequence of reproduction, inasmuch as, in the two forms of females as well as in the male, the extrusion of a mass of developed germ-cells or embryos deprives the organism of the physiological possibility of living longer, how can we explain the necessity of death as a direct consequence of reproduction in all Polyplastides? Is the body—the soma—of the Metazoa so imperfectly developed, as compared with the reproductive cells, that the extrusion of the latter involves the death of the former? As a matter of fact in the majority of cases the relations are reversed; the number of body-cells usually exceeds the germ-cells a hundred- or a thousand-fold, and the body is, as regards nutrition, so completely independent of the reproductive cells, that it need not be in the least disadvantageously affected by their extrusion. And if the Orthonectid-like ancestors of the Metazoa were compelled to give up their insignificant somatic part after the extrusion of their germ-cells, because it could now no longer support itself, does it therefore follow that the somatic cells had for ever lost the power of surviving, even when their phyletic descendants were surrounded by more favourable conditions? Had they to inherit ‘the necessity of death’ for all time? Whence came this great change in the nature of organisms which, before the differentiation of Homoplastids into Heteroplastids, were endowed with the immortality of unicellular beings? And it must be remembered that it is only an assumption which places the Orthonectides among the lowest Metazoa (Heteroplastids). I do not intend to greatly emphasize this point, but the formation of the Gastrula by embole, and the absence of a mouth and alimentary canal, shows that these parasites are extremely degenerate, and the same may be said of almost all endoparasites. The Gastrula, as an independent organism, was without doubt primitively provided with both mouth and stomach, and the mass of ova filling the female Orthonectid is an adaptation to a parasitic life, which on the one side renders the possession of a stomach a superfluity, Let us now consider the manner in which GÖtte has endeavoured to explain the transmission of the cause of death—which first appeared in the Orthonectides—from these organisms to all later Metazoa, until the very highest forms are reached. Exact proofs of this supposition are unfortunately wanting, and the evidence is confined to the collection of a number of cases in which death and reproduction take place nearly or quite simultaneously. These would prove nothing, even if post hoc were always propter hoc; and there are, opposed to them, a number of cases in which reproduction and death take place at different times. In obtaining evidence for ‘the fatal influence of reproduction,’ is it possible to point to every case of sudden death after the act of oviposition or fertilization? These cases occur among many of the higher animals, especially in Insects, and were collected by me in an earlier work Can we conclude from these cases that the effects of reproduction are, in GÖtte’s sense, universally fatal; that reproduction is the positive and ‘exclusive explanation of natural death’? (l. c., p. 32.) I need not linger over these isolated examples, but I turn at once to the foundation of the whole conclusion—a foundation which is obviously unable to support the superstructure erected on it. GÖtte formally derives the idea that death is a necessary condition of reproduction, from a very heterogeneous collection of facts. When we examine this collection we find that the process which is taken to be death is not the same thing in all these instances, while the same is true of the influence of reproduction by which death is supposed to be caused. The whole conception arises out of the process of encystment, which is regarded as the building-up of reproductive material—that is, as true reproduction; and since, according to GÖtte’s view, the formation of germs is always intimately connected with an arrest of life, and since, by his own definition, this stand-still of life is equivalent to death, it follows that, with such a theory, reproduction, in its essential nature, must be inseparably connected with death. It is necessary at this juncture to remember what GÖtte means by the process of rejuvenescence, and to point out that he is dealing with something quite different from ‘the fatal influence of reproduction,’ which was just now mentioned with regard to insects. ‘Rejuvenescence,’ bound up as it is with encystment and reproduction, is, according to GÖtte, ‘a re-coining of the specific protoplasm, by means of which the identity of its substance is fixed by heredity,’ a ‘marvellous process in which phenomena the most important in the whole life of the animal, and in fact of all organisms—reproduction and death—have their roots’ (l. c., p. 81). Whether such re-coining really takes place or not, at any rate I claim to have shown above that it does not correspond with death in the Metazoa, and—if it is represented at all in these latter—that it ought to be looked for in the reproductive While, among the Monoplastids, according to GÖtte, the causes of the supposed death lie hidden in this mysterious change of the organism into reproductive material, GÖtte asserts that among the Polyplastids (such as Magosphaera, hypothetically perfected so as to form a genuine Polyplastid), the causes of death operate so that the organism breaks up into its component cells, all these being still reproductive cells—a process which, unlike ‘rejuvenescence,’ has nothing mysterious about it, and which is certainly not genuine death. In the Orthonectid-like animals death does not occur as a consequence of the dispersal of the reproductive cells, but rather because the part of the animal which remains is so small and effete that, being unable to support itself, it necessarily dies. From this point at least the object of death and the conception of it remain the same, but now the idea of reproduction undergoes a change. When the Rhabdite females of Ascaris are eaten up by their offspring, is this mode of death connected with the ‘rejuvenescence of protoplasm’? (l. c., p. 34.) Is there any deep underlying relationship between such an end and the essential nature of reproduction? The same question may be asked with regard to the ‘Redia or the Sporocyst of Trematodes, which are converted into slowly dying sacs during the growth of the Cercariae within them.’ We cannot speak of the ‘fatal influence of reproduction’ among tape-worms just because ‘in the ripe segments the whole organization degenerates under the influence of the excessive growth of the uterus.’ It certainly degenerates, but only so far as the developing mass of eggs demands. In fact, at a sufficiently high temperature, death does not occur, and such mature segments of tape-worms creep about of their own accord. We cannot fail to recognize that in this as well as in the above-mentioned cases we have to do with adaptation to certain very special conditions of existence—an adaptation leading to an immense development of reproductive cells in a mother organism which can no longer take in nourishment, or which has become entirely superfluous because its duty to its species is already fulfilled. If this is an example of death inherent in the essential nature of reproduction, then so is the death of a mature segment of a tapeworm in the gastric juices of the pig that eats it. But no one of these alternatives is the universal and inevitable cause of death. This proves irrefutably that death does not proceed as an intrinsic necessity from reproduction, although it may be connected with the latter, sometimes in one way and sometimes in another. But we must not overlook the fact that in many cases death is not connected with reproduction at all; for many Metazoa survive for a longer or shorter period after the reproductive processes have ceased. In fact, I believe I have definitely shown that no process exists among unicellular animals which is at all comparable with the natural death of the higher organisms. Natural death first appeared among multicellular beings, and among these first in the Heteroplastids. Furthermore, it was not introduced from any absolute intrinsic necessity inherent in the nature of living matter, but on grounds of utility, that is from necessities which sprang up, not from the general conditions of life, but from those special conditions which dominate the life of multicellular organisms. If this were not so, unicellular beings must also have been endowed with natural death. I have already expressed these ideas elsewhere I still adhere entirely to this explanation; not of course in the sense that an actual physical struggle has ever taken place between the mortal and immortal varieties of any species. If GÖtte understood me thus, he may be justified by the brief explanations given in the essay to which I have alluded; but when he also attributes to me the opinion that such hypothetically immortal Metazoa had but a very limited period for reproduction, I fail to see what part of the essay in question can be brought forward in support of his statement. Only under some such supposition can I be reproached with having assumed the existence of a process of natural selection which could never be effective, because any advantage which accrued to the species from the shortening of the duration of life could not make itself felt in a more rapid propagation of the short-lived individuals. The statement ‘that in this and in every other case it is a sufficient explanation of the processes of natural selection to render it probable that any kind of advantage is gained’ If I now attempt to take this course, and to reconstruct theoretically the gradual appearance of natural death in the Metazoa, I must begin by again alluding to GÖtte’s criticisms in reference to the operation of natural selection. ‘These conclusions, when applied to the origin of natural death called forth by internal causes, would show that it became inevitable and hereditary in a number of the originally immortal Metazoa, before there could be any question as to the benefits derived from its influence. Such influence must have consisted in the fact that more descendants survived the struggle for existence and were able to enter upon reproduction among the individuals which had inherited the predisposition to die than among the potentially immortal beings which would be damaged in the struggle for existence, and would therefore be exposed to still further injuries. The existing necessity for natural death in all Metazoa might therefore be derived in an unbroken line of descent from the first mortal Metazoan, of which the death became inevitable from internal causes, before the principle of utility could operate in favour of its dissemination.’ In reply to this I would urge: that it has been very often maintained that natural selection can produce nothing new, but can only bring to the front something which existed previously to These processes may be compared to a man on a journey who proceeds from a certain point on foot by short stages, at any given time, and in any direction. He has then the choice of an infinite number of routes over the whole earth. If such a man begins his wanderings in obedience to the impulse of his own will, his own pleasure or interest,—proceeding forwards, to the right or left, or even backwards, with longer or shorter pauses, and starting at any particular time,—it is obvious that the route taken lies in the man himself and is determined by his own peculiar temperament. His judgment, experience, and inclination will influence his course at each turn of his journey, as new circumstances arise. He will turn aside from a mountain which he considers too lofty to be climbed; he will incline to the right, if this direction appears to afford a better passage over a swollen stream; he will rest when he reaches a pleasant halting-place, and will hurry on when he knows that Such a traveller represents a species, and his route corresponds with the changes which are induced in it by natural selection. The changes are determined by the physical nature of the species, and by the conditions of life by which it is surrounded at any given time. A number of different changes may occur at every point, but only that one will actually develope which is the most useful, under existing external conditions. The species will remain unaltered