The traditional method of terminating the church edifice at the end reserved for the clergy was by means of a semicircular or polygonal apse, and this method, which was of Roman origin, continued to be followed in the majority of Romanesque and Gothic churches. Such apses gave to the interior of the edifice a more dignified appearance than was possible with a flat east wall, by avoiding the abrupt termination which the latter produced and by emphasizing the central point in the sanctuary, which was occupied by the high altar in most of the mediaeval churches. Apses Vaulted with Half Domes Once adopted from Roman architecture as a standard part of the church plan, the construction of the apse was naturally based upon Roman models, and since these were always vaulted with a half dome of masonry, similar half domes were employed by the Christian builders of the early mediaeval period. During the Romanesque era, these half domes were almost always of stone laid in horizontal courses, supported by substantial walls of semicircular or polygonal plan. They opened directly into a transept or a tunnel-vaulted choir. The earliest of these half domes were of semicircular elevation, but the pointed form made its appearance in the late eleventh or early twelfth century in many churches. In both forms, the principles of construction are the same. Lighting Problems Connected with the Construction of Half Domed Apses It is a characteristic of the half dome that it exerts a large amount of downward pressure and but little outward thrust, particularly if it be of pointed section. For this reason, such a vault requires a firm support but only a slight amount of buttressing. As long, therefore, as the half dome rested directly upon comparatively low exterior walls, it had plenty of support, and it was even possible to pierce the walls with windows without endangering its stability. But with the increase in height of the more developed Romanesque churches and the introduction of ambulatories, it became difficult to light the sanctuary and still retain the half dome. Two methods were evolved for overcoming this difficulty. The first, which may be seen in the abbey church at Cunault (Maine-et-Loire) (second half of twelfth century),[339] consisted in the construction of a lofty ambulatory opening into the apse through arches rising to the impost of the half dome, or even slightly above it, and resting upon piers of as slender proportions as possible, so that, although the sanctuary was deprived of all direct light, a certain amount was obtained from windows in the outer wall of the ambulatory or from the radiating chapels, while, at the same time, the vault of this ambulatory aided in the support of the apse and vice versa. Such a system, though structurally correct, was not entirely satisfactory. The sanctuary and choir were the portions of the church most in need of lighting, since they contained the altar and the seats for the monks or clergy by whom the services were chanted, and indirect light was bound to be insufficient. The second method, which may be seen in the church of Saint Savin (Vienne) (eleventh century),[340] consisted in reducing the height of the ambulatory, even when this involved making it lower than the side aisles, and then placing a clerestory above the ambulatory arches beneath the springing of the half dome. This may be considered as the best type of apsidal termination developed during the purely Romanesque period. It was only when the half dome was discarded that a satisfactory solution was finally reached in the development of the chevet vault. There were, however, two important series of ribbed half domes, the second of which, at least, may have had some bearing upon the evolution of the chevet type. Apses with Ribbed Half Domes The first series lies largely in southern France in the Romanesque school of Provence. Here there are a certain number of churches, among them the chapel of Saint Honorat in Les Alyscamps at Arles (Bouches-du-RhÔne) (eleventh century?), in which the surface of the half dome is broken out at regular intervals into a number of flat, pilaster-like, radiating strips, forming a part of the actual masonry of the vault. These divide the half dome in much the same manner as true Gothic ribs, but they do not support it in any way and seem to have been used for the decoration which such a change in the surface of the vault produced.[341] As a general rule, these ribs radiate from a point slightly back from the crown of the apse arch and often from a raised masonry ring as in the chapel just cited. They vary, however, both in number, thickness and width, some being comparatively thick and widening out from the central keystone as in the cathedral of Notre Dame-des-Doms at Avignon (Vaucluse), others being but slightly salient and of the same width throughout like those in Saint Honorat at Arles. Much larger in number and extent is the second series of churches with rib-vaulted apses, though they are in general of later date than those in Provence. Their radiants have a certain structural character, for they are independent of the vault surface and were doubtless erected in most cases as a permanent centering to aid in the construction of the half dome. They do not, however, aid to any extent in its support, for the courses of masonry in the vaults are still horizontal and concentric with the curve of the apse, and the completed half domes would therefore stand just as well were the ribs removed. It may be that they were introduced in order to make the apse correspond more closely in appearance with the ribbed vault which had in many cases been introduced in the naves of the churches in which the ribbed half domes are found. In any event, they mark a stage in apse vaulting between the simple half dome and the developed chevet, which is worthy of careful consideration. Most of these vaults date from the second quarter of the twelfth century and are to be found within the zone of influence of the Ile-de-France, though occasionally an example is found at a long distance from this center as in the case of Sant’ Abondio at Como,[342] Santa Maria di Castello at Corneto-Tarquinia in Italy,[343] and such churches as that of the Monasterio de la Oliva (Navarra) in Spain,[344] (1198). The number of ribs varies considerably, though two is most common particularly in the smaller churches and chapels.