Section 58. Analysis.
If it were not for chemical analysis, most of the big factories would have to shut down, much of our agricultural experimentation would stop, the Pure Food Law would be impossible to enforce, mining would be paralyzed, and the science of chemistry would almost vanish. Analysis is finding out what things are made of. In order to make steel from ore, the ore has to be analyzed; and factories could not run very well without steel. In order to test soil, to test cow's milk, or to find the food value of different kinds of feed, analysis is essential. As to the Pure Food Law, how could the government find out that a firm was using artificial coloring matter or preservatives if there were no way of analyzing the food? In mining, the ore must be assayed; that is, it must be analyzed to show what part of it is gold, for instance, and what part consists of other minerals. Also, the analysis must show what these substances are, so that they can be treated properly. And the science of chemistry is largely the science of analyzing—finding out what things are made of and how they will act on each other. The subject of chemical analysis is extremely important. But in this course it is impossible and unnecessary for you to learn to analyze everything; the main thing is for you to know what analysis is and to have a general notion of how a chemist analyzes things. Fig. 186. Fig. 186. The platinum loop used in making the borax bead test.When you tested a number of substances with litmus paper to find out which of them were acids, you were really doing some work in chemical analysis. Chemists actually use litmus paper in this way to find out whether a substance is an acid or a base. The borax bead test. This is another chemical test, by which certain substances can be recognized:
This is a regular chemical test for certain elements when they are combined with oxygen. The cobalt will always change the borax bead to the blue you got; the chromium will make the bead emerald green or, in certain kinds of flame, ruby red; etc. If you wanted to know whether or not certain substances contained cobalt combined with oxygen, you could really find out by taking a grain on a borax bead and seeing if it turned blue. The hydrochloric acid test for silver. The experiment in which you tested the action of light in effecting chemical change, and in which you made a white powder or precipitate in a silver nitrate solution by adding hydrochloric acid (page 327), is a regular chemical test to find out whether or not a thing has silver in it. If any silver is dissolved in nitric acid, you will get a precipitate (powder) when hydrochloric acid is added. Make the test in the following experiment:
You can detect very small amounts of silver in a liquid by this test. It is a regular test in chemical analysis. The iodine test for starch. A very simple test for starch, but one that is thoroughly reliable, is the following:
The limewater test for carbon dioxid. In crowded and badly ventilated rooms carbon dioxid in unusual amounts is in the air. It can be detected by the limewater test.
Fig. 189. Fig. 189. The limewater test shows that there is carbon dioxid in the air.Carbon dioxid turns limewater milky as it combines with the lime in the limewater to make tiny particles (a precipitate) of limestone. If you pour seltzer water The purpose of these experiments is only to give you a general notion of how a chemist analyzes things,—by putting an unknown substance through a series of tests he can tell just what that substance contains; and by accurately weighing and measuring everything he puts in and everything he gets out, he can determine how much of each thing is present in the compound or mixture. To learn to do this accurately takes years of training. But the men who go through this training and analyze substances for us are among the most useful members of the human race. Inference Exercise
General Review Inference Exercise
|