as long as it is in perfect equilibrium with its surroundings, and as soon as this equilibrium is disturbed it will commence to change. It may also happen that, in spite of all the pressure of competing species, no further change occurs because no one of the innumerable very slight changes, which are alone possible at any one time, can help in the struggle; just as the traveller who is followed by an overpowering enemy, is compelled to succumb when he has been driven down to the sea. A boat alone could save him, without it he must perish; and so it sometimes happens that a species can only be saved from destruction by changes of a conspicuous kind, and these it is unable to produce. And just as the traveller, in the course of his life, can wander an unlimited distance from his starting-point, and may take the most tortuous and winding route, so the structure of the original organism has undergone manifold changes during its terrestrial life. And just as the traveller at first doubts whether he will ever get beyond the immediate neighbourhood of his starting-point, and yet after some years finds himself very far removed from it—so the insignificant changes which distinguish the first set of generations of an organism lead on through innumerable other sets, to forms which seem totally different from the first, but which have descended from them by the most gradual transition. All this is so obvious that there is hardly any need of a metaphor to explain it, and yet it is frequently misunderstood, as shown by the assertion that natural selection can create nothing new: the fact being that it so adds up and combines the insignificant small deviations If we consider the introduction of natural death in connection with the foregoing statements, we may imagine the process as taking place in such a way that,—with the differentiation of Heteroplastids from Homoplastids, and the appearance of division of labour among the homogeneous cell-colonies,—natural selection not only operated upon the physiological peculiarities of feeding, moving, feeling, or reproduction, but also upon the duration of the life of single cells. At this developmental stage there would, at any rate, be no further necessity for maintaining the power of limitless duration. The somatic cells might therefore assume a constitution which excluded the possibility of unending life, provided only that such a constitution was advantageous for them. It may be objected that cells of which the ancestors possessed the power of living for ever, could not become potentially mortal (that is subject to death from internal causes) either suddenly or gradually, for such a change would contradict the supposition which attributes immortality to their ancestors and to the products of their division. This argument is valid, but it only applies so long as the descendants retain the original constitution. But as soon as the two products of the fission of a potentially immortal cell acquire different constitutions by unequal fission, another possibility arises. Now it is conceivable that one of the products of fission might preserve the physical constitution necessary for immortality, but not the other; just as it is conceivable that such a cell—adapted for unending life—might bud off a small part, which would live a long time without the full capabilities of life possessed by the parent cell; again, it is possible that such a cell might extrude a certain amount of organic matter (a true excretion) which is already dead at the moment it leaves the body. Thus it is possible that true unequal cell-division, in which only one half possesses the condition necessary for increasing, may take place; and in the same way it is conceivable that the constitution of a cell determines the fixed duration of its life, examples of which are before us in the great number of cells in the higher Metazoa, which are destroyed by their functions. The more specialized a cell becomes, or in other words, the more it is intrusted with only one distinct function, the more likely is this to be the Just as it was possible for the specific somatic cells to be differentiated from among the chemico-physical variations which presented themselves in the protoplasm, by means of natural selection, until finally each function of the body was performed by its own special kind of cell; so it might be possible for only those variations to persist the constitution of which involved a cessation of activity after a certain fixed time. If this became true of the whole mass of somatic cells, we should then meet with natural death for the first time. Whether we ought to regard this limitation of the life of the specific somatic cells as a mere consequence of their differentiation, or at the same time as a consequence of the powers of natural selection especially directed to such an end,—appears doubtful. But I am myself rather inclined to take the latter view, for if it was advantageous to the somatic cells to preserve the unending life of their ancestors—the unicellular organisms, this end With our inadequate knowledge it is difficult to surmise the immediate causes of such a selective process. Who can point out with any feeling of confidence, the direct advantages in which somatic cells, capable of limited duration, excelled those capable of eternal duration? Perhaps it was in a better performance of their special physiological tasks, perhaps in additional material and energy available for the reproductive cells as a result of this renunciation of the somatic cells; or perhaps such additional power conferred upon the whole organism a greater power of resistance in the struggle for existence, than it would have had, if it had been necessary to regulate all the cells to a corresponding duration. But we are not at present able to obtain a clear conception of the internal conditions of the organism, especially when we are dealing with the lowest Metazoa, which seem to be very rarely found at the present day, and of which the vital phenomena we only know as they are exhibited by two species, both of doubtful origin. Both species have furthermore lost much of their original nature, both in structure and function, as a result of their parasitic mode of life. Of