[345] Of these, the church at Morienval (Oise) (Fig. 77) furnishes a good, though recently reconstructed, example, while Saint Georges-de-Boscherville (Fig. 61) may be cited as possessing a large apse of similar character. The important thing in a comparison of these two vaults is the difference in the lighting of the completed apse. At Boscherville, it was a simple matter to pierce the exterior wall with windows, in this case in two stages, and still keep their crowns practically below the level of the impost of the half dome, since the latter rested directly upon the outer walls. But at Morienval there was an ambulatory, and in order to get a clerestory above its arches, the windows had to be cut into the curved surface of the half dome itself, with the result that they were so deep as to prove of only limited usefulness. Other examples could be cited where this same attempt is made to obtain sufficiently large windows by shoving their heads into the half dome,[346] while at Beaulieu (CorrÈze)[347] the windows lie entirely above the impost. Besides the ribbed half dome just described, there is still another type to be seen in the Lady chapel of the church of Saint Martin-des-Champs at Paris (Fig. 65). Its plan is a trefoil and the vault is made up of a series of segments of domes with salient ribs marking their intersections. As far as construction is concerned, there is really no change from that of the more common half dome, for the courses of masonry are still horizontal and the ribs merely serve as centering and as a means of subdividing the surface to be vaulted and clearly marking the lines of intersection. The vault would stand equally well were the ribs removed and is, in structural character, very similar to the celled domes of the Villa Adriana at Tivoli and of S.S. Sergius and Bacchus at Constantinople. “Groined Half Domes” Another form of apse vault of which there would seem to be a number of examples prior to the introduction of ribbed vaulting may perhaps be termed the “groined half dome.” It is a vault resembling a segmental dome except that the segments do not run down to a common impost, but form a series of window cells not unlike those of a groined vault but not running all the way to the vault crown. The earliest of these vaults appears to be that in the crypt of Saint Laurent at Grenoble (IsÈre) (sixth century).[348] Rivoira has shown[349] that Roman prototypes of this form can be found in the so-called “Temple di Siepe” (second century) at Rome, the vestibule of the Villa Adriana at Tivoli (125-135) and elsewhere. There are also a number of Romanesque examples. Of these, one is in the chapel off the south transept of Saint Nicholas at Caen (1080-1093),[350] while another is to be found in Saint Andrew’s chapel at Canterbury cathedral (cir. 1110).[351] These vaults closely resemble the true Gothic chevet which was soon to follow them, and they might seem to be its prototypes were it not for the fact that their construction is of an entirely different character. All are built of small stone or rubble and were undoubtedly laid up on a wooden centering with no particular regard for the direction in which the masonry courses ran, or possibly with these courses like those in a half dome. The construction was thus a combination of half dome and groined vaulting and not at all of the ribbed type. That they may, however, have been of influence in the development of the true chevet will be later suggested. Apses with Four-Part Ribbed Vaults A final type of rather primitive vaulting which was subsequent to the introduction of ribbed vaulting but would seem to be prior to the use or at least to the extensive knowledge of the chevet, consisted in the employment of a simple four-part vault over the semicircle of the apse (Plate II-a.).[352] The result was an awkward kind of chevet vault which is worthy of consideration as perhaps having a part in the development of the true Gothic form. It might properly be called a four-part cross-ribbed apse vault.
The Chevet Vault By the middle of the twelfth century, all the methods of apse vaulting thus far described, were abandoned[353] in favor of the ribbed Gothic chevet[354] which was then developed. In this new vault the masonry courses are no longer horizontal and concentric but run in a generally perpendicular direction from a series of radiating ribs, which have a common keystone, to a wall rib or a curved line of intersection above the heads of a series of apse windows in whole or in part above the level of the impost of the radiants. In other words, the chevet vault consists of a series of triangular severies, each essentially like one quarter of a four-part cross-ribbed vault. The evolution of this developed chevet from the earlier types of apse vaulting already discussed is difficult to trace and in fact it seems most reasonable to imagine that it was a spontaneous transformation which did not require any intermediate steps. It has, for instance, been pointed out that the greatest problem of the apse builder was to place a clerestory of good sized windows above the ambulatory arcade or at least as high as possible in the apse wall and at the same time to keep the pressures and thrusts of his vault at the lowest possible point. Imagine then a builder with this in mind starting to construct a ribbed half dome with windows rising above its impost. Suppose that the radiating ribs were first constructed and the space to be vaulted thus divided into triangular compartments. Now assume that the builder was familiar with the four-part cross-ribbed vault—a reasonable assumption since everything seems to point to an earlier date for such vaults than for the ribbed chevet. Would he not be prompt to see that a series of clerestory windows could be built around the apse precisely like those along the walls of nave or choir and each triangular space thus formed, be covered by one quarter of four-part vault? Is not this especially reasonable in view of the fact that there existed groined vaults of just this type,[355] exactly as there existed groined prototypes out of which sprang the simple four-part cross-ribbed vault? Furthermore, if the peculiar four-part apse vaults described as sometimes employed in transitional churches are any or all of them earlier than the earliest of the true chevets, would it not seem as if the builders were bent upon using quadripartite vaulting of some form, even over the apse, in order to obtain a clerestory? Whatever the true process of evolution may have been, it is at least possible that the above explanations are correct and that the chevet vault developed directly from the difficulty of placing windows beneath the ribbed half dome. If such was the case another type of vault would seem to have owed its origin in large part to the lighting problem. Types of Chevet Vaults Once introduced, four types of chevet vault were gradually established, not counting the variation which each of them underwent. For convenience these will be called the radiating-ribbed type, the broken-ribbed type, the buttressing-ribbed type, and finally the diagonal or cross-ribbed type. Each will be considered in turn and an effort made to trace their consecutive development. The chronology of these vaults is very difficult to determine. In fact, it is probably safe to assume that the earliest example, if there were not a number of these vaults simultaneously constructed, has disappeared. In any event, it would seem that the vault must have been first used somewhere between 1130 and 1150 as there are several existing examples which date from this period. If these cannot be arranged in any certain order, they may at least, be used to show the form of the early chevets. Radiating-Ribbed Chevets Perhaps the most primitive, in appearance at least, is that above the transept of Tournai cathedral (Fig. 53) in which, as has been noted,[356] the extrados of each rib is built up until it forms a flat sloping upper surface, each cell of the vault proper rising from the ramps thus formed. Next to this vault at Tournai, and as a matter of fact, probably of earlier date though of more developed type are the two chevet vaults of Largny (Aisne) (cir. 1140).[357] and Azy-Bonneil (Aisne),[358]—which are three-celled,—and the one in the lower story of the chapel of the Bishop’s palace at Laon (cir. 1137-1147) (Fig. 62) with five cells. The latter shows their general characteristics. There are no wall ribs and the round-headed windows are only partly raised above the impost of the radiants while there abut against the keystone of the apsidal arch (Plate II-b.). It will be noticed also that this arch is greatly thickened to resist the pressure of these ribs, and at Tournai is preceded by a tunnel-vaulted bay to make this resistance even more secure.[359] But much more important than these smaller chevet vaults, are those of a number of large churches, also belonging to the second quarter of the twelfth century. Of these, Saint Germer-de-Fly[360] (Fig. 63) has been most prominently brought to notice through Mr. Moore’s work on Gothic architecture. It is doubly of interest because it possesses chevet vaults of two distinct stages in the development of this new form. Thus in the original radiating chapels opening off the ambulatory,[361] three-part chevet vaults of the type described in the previous paragraph were employed, with this advance, namely the introduction of stilted, round-headed wall ribs. The vaults are still highly domed at the crown and it would seem very reasonable to suppose that they were completed before the vault of the great apse was begun. This latter shows an advance in construction beyond that hitherto seen. In the first place, the entire window is placed above the level of the impost of the radiants with a consequent raising of the vault surface above the windows and a great reduction in its domed-up character. The line of intersection of the vault cell with the apse wall, which is marked by a slightly pointed, stilted wall rib, resting upon slender shafts rising from the clerestory string-course, is almost perpendicular from the impost of the radiants to a point about at their haunch. Thus the lower portion of the masonry panel is really a flat wall resting upon the ribs. The object of the builders in thus constructing their vault panels would seem to have been twofold, first to get a large space of pleasing shape for clerestory windows and secondly to aid in overcoming the thrusts of the radiating ribs. The first is perhaps the less important of the two, for the windows in the early chevets very rarely occupy all the space beneath the wall intersection. The second, however, furnishes a much better explanation of this form of panel. And this explanation would seem to lie, not so much in the fact that the stilted wall rib concentrated the thrust along a narrow strip of exterior wall where it could be met by exterior buttresses[362] but rather in the fact that the weight of such a flat wall, rising perpendicularly above the radiating rib, practically offset all of their outward thrusts by its downward pressure while the little which remained was taken care of by the thick walls characteristic of church construction in the Transitional period. Thus it is possible to account for the almost total lack of exterior abutment in such apses as this at Saint Germer-de-Fly, where only the slenderest of shafts are found along the exterior wall serving far more for decoration than for abutment.[363] That the stilting was not done primarily to concentrate the thrusts is further shown by the fact that in many of the later Gothic churches which were built long after the flying-buttress was perfected there is no attempt to stilt the wall rib, but the masonry of the vault is actually curved outward from the very springing of the radiants, which are raised to the impost of the window heads to give the vault this form.