the Orthonectides and Dicyemidae we know something, but of the reproduction in the single free non-parasitic form, discovered by F. E. Schulze and named by him Trichoplax adhaerens, we know nothing whatever, and of its vital phenomena too little to be of any value for the purpose of this essay. At this point it is advisable to return once more to the derivation of death in the Metazoa from the Orthonectides, as GÖtte endeavoured to derive it, when he overlooked the fact that, according to his theory, natural death is inherited from the Monoplastids and cannot therefore have arisen anew in the Polyplastids. According to this theory, death must necessarily have appeared in the lowest Metazoa as a result of the extrusion of the germ-cells, and by continual repetition must have become hereditary. We must not however forget that, in this case, the cause of death is exclusively external, by which I mean that the somatic cells which remained Another theory might be based upon the supposition that natural death has been derived, in the course of time, from an artificial death which always appeared at the same stage of each individual life—as we have supposed to be the case in the Orthonectides. I cannot agree with this view, because it involves the transmission of acquired characters, which is at present unproved and must not be assumed to occur until it has been either directly or indirectly demonstrated It is at any rate a delusion to believe that we have explained natural death, by deriving it from the starvation of the soma of the Orthonectides, by the aid of the unproved assumption of the transmission of acquired variations. We must first explain why these organisms produce only a limited number of reproductive cells which are all extruded at once, so that the soma is rendered helpless. Why should not the reproductive cells ripen in succession as they do indirectly among the Monoplastides, that is to say in a succession of generations, and as they do directly in great numbers among the Metazoa? There would then be no necessity for the soma to die, for a few reproductive cells would always be present, and render the persistence of the individual possible. In fact, the whole arrangement—the formation of reproductive cells at one time only, and their sudden extrusion,—presupposes the mortality of the somatic cells, and is an adaptation to it, just as this mortality itself must be regarded as an adaptation to the simultaneous ripening and sudden extrusion of the generative cells. In short, there is no alternative to the supposition stated above, viz. that the mortality of the somatic cells arose with the differentiation of the originally homogeneous cells of the Polyplastids into the dissimilar cells of the Heteroplastids. And this is the first beginning of natural death. Probably at first the somatic cells were not more numerous than the reproductive cells, and while this was the case the phenomenon of death was inconspicuous, for that which died was very small. But as the somatic cells relatively increased, the body became of more importance as compared with the reproductive cells, until death seems to affect the whole individual, as in the higher animals, from which our ideas upon the subject are derived. In reality, however, only one part succumbs to natural death, but it is a part which in size far surpasses that which remains and is immortal,—the reproductive cells. The scientific conception of a corpse is not affected, whether the dead soma remains whole for some time, or falls to pieces at once. I cannot therefore agree with GÖtte when he denies that an Orthonectid possesses ‘the possibility of becoming a corpse’ (in his sense of the word) because ‘its death consists in the dissolution of the structure of the organism.’ When the young of the Rhabdites form of Ascaris nigrovenosa bore through the body-walls of their parent, cause it to disintegrate and finally devour it, the whole organism disappears, and it would be difficult to say whether a corpse exists in the popular sense of the word. But, scientifically speaking, there is certainly a corpse; the real soma of the animal dies, and this, however subdivided, must be considered as a corpse. The fact that natural death is so difficult to define without any If we compare the bodies of the higher Metazoa with those of the lower, we see at once that not only has the structure of the body increased in size and complexity as far as the soma is concerned, but we also see that another factor has been introduced, which exercises a most important influence in lengthening the duration of life. This is the replacement of cells by multiplication. Somatic cells have acquired (at any rate in most tissues) the power of multiplying, after the body is completely developed from the reproductive cells. The cells which have undergone histological differentiation can increase by fission, and thus supply the place of those which are being continually destroyed in the course of metabolism. The difference between the higher and lower Metazoa in this respect lies in the fact that there is only one generation of somatic cells in the latter, and these are used up in the process of metabolism at almost the same time that the reproductive cells are extruded, while among the former there are successive generations of somatic cells. I have elsewhere endeavoured to render the duration of life in the animal kingdom intelligible by the application of this principle, and have attempted to show that its varying duration is determined in different species by the varying number of somatic cell-generations We must, for the present, leave unanswered the question—upon what changes in the physical constitution of protoplasm does the variation in the capacity for cell-duration depend; and what are the causes which determine the greater or smaller number of cell-generations. I mention this obvious difficulty because it is the custom to meet every attempt to search deeper into the common phenomena of life with the reproach that so much is still left unexplained. If we must wait for the explanation of these Therefore it is, in my opinion, an advance if we may assume that length of life is dependent upon the number of generations of somatic cells