[364] The highly stilted wall intersection with the consequent elevation of the clerestory window and flattening of the lower part of the vault cell constitutes the great structural advance in the chevet of Saint Germer. The employment of the wall rib, however, introduces an important matter for discussion. To be sure this is not by any means the first example of its use, for formerets may be found even in groined vaults, but it is one of the early examples on a large scale and may serve to introduce the question as to the part which these ribs played in Gothic architecture. The Use of Wall Ribs in Gothic Ribbed Vaulting It has generally been maintained that the wall ribs were integral and important members of a true ribbed vault and that they actually aided in the support of the masonry panels. There are, however, a number of reasons for believing that this is not entirely so but that these ribs were comparatively unimportant as far as their relation to the vaults was concerned and were of much more importance, in the first place as cover joints, in the second as window heads, and in the third as relieving arches in the clerestory wall. Two important facts lend strength to the theory that the wall rib was not as a rule a supporting member. The first of these lies in the fact that it was quite frequently omitted even from vaults of the true Gothic form, and the second, in the fact that, when present, there are perhaps as many cases in which the curve of the vault fails to follow that of the rib as there are of the reverse condition. In fact, it is a question whether in the majority of cases the vault panel actually rests upon or even cuts into the face of the formeret. Take, for example, a number of chevet vaults[365] and examine them in this respect. At Saint Germer (Fig. 63) the wall rib is largely a relieving arch in the clerestory wall which is made much thinner beneath it; and while the curve of the chevet cells follows in general that of the arch, it does not exactly correspond with it. In the large chevet vault of Saint Remi at Reims (Fig. 64), and in many other vaults not over the apse, especially in the English churches and those in which a group of clerestory windows is found in each bay, no wall rib is used, showing that such a rib was not at all necessary as far as the construction and support of the vault was concerned. Moreover, in many of the churches in which a wall rib is used along the exact line of the vault surface, it is too small to act as a supporting member and would seem to be merely a cover-joint to hide the intersection of the vault surface with the clerestory wall.[366] Finally and most important of all are the cases in which this rib is used primarily as a window head. In some of these, as for example in the apse of La Madeleine at VÉzelay, and those of the cathedrals of Soissons (Fig. 67) and Chartres (Fig. 68), the curve of the vault corresponds with this window-head arch, but in many other apses such as those of Bourges cathedral (Fig. 76), of Saint Étienne at Caen (Fig. 70), and of the Sainte Chapelle at Saint Germer, the builders without hesitation curved their vault surface away from the line of the window-head which would otherwise be the natural wall rib.[367] Although from the preceding facts, it would seem evident that the wall rib was not an essential structural member of the Gothic vaulting system it may have been of advantage in many instances for holding a temporary wooden centering during the construction of the vault panels. Radiating-Ribbed Chevets continued Returning again to the radiating-ribbed chevet, especially that of Saint Germer-de-Fly (Fig. 63), it is important to note the one great weakness which this vault possesses. It lies in the position of the radiating ribs which abut the apsidal arch at its crown, in other words at a point not at all suited to meet the pressures which are thus brought to bear against it. A rather heavy arch between the apse and the remaining bay of the choir, though no heavier than those in the vaulted bays of the nave, aids in resisting the pressure but nevertheless such a vault is not strictly logical from a structural standpoint. It is not as well buttressed, for example, as the ribbed half dome of Saint Georges at Boscherville (Fig. 61), or the transept chevet at Tournai (Fig. 53), in which a tunnel vaulted bay precedes the arch against whose crown the radiants are brought to bear. It is not surprising that this vault was but little used in subsequent Gothic architecture. It is possible, however, to cite a few examples, among them the cathedrals of SÉez (Orne) (end of the thirteenth century), Cambrai (Nord) (cir. 1250), and Dinan (CÔtes-du-Nord) (end of the thirteenth century), the cathedral of Saint Sauveur at Bruges (Belgium) (probably thirteenth century), and the abbey church of Moissac (Tarn) (probably fourteenth century). There is also a peculiar form in which the ribs are narrowed toward the crown, in Santa Maria sopra Minerva at Rome (after 1285). Two other slight variants of the type, one in the church of Saint Pierre-le-Guillard at Bourges and the other in the cathedral of Moulins are later discussed. Broken-Ribbed Chevets After that of Saint Germer-de-Fly, perhaps the next important chevet is that of Saint Martin-des-Champs at Paris (Fig. 65), which dates from about 1140-1150 and may possibly be the earliest of what will be termed broken-ribbed chevets. On the exterior, this apse closely resembles Saint Germer with no flying-buttresses and only very light exterior buttress-shafts. In the interior, however, there is a marked difference between the two, for the apse of Saint Martin-des-Champs is so constructed as to include not merely the bays actually on the curve, but one rectangular bay of the choir as well. The builders thus set themselves the problem of constructing a chevet vault with seven cells, over a space greater than a semicircle. If they had made all the radiants of such a vault meet at the crown of the transverse arch, there would have been a great disparity in the length of the ribs and a very awkward shape to the separate vault cells. To avoid this, and to do away with the pressure of the radiants at the crown of the apsidal arch, the builders moved the keystone of the radiating ribs back from this crown to a point where all of them become nearly equal in length. And since the bay with parallel sides was of practically the same size as four[368] of those making up the apse proper, the keystone fell very nearly on the transverse line between the two piers marking the eastern end of this bay (Plate II-c.). In none of the chevets of this type did it fall directly at the center of such a line, however, and it is this fact that differentiates the chevet vaults of broken-ribbed character from the slightly later and more developed buttressing-ribbed type. A vault like that at Saint Martin-des-Champs, marks an advance over that at Saint Germer in that the two western ribs furnish admirable abutment for the keystone of the vault, and the added choir bay gives a more spacious appearance to this portion of the church. There is another example of this broken-ribbed chevet in Paris, in the church of Saint Germain-des-Pres (cir. 1163), while still others may be seen in Saint Quiriace at Provins (cir. 1160) (Fig. 31) and in La Madeleine at VÉzelay (cir. 1140-1180) (Fig. 66). The latter is of especial interest because it shows some peculiar makeshifts in the matter of construction. Here the choir would seem to have been originally designed to consist of two rectangular bays with four-part vaults and an apse of five sides probably with a chevet like that at Saint Germer.[369] But by the time the western bay of the choir had been built up to the clerestory, it would seem as if a new idea of a seven-part chevet had come in, perhaps from Paris, and the next bay was subdivided so as to give seven equal sides to the new vault. Then to make all the bays of the same scale, the west bay was also subdivided, but this necessarily at the clerestory level, and covered with a six-part vault. This left nine bays for the chevet and as only seven were to be actually included beneath the radiants, a narrow rectangular four-part vault was used over that toward the choir. There now remained an apse in all respects like those of Saint Martin-des-Champs and of Saint Germain-des-Pres and it was similarly vaulted with a broken-ribbed vault whose keystone does not lie quite upon the transverse line between the first two piers of the apse proper. The chevet built upon these radiants differs, however, from those in Paris and at Saint Germer in having a decidedly domed up character. In other words, the windows do not rise more than half the distance from the impost of the radiants to their keystone.[370] Buttressing-Ribbed Chevets This type of chevet as developed at Paris and VÉzelay played a large part in subsequent architecture, for out of it would seem to have sprung what will be for convenience termed the buttressing-ribbed chevet. Among the more important early chevets of this type are those over the apses of Noyon[371] transepts, of Saint Remi at Reims (Fig. 64), of Saint Leu d’Esserent (Oise), and of the cathedrals of Sens, Canterbury, Noyon, and others, all probably completed before 1180. Although differing in a number of details, these apses have certain features in common. They all include beneath the chevet the preceding bay of the church, and all have the same arrangement of ribs which are so placed that the two springing from the piers next beyond the apsidal arch on either side form a transverse arch against whose crown all the others abut (Plate II-d.). The object of this arrangement evidently lay in the desire of the builders to construct a distinct transverse arch between the curve of the apse and the rectangular bay included in the chevet and at the same time to employ the two ribs beyond those forming the arch, as buttresses, to offset the thrust of the remaining radiants. Thus when the rectangular bay was larger than those around the curve, as for example in the choir of Soissons cathedral (Fig. 67), the buttressing ribs were longer than the remainder of those forming the vault. This made the bay containing these two ribs precisely like one-half of a six-part vault, and as this method of vaulting was commonly used in the nave and choir of these churches this chevet was a very Fig. 67.—Soissons, Cathedral. logical continuation of such a vault. But the builders do not seem to have realized immediately the aesthetic advantage in so planning their churches that such chevet vaults should come next to a six-part vault. At Sens (Fig. 28), however, the perfected use of this new chevet is shown for it is placed directly beyond a six-part bay and its two buttressing ribs are the counterparts of the two diagonals of the sexpartite vault. Once the advantage of such an arrangement was grasped, the churches were in many cases planned to provide for an even number of six-part bays in the choir followed by a chevet which carries the same system into the apse of the church. Thus in the cathedrals of Paris and Bourges, and probably originally in that of Soissons, as well as in other churches with six-part vaulting, this chevet became the standard form of eastern termination and the bay preceding the apse was made sexpartite so that the completed church would be uniform throughout.[372] Moreover the apsidal bays of the later chevets, as for example that at Soissons (Fig. 67) were frequently so planned that the radiants from the piers next beyond the ribs forming the transverse arch containing the keystone, were exact extensions of the buttressing ribs. In other words, except for the subdivision of the eastern bay into three window cells, the chevet corresponded to a true six-part vault inscribed in the space formed by the last bay of the choir and the polygonal-sided apse. Notwithstanding the fact that the buttressing-ribbed chevet was primarily suited to churches with six-part vaulting, it was by no means confined to these for it is found in a large number which were from the beginning planned for four-part vaults. Among these is the cathedral of Rouen, in which the chevet is of distinctly six-part type with a full-sized choir bay included beneath the vault,[373] and the cathedral of Reims in which all the bays of the chevet are of practically the same size, as in the early churches which gave rise to this form of apse vault. Reims is thus an example of the perseverance of the design of a seven-sided chevet including one bay with parallel walls and yet of the same size as those forming the curve.