which can succeed one another in the course of a single life; and, furthermore, that this number, as well as the duration of each single cell-generation, is predestined in the germ itself. This view seems to me to derive support from the obvious fact that the duration of each cell-generation, and also the number of generations, undergo considerable increase as we pass from the lowest to the highest Metazoa. In an earlier work I have above explained the limited duration of the life of somatic cells in the lower Metazoa—Orthonectides—as a phenomenon of adaptation, and have ascribed it to the operation of natural selection, at the same time pointing out that the existence of immortal Metazoan organisms is conceivable. If the Monoplastides are able to multiply by fission, through all time, then their descendants, in which division of labour has induced the antithesis of reproductive and somatic cells, might have done the same. If the Homoplastid cells reproduced their kind uninterruptedly, equal powers of duration must have been possible for the two kinds of Heteroplastid cells; they too might have been immortal so far as immortality only depends upon the capacity for unlimited reproduction. But the capacity for existence possessed by any species is not only dependent upon the power within it; it is also influenced It seems to me of little importance whether the first process of segmentation takes place in the water or within a cyst, although it is quite possible that the necessity for some protective structure appeared at a very early period, in order to shield the segmenting cell from danger. The original mode of reproduction among the Monoplastides was undoubtedly simple fission. This became connected with encystment, which originally took place without multiplication; and only when the divisions in the cyst became excessively numerous did such minute plastids appear that a genuine process of development had to be undergone in order to produce complete individuals. Here we have the general conception of the germ as I defined it. Its limitations are naturally not very sharply defined, for it is impossible to draw an absolute distinction between simple growth and true development accompanied by changes in form and structure. For instance, HÄckel’s Protomyxa aurantiaca divides within its cyst into numerous plastids, which might be spoken of as germs. But the changes of form which they undergo before they become young Protomyxae are very small, and for the most part depend upon the expansion of the body, which existed in the capsule as a contracted pear-shaped mass. It is therefore more correct to speak only of the simple growth of the products of the fission of the parent organism, and to look upon these products as young Protomyxae rather than germs. On the other hand, the young animals which creep out of the germs (the ‘spores’) of Gregarina gigantea, described by E. van Beneden, differ essentially from the adult, and pass through a series of developmental stages before they assume the characteristic form of a Gregarine. This is true development Some authorities may be inclined to limit the above proposition, and to maintain that we must admit the possibility that we are likely to occasionally meet with an ontogeny of which the stages largely correspond with the most important stages in the phyletic development of the species, and that the ontogenetic repetition of the phylogeny, although not the rule, may still occur as a rare exception in the Protozoa. A careful consideration of the subject indicates, however, that the occurrence of such an exception is very improbable. Such an ontogeny would, for instance, occur if one of the lowest Monoplastides, such as a Moneron, were to develope into a higher form, such as one of the Flagellata, with mouth, eye-spot, and cortical layer, under such external conditions that it would be advantageous for the existence of its species that it should no longer reproduce itself by simple fission, but that the periodical formation of a cyst (which was perhaps previously part of the life-history) should be associated with the occurrence of numerous divisions within the cyst itself, and with the formation of germs. We must suppose either that these germs were so minute that the young animals could not Supposing, for instance, that the Acinetaria were derived from the Ciliata, then this transformation must have taken place in the course of the continued division of the ciliate ancestor—partially connected with encystment, but for the most part independently of it. Of the myriads of generations which such a process of development may have occupied, perhaps the first set moved with suctorial processes, while the second gradually adopted sedentary habits, and throughout the whole of the long series, each succeeding generation This does not exclude the possibility that in spite of an assumed sedentary mode of life, the need for locomotion and for obtaining food in fresh places may have arisen at some period of life. But whenever formation of swarm-spores takes place instead of simple fission, this does not depend upon the persistence of an ancestral form in the ontogenetic cycle, but is due to the intercalation of an entirely new ontogenetic stage, which happens to resemble an ancestral form, in the possession of cilia, etc. I imagine that I have now sufficiently explained the above proposition, that the repetition of the phylogeny in the ontogeny does not and cannot occur among unicellular organisms. With the Polyplastides the opposite is the case. There is no species, as far as we know, which does not—either in each individual, or after long cycles which comprise many individuals (alternation of generations)—invariably revert to the Monoplastid state. This applies from the lowest forms, such as Magosphaera and the Orthonectides, up to the very highest. In the latter a great number of intermediate phyletic stages always occur, although some have been omitted as the result of concentration in the ontogeny, while others have sometimes been intercalated. Sexual reproduction is the obvious cause of this very important arrangement. Even if this is an hypothesis rather than a fact we must nevertheless accept it unconditionally, because