[374] But while pleasing in appearance when used in combination with six-part choir vaults, the chevet with buttressing ribs was not so satisfactory in churches with four-part cross-ribbed vaulting of rectangular plan. A reference to the vault of Soissons cathedral (Fig. 67)[375] will illustrate the faults of such a combination. These lie largely in the three-part vaulted bay. In the first place, though its window cells are practically the same width as those in the remainder of the choir, their crown lines run out at an awkward angle,[376] instead of being practically perpendicular to the outer walls as in the remaining bays of the apse and all those of four-part type. Secondly, the great, triangular, transverse severy is much larger than any of the others in the church and is thus unpleasing when contrasted with them, besides being more difficult to construct because of its larger size. It is not surprising to find, therefore, that a fourth form of chevet was developed and used extensively in churches with four-part vaulting. This chevet, which will be termed diagonal-ribbed, is perhaps the most important distinct type developed in Gothic architecture. Diagonal-Ribbed Chevets It has already been noted that there were a number of early apses covered with an elementary kind of chevet which was formed by the use of two diagonal ribs over the semicircle of the apse in exactly the same manner as similar ribs were used in rectangular four-part vaulting. Such a vault as this may have been the prototype of the slightly more developed form to be seen in the radiating chapels of the cathedral of Noyon (before 1167)[377] and in the chapel at the end of one aisle of Notre Dame at Étampes (Seine-et-Oise) (cir. 1160). This latter has one extra rib added in what would have been the eastern bay of such a four-part apse vault subdividing it into two window cells and thus producing a four-celled chevet[378] (Plate II-e.). It is exactly this principle, applied on a larger scale and with a further subdivision of this outer bay, which may be seen in such chevets as those of Chartres cathedral (Fig. 68) and Saint Étienne at Caen (first quarter of thirteenth century) (Fig. 70).[379] Of these, the one at Chartres has the more primitive character, for all of its seven bays are on the curve of a semicircle and thus none of the choir proper is included beneath the chevet (Plate II-f.). As a result of this increased number of bays, the intersection of the two diagonal ribs which form the first two radiants on each side, lies at a point comparatively near the keystone of the apsidal arch. This gives a certain uniformity to the size and character of the bays, but the vault is not yet perfect, for the ribs are still noticeably different in length, and more important than this the crowns of the window cells are at an awkward angle with the exterior wall. These faults are, however, much less marked in Saint Étienne, where the apse is greater than a semicircle—though even this chevet is not of the perfected diagonal-ribbed type, since it has no wall ribs and, moreover, is used over an apse of semicircular instead of polygonal plan like those of the developed Gothic period. An example of the perfected vault may be seen, however, above the apse of Amiens cathedral (Fig. 69). Here there are but five bays of the chevet along the curve of the apse proper, the remaining two being continuations of the choir walls (Plate II-g.). The diagonal ribs which determine the position of the keystone are therefore precisely such ribs as those in the remainder of the chevet except that the bay in which they lie is of smaller size than those preceding it and thus forms a gradual transition to the still smaller bays comprising the apse proper. As a result of this arrangement of ribs at Amiens, the keystone of the vault is so placed that it not only renders all the radiants of practically equal length but also makes the crown lines of each window cell so nearly perpendicular to the wall as to give a most symmetrical effect to the entire vault. Such a chevet constitutes the finest method of apse vaulting developed in Gothic architecture and in fact may well be considered the most perfect type conceivable, at least from the point of view of appearance. It loses a little in structural character through the fact that the first ribs do not abut the four eastern radiants at as firm an angle as in the previous chevet type,[380] but the advantage gained in the more symmetrical character of the vaulting severies makes up in large degree for this possible fault. Chevets with Added Ribs Nevertheless it may have been a feeling on the part of the builders that there was a lack of abutment to the west of the keystone which led to the introduction of one or more short ribs at this point in a number of chevets of various dates throughout the Gothic era. Thus in the apse of Saint Étienne at Caen (Fig. 70),[381] of Saint TrophÎme at Arles, and of the cathedral of Notre Dame at Mantes, a single rib runs out from the keystone of the chevet to that of the apsidal arch. (Plate II-h.). Nor was this rib a continuation of a ridge rib in the choir, for in the instances just cited no such rib was employed. One is to be seen in a number of churches, among them such widely separated examples as San Saturnino at Pamplona,[382] Westminster Abbey,[383] and Saint Alpin at Chalons-sur-Marne.[384] All of these churches have diagonal-ribbed chevets, but there are instances of a short rib running to the apsidal arch even where the vault is of the buttressing ribbed type, as for example in the cathedral of Barcelona,[385] where it would seem to have been used to subdivide the great triangular transverse cell of the vault even more than to provide further apparent abutment for the other radiants (Plate II-i.). Even in chevets of the first type with ribs radiating from the keystone of the apsidal arch, a rib is occasionally added in the bay preceding this vault, as for example in Saint Pierre-le-Guillard at Bourges (fifteenth century vaulting), where this short rib runs out only to the crown of the six-part vault with which the last bay of the choir is covered (Plate II-j.). Occasionally, too, a church like the cathedral of Moulins (Allier) (1468-1508), with a ridge rib the length of the choir, is terminated by a chevet with radiating ribs which thus receive apparent abutment at their keystone (Plate II-k.).