it is a method of reproduction found everywhere. It is the rule in every group of the animal kingdom, and is only absent in a few species in which it is replaced by parthenogenesis. In these latter instances sexual reproduction may be local, and entirely absent in certain districts only (Apus), or it may be only apparently wanting; in some cases where it is undoubtedly absent, it is equally certain that it was present at an earlier period (Limnadia Hermanni). We cannot as yet determine whether its loss will not involve the degeneration and ultimate extinction of the species in question. If the essential nature of sexual reproduction depends upon the conjugation of two equivalent but dissimilar morphological elements, then we can understand that a multicellular being can only attain sexual reproduction when a unicellular stage is present in its I have on a previous occasion It is obvious that the advantages above set forth did not form the motive which impelled natural selection to convert the immortal life of the Monoplastides into the life of limited duration possessed by the Heteroplastides, or more correctly, which led to the restriction of potential immortality to the reproductive cells of the latter. It is at any rate theoretically conceivable that a struggle might arise between the mortal and immortal individuals of a certain Metazoan species, and that natural selection might secure the success of the former, because the longer the immortal individuals lived, the more defective they became, and as a result gave rise to weaker offspring in diminished numbers. Probably no one would be bold enough to suggest such a crude example of natural selection. And yet I venture to think that the principle of natural selection is here also to be taken into account, and even plays, although in a negative rather than a positive way, a very essential part in determining the duration of life in the Metazoa. GÖtte considers that death is inherent in reproduction, and in a certain sense this is true, but not in the general way supposed by him. I have endeavoured to show above that it is most advantageous for the preservation of the species among the lowest Metazoa, that the body should consist of a relatively small number of cells, and that the reproductive cells should ripen simultaneously and all escape together. If this conclusion be accepted, the uselessness of a prolonged life to the somatic cells is obvious, and the occurrence of death at the time of the extrusion of the reproductive cells is explained. In this manner death (of the soma) and reproduction are here made to coincide. This relation of reproduction to death still exists in a great number A further prolongation of life could only take place when the parent begins to undertake the duty of rearing the young. The most primitive form of this is found among those animals, which do not expel their reproductive cells as soon as they are ripe but retain them within their bodies, so that the early stages of development take place under the shelter of the parent organism. Associated with such a process there is frequently a necessity for the germs to reach a certain spot, where alone their further development can take place. Thus a segment of a tapeworm lives until it has brought the embryos into a position which affords the possibility of their passive transference to the stomach of their special host. But the duration of life is first materially lengthened when the offspring begin to be really tended, and as a general rule the increase in length is exactly proportional to the time which is demanded by the care of the young. Accurately conducted observations are wanting upon this precise point, but the general tendency of the facts, as a whole, cannot be doubted. Those insects of which the care for their offspring terminates with the deposition of eggs at the appropriate time, place, etc., do not survive this act; and the duration of life in such imagos is shorter or longer according as the eggs are laid simultaneously or ripen gradually. On the other hand, insects—such as bees and ants—which tend their young, have a life which is prolonged for years. But we must at least admit the principle that both the lengthening and shortening of life are possible by means of natural selection, and that this process is alone able to render intelligible the exact adaptation of the length of life to the conditions of existence. A shortening of the normal duration of life is also possible; this is shown in every case of sudden death, after the deposition of the whole of the eggs at a single time. This occurs among certain insects, while nearly allied forms of which the oviposition lasts over many days therefore possess a correspondingly long imago-life. The Ephemeridae and Lepidoptera afford many examples of this, and in an earlier work I have collected some of them In such cases have we any right to speak of the fatal effect of reproduction? We may certainly say that these insects die of exhaustion; their vital strength is used up in the last effort of laying eggs, and in the case of the males, in the act of copulation. Reproduction is here certainly the most apparent cause of death, but a more remote and deeper cause is to be found in the limitation of vital strength to the length and the necessary duties of the reproductive period. The fact that there are female Lepidoptera which, like the emperor-moths, do not feed in the imago-state, proves the truth of this statement. They still possess a mouth and a complete alimentary canal, but they have no spiral ‘tongue,’ and do not take food of any kind, not even a drop of water. They live in a torpid condition for days or weeks until fertilization is accomplished, and then they lay their eggs and die. The habit of extracting honey from flowers—common to most hawk-moths and butterflies—would not have thus fallen into disuse, if the store of nutriment, accumulated in the form of the fat-bodies, during the life of the caterpillar, had not been exactly sufficient to maintain life until the completion of oviposition. The fact that the habit of taking food has been thus abandoned is a proof that the duration of life beyond the reproductive period would not be to the advantage of the species. The protraction of existence into old age among the higher Metazoa proves that death is not a necessary consequence of reproduction. It seems to me that GÖtte’s statement ‘that the appearances of senility must not be regarded as the general cause of death’ is not in opposition to my opinions but rather to those which receive general acceptance. I have myself pointed out that ‘death is not always preceded by senility or a period of old age The materials are wanting for a comprehensive investigation of It is in these general directions that we must seek for the significance of old age. It is obviously of use to man, for it enables the old to care for their children, and is also advantageous in enabling the older individuals to participate in human affairs and to exercise an influence upon the advancement of intellectual powers, and thus to influence indirectly the maintenance of the race. But as soon as we descend a step lower, if only as far as the apes, accurate facts are wanting, for we are, and shall probably long be, ignorant of the total duration of their life, and the point at which the period of reproduction ceases. I must here break off in the midst of these considerations, rather than conclude them, for much still remains to be said. I hope, nevertheless, that I have thrown new light upon some important points, and I now propose to conclude with the following short abstract of the results of my enquiry. I. Natural death occurs only among multicellular beings; it is not found among unicellular organisms. The process of encystment in the latter is in no way comparable with death. II. Natural death first appears among the lowest Heteroplastid Metazoa, in the limitation of all the cells collectively to one generation, and of the somatic or body-cells proper to a restricted period: the somatic cells afterwards in the higher Metazoa came to last several and even many generations, and life was lengthened to a corresponding degree. III. This limitation went hand in hand with a differentiation of the cells of the organism into reproductive and somatic cells, in accordance with the principle of division of labour. This differentiation took place by the operation of natural selection. IV. The fundamental biogenetic law applies only to multicellular beings; it does not apply to unicellular forms of life. This depends on the one hand upon the mode of reproduction by fission which obtains among the Monoplastides (unicellular organisms), V. Death itself, and the longer or shorter duration of life, both depend entirely on adaptation. Death is not an essential attribute of living matter; it is neither necessarily associated with reproduction, nor a necessary consequence of it. In conclusion, I should wish to call attention to an idea which is rather implied than expressed in this essay:—it is, that reproduction did not first make its appearance coincidently with death. Reproduction is in truth an essential attribute of living matter, just as is the growth which gives rise to it. It is as impossible to imagine life enduring without reproduction as it would be to conceive life lasting without the capacity for absorption of food and without the power of metabolism. Life is continuous and not periodically interrupted: ever since its first appearance upon the earth, in the lowest organisms, it has continued without break; the forms in which it is manifested have alone undergone change. Every individual alive to-day—even the very highest—is to be derived in an unbroken line from the first and lowest forms. Footnotes for Chapter III.59.‘Ueber den Ursprung des Todes,’ Hamburg and Leipzig, 1883. 60.As in the case of the bodies of monks on the Great St. Bernard, or the dried-up bodies in the well-known Capuchine Monastery at Palermo. 61.Professor Gruber informs me that among the Infusoria of the harbour of Genoa, he has observed a species which encysts upon one of the free-swimming Copepoda. He has often found as many as ten cysts upon one of these Copepods, and has observed the escape of their contents whenever the water under the cover-glass began to putrefy. Here advantage is probably gained in the rapid transport of the cyst by the Crustacean. 62.The views of most biologists who have worked at this subject agree in all essentials with that expressed above. BÜtschli says (Bronn’s ‘Klassen und Ordnungen des Thierreichs,’ Protozoa, p. 148): ‘The process of encystment does not appear to have originally borne any direct relation to reproduction: it appears on the contrary to have taken place originally,—as it frequently does at the present day,—either for the protection of the organism against injurious external influences, such as desiccation or the fatal effects of impure water, etc.; and also to enable the organism, after taking up an unusually abundant supply of food, to assimilate it in safety.’ Balbiani (‘Journ. de Micrographie,’ Tom. V. 1881, p. 293) says in reference to the Infusoria, ‘Un petit nombre d’espÈces, au lieu de se multiplier À l’État de vie active, se reproduisent dans une sorte d’État de repos, dit État d’enkystement. Ces sortes de kystes peuvent Être dÉsignÉs sous le nom de kystes de reproduction, par opposition avec d’autres kystes, dans lesquels les Infusoires se renferment pour se soustraire À des conditions devenues dÉfavorables du milieu qu’ils habitent, le manque d’air, le dessÈchement, etc.—ceux-ci sont des kystes de conservation....’ 63.This is of importance in so far as single individuals might be thus compelled to encyst even when the existing external conditions of life do not require it. The substance which Actinosphaerium, for example, employs in the secretion of its thick siliceous cyst must have been gradually accumulated by means of a process peculiar to the species. We can scarcely be in error if we assume that the silica accumulated in the organism cannot increase to an unlimited extent without injury to the other vital processes and that the secretion of the cyst must take place as soon as the accumulation has exceeded a certain limit. Thus we can understand that encystment may occur without any external necessity. Similarly, certain Entomostraca (e. g. Moina) produce winter-eggs in a particular generation, and these are formed even when the animals are kept in a room protected from cold and desiccation. 