A similar purpose of providing apparent abutment would seem to account for the unusual form of the chevets of Bayeux cathedral (thirteenth century), and Sant’ Antonio at Padua (after 1232) in which all the radiants which ordinarily stop at the keystone are carried through against the face of the apsidal arch. At Bayeux there are two such ribs (Plate II-l.)[386] and at Padua, three (Plate II-m.). The latter is also exceptionally interesting in the form of its chevet which is really a combination of the diagonal and the buttressing ribbed type. Although there are occasional instances like the one at Barcelona, in which the transverse severy of a buttressing ribbed chevet is subdivided only by a ridge rib, it is far more common to find a more extensive subdivision of this bay when such subdivision was undertaken at all. Moreover, it is an interesting fact that many of the elaborated chevet vaults—for it may be noted here that the apse vault was elaborated just as were those in the remainder of the church edifice—are fundamentally based upon the simple chevet with buttressing ribs. Of these vaults with added ribs, perhaps the simplest are those in which the western bay is subdivided by the introduction of a ridge rib running about half way to the crown of the apsidal arch and there met by two tiercerons rising from the imposts of this same arch (Plate II-n.). A good example appears in the cathedral of Bayonne (Basses-PyrÉnÉes) (after 1213), and another in that of Saint Quentin (Aisne) (commenced 1257), while the same subdivision of this severy in combination with other subdivided cells is to be seen in the Marien-kirche at Stargarde (Germany) (fourteenth century) (Plate IV-d.). A second and unusual division of this severy appears in the cathedral of Saint Jean at Perpignan (PyrÉnÉes-Orientales) (1324-1509),[387] where the customary three-part bay containing the buttressing ribs also contains two diagonals precisely like those in a four-part vault (Plate II-o.). A similar arrangement, with the addition of a ridge rib (Plate II-p.), may be seen in the church of Saint Jean at Ambert (Puy-de-DÔme) (fifteenth and sixteenth centuries). Such subdivisions as these last two quite evidently had for their object not merely a reduction in the size of the spaces to be vaulted but also an effort to retain the buttressing-ribbed type of chevet and still obtain a window cell which would not have the warped surface characteristic of this form. A still more elaborate subdivision of the rectangular vaulting bay appears in the chevet of Notre Dame-de-l’Épine near Chalons-sur-Marne (1419-1459) (Fig. 71), where this bay contains no diagonals at all but is divided by a series of tiercerons and short ridge ribs in a manner best understood from the plan (Plate II-q.). But it is the subdivision of the window cells of the apse proper which is of especial interest at l’Épine, for the method here employed was very widely extended in the later Gothic period. It consists in the introduction into each of these cells of a short ridge rib running from the central keystone to a point about half way to the window crowns where it is met by two tiercerons which rise from the impost of the principal ribs of the chevet on either side of the window. The apparent object of the system is to so subdivide the vault surface as to break up its compound or ploughshare curves and substitute smaller panels whose surfaces are simpler to construct exactly as in the similar nave vaults previously described. This purpose does not show to advantage at l’Épine, where the awkward adjustment between the vault panels and the window heads would seem to indicate that the apse was originally designed for a simple form of chevet with no added ribs. Better examples could be cited, among them Saint Severin at Paris. Such an arrangement of window cells as that in these vaults practically converts the chevet into a ribbed half dome pierced with lunettes which do not rise to its crown. This may clearly be seen from a study of the apse of Saint Jacques at Antwerp (probably sixteenth century), where the vault is unusual in the omission of all the true radiating ribs (Plate II-r.). As a matter of fact such ribs were no longer of value since they did not mark the intersection of two vault panels but merely lay along a surface which is almost precisely like a section of a half dome. The tiercerons are still important since they mark the intersection of the window lunettes and carry the weight of the vault down to the piers. They are therefore retained. Thus, while the absence of radiants in Saint Jacques might seem to make this vault structurally less correct than that of l’Épine in reality such is not the case. Once it became the custom to introduce extra ribs into the chevet, this portion of the church underwent the same treatment as the vault of the nave or choir. Thus in England, to cite only extreme cases of elaboration, the later Gothic produced such vaults as those of Tewkesbury Abbey (between 1325 and 1350),[388] in France, such pendant types as that of Saint Pierre at Caen (probably early sixteenth century), and in Germany such a choir and apse as that of Freiburg cathedral (late fifteenth century) (Fig. 72).[389] The last named is especially interesting as showing the low point reached in rib vaulting for its ribs have almost no function as supporting members, some of them being actually free from the vault panels and are merely used to form a decorative pattern upon a vault which would stand equally well were they entirely removed. Such chevets are, in many cases, clever examples of stone cutting and decorative design but they are lacking in fundamental structural character. The Number of Chevet Cells Thus far the discussion of chevets has been distinctly from a structural point of view, but there remain certain other differences between these vaults which are worthy of remark. In the first place, there is the matter of the number of cells comprised in the chevet. The standard during the best Gothic period was seven, though five was a frequent number and quite often nine are found (Plate II-s.), as for example, in the apse of San Francesco at Bologna, Saint Martin at Ypres, Belgium, and that of BÉziers (HÉrault), cathedral (1215-1300).