64.Upon this point Professor Gruber intends to publish an elaborate memoir. 65.This view has not even been proved for Actinosphaerium, upon which GÖtte chiefly relies. The observations which we now possess merely indicate that the animal contracts to the smallest volume possible. Compare F. E. Schulze, ‘Rhizopodenstudien,’ I, Arch. f. mikr. Anat. Bd. 10, p. 328; and Karl Brandt, ‘Ueber Actinosphaerium Eichhornii,’ Inaug. Diss.; Halle, 1877. 66.The conception of Protozoa and Metazoa does not correspond exactly with that of unicellular and multicellular beings, for which GÖtte has proposed the names Mono- and Polyplastides. 67.Among the Rhizopoda encystment is only known in fresh-water forms, and not in a single one of the far more numerous marine forms which possess shells (see BÜtschli, ‘Protozoa,’ p. 148); the marine Rhizopoda are not exposed to the effects of desiccation or frost, and thus the strongest motives for the process of encystment do not exist, at least among forms possessing a shell. 68.I trust that it will not be objected that the germ-cells cannot be immortal, because they frequently perish in large numbers, as a result of the natural death of the individual. There are certain definite conditions under which alone a germ-cell can render its potential immortality actual, and these conditions are for the most part fulfilled with difficulty (fertilization, etc.). It follows from this fact that the germ-cells must always be produced in numbers which reach some very high multiple of the necessary number of offspring, if these latter are to be ensured for the species. If in the natural death of the individual the germ-cells must also die, the natural death of the soma becomes a cause of accidental death to the germ-cells. 69.l. c., p. 78. 70.l. c., p. 47. 71.‘Entwicklungsgeschichte der Unke,’ Leipzig, 1875, p. 65. 72.Id., p. 842. 73.‘Ursprung des Todes,’ p. 79. 74.l. c., p. 42. 75.‘Contributions À l’histoire des Mesozoaires. Recherches sur l’organisation et le dÉveloppement embryonnaire des Orthonectides,’ Arch. de Biologie, vol. iii. 1882. 76.l. c., p. 37. 77.Julin does not enter into further details on this point, and it is not quite clear at what precise time the cells of the ectoderm atrophy; but this is irrelevant to the origin of death, since the granular mass surrounding the egg-cells at any rate belongs to the soma of the mother. 78.Leuckart finds such a great resemblance between the newly born young of Distoma and the Orthonectides, that he is inclined to believe that the latter are Trematodes, ‘which in spite of sexual maturity have not developed further than the embryonic condition of the Distoma’ (‘Zur Entwicklungsgeschichte des Leberegels,’ Zool. Anzeiger, 1881, No. 99). In reference to the Dicyemidae, which resemble the Orthonectides in their manner of living and in their structure, Gegenbaur has stated his opinion that they belong to a ‘stage in the development of Platyhelminthes’ (Grundriss d. vergleich. Anatomie). Giard includes both in the ‘phylum Vermes,’ and regards them as much degenerated by parasitism; and Whitman—the latest investigator of the Dicyemids—speaks of them in a similar manner in his excellent work ‘Contributions to the Life-history and Classification of Dicyemids’ (Leipzig, 1882). 79.‘Dauer des Lebens;’ translated as the first essay in this volume. 80.See the first essay upon ‘The Duration of Life,’ p. 22 et seq. 81.‘Ursprung des Todes,’ p. 29. 82.l. c., p. 5. 83.See the preceding essay ‘On Heredity.’ 84.The problem is very easily solved if we seek assistance from the principle of panmixia developed in the second essay ‘On Heredity.’ As soon as natural selection ceases to operate upon any character, structural or functional, it begins to disappear. As soon, therefore, as the immortality of somatic cells became useless they would begin to lose this attribute. The process would take place more quickly, as the histological differentiation of the somatic cells became more useful and complete, and thus became less compatible with their everlasting duration.—A. W. 1888. 85.See the preceding essay ‘On Heredity.’ 86.See the first essay on ‘The Duration of Life.’ 87.See the first essay on ‘The Duration of Life.’ 88.These assumptions can be authenticated among the Infusoria. The encysted Colpoda cucullus, Ehrbg. divides into two, four, eight, or sixteen parts; Otostoma Carteri, into two, four, or eight; Tillina magna, Gruber, into four or five; Lagynus sp. Gruber, into two; Amphileptus meleagris, Ehrbg. into two or four. The last two species and many others frequently do not divide at all during the encysted condition. But while any further increase in the number of divisions within the cyst does not occur in free-swimming Infusoria, the interesting case of Ichthyophthirius multifiliis, Fouquet, shows that parasitic habits call forth a remarkable increase in the number of divisions. This animal divides into at least a thousand daughter individuals. 89.True development also takes place in the above-mentioned Ichthyophthirius. While in other Infusoria the products of fission exactly resemble the parent, in Ichthyophthirius they have a different form; the sucking mouth is wanting while provisional clasping cilia are at first present. In this case therefore the word germ may be rightly applied, and Ichthyophthirius affords an interesting example of the phyletic origin of germs among the lower Flagellata and Gregarines. Cf. Fouquet, ‘Arch. Zool. ExpÉrimentale,’ Tom. V. p. 159. 1876. 90.BÜtschli, long ago, doubted the application of the fundamental law of biogenesis to the Protozoa (cf. ‘Ueber die Entstehung der SchwÄrmsprÖsslings der Podophrya quadripartita,’ Jen. Zeit. f. Med. u. Naturw. Bd. X. p. 19, Note). Gruber has more recently expressed similar views, and in fact denies the presence of development in the Protozoa, and only recognizes growth (‘Dimorpha mutans, Z. f. W. Z.’ Bd. XXXVII. p. 445). This proposition must however be restricted, inasmuch as a development certainly occurs, although one which is coenogenetic and not palingenetic. THE CONTINUITY OF THE GERM-PLASM AS THE FOUNDATION OF A THEORY OF HEREDITY. 1885. |