[390] In the smaller churches and in the radiating chapels there are frequently three. Moreover, when the apse has a central pier,[391] there are an even number of bays and thus four and six-celled chevets are employed. That in Saint Pierre at Caen, for example, has four bays all on the curve, and that in Notre Dame at Caudebec-en-Caux (Seine-InfÉrieure) (fifteenth and sixteenth centuries) (Plate II-t.) has only two bays thus placed, a fact which gives an angular character to the apse which is far from pleasing.[392] As for the chevets with six cells, they are of very infrequent occurrence, though one is to be seen in Saint Pierre at Auxerre (Plate II-u.). A chevet with the unusual number of eleven cells is to be seen in the church of La Chapelle-sur-CrÉcy (thirteenth century).[393] In construction, this chevet is similar to one bay of such an eight-part vault as that at Provins, Saint Quiriace[394] with its easternmost cell divided into five parts. The Use of A Central Pier in the Apse An interesting question arises in this connection as to why the central pier was employed in the mediaeval church. It is not common, yet it occurs frequently enough and over a sufficient space of time to prove that it did not lack a certain amount of popularity. Thus an apse with such a pier is to be seen in the early Romanesque church of Vignory (Haute-Marne) (consecrated cir. 1050-1052), where it is covered by a half dome, and again at Morienval (Oise) (Fig. 77), where there are ribs beneath a similar vault.[395] Throughout the Gothic period, this plan of apse surmounted by a chevet occurs in an even larger number of examples and toward the close of the period becomes quite popular. Leaving out of consideration the origin of the employment of a central eastern pier, which would seem most difficult to ascertain, it is at least interesting to note the effect which a chevet with a central rib presents when compared with the more usual type. If, for example, the apse of Saint Pierre at Auxerre be compared with that of the cathedral of Reims, the advantage and disadvantage of the two methods from the point of view of appearance may be seen. The most displeasing feature of the apse of Reims lies in the fact that its central arch and window, being seen in their full width, seem disproportionately wide in comparison with those on either side, while at Auxerre there is no window shown in its full width with the result that the transition is apparently more gradual from the ends to the center of the apse. On the other hand, the apse of Reims permits the addition of a lady chapel with an arch on the major axis of the church.[396] Altogether it is largely a question of personal preference which would seem to have guided the builders, combined, perhaps, with some considerations based upon the size of the apsidal curve and as to how many divisions would give the most pleasing form to the apsidal arches. As far as the actual construction of the chevet is concerned, the plan with a central pier made no essential difference, except possibly in the vaulting of the ambulatory which is discussed in the next chapter. Impost Levels of Chevet Vault Ribs Another interesting, though minor feature of chevet vaulting, lies in the form of the masonry panels and the position of the imposts of the radiating ribs. The position of the latter varies considerably, though it corresponds in general with the impost level of the transverse arches in the nave or choir of the church. In the best period this was generally somewhat above the sill line of the clerestory windows, but in some of the early churches like Saint Germer (Fig. 63), Saint Quiriace at Provins (Fig. 31), and the cathedral of Bourges (Fig. 76), it is below this line, while in a number of later churches, among them Saint Urbain at Troyes (Aube) (1262-1329) (Fig. 73), it is as high as that of the arches forming the window heads. This last chevet is also important as showing a tendency to do away with the flat wall forming the lower portion of each panel and starting the outward curve of the masonry directly from the extrados of the ribs. Although this detracts somewhat from the beauty of the vault by making the curve of its cells too abrupt, it does prevent large portions of the windows from being concealed and therefore gives a more uniform effect to the clerestory.[397] Such an arrangement of the window cells is to be found even earlier in the chevet of Bayeux cathedral (early thirteenth century), where the rib rises from the clerestory string-course but is kept close against the wall to the impost of the window arches so that the effect produced is much like that at Saint Urbain. The Shape of the Chevet Cells Another feature of chevet vaulting which varies greatly throughout its history, is the comparative height of the crown of the wall rib, or line of intersection, and that of the main keystone; in other words, of the doming up of the vault panels. In this, there is a very wide divergence all through the Transitional and Gothic periods. Thus among the early chevets it will be noted that in some the doming is slight though noticeable, as at Saint Germer (Fig. 63), in others it is very pronounced, as at VÉzelay (Fig. 66), while in others the crown of the cells actually curves downward toward the central keystone. This is an exceptional type, of which there is an example in Saint Remi at Reims (Fig. 64). Naturally enough, the vault which is most highly domed up exerts the least outward thrust and is thus most easily supported. It is not surprising, therefore, to find this form a favorite where large windows were not required in the apse or where there was no ambulatory or but a low one. This may perhaps explain its use in the south of France in the cathedral of BÉziers (HÉrault), as well as its popularity throughout Italy, where it may be seen on an exceptionally large scale in the cathedral of Milan. Certain of these domed up chevets may also be attributed to the type of nave vault developed in the locality in which they are found, as, for example, the chevet of Angers cathedral (Fig. 74), which is very highly domed, with the small torus ribs of the region forming the radiants beneath it. As a matter of fact, such a chevet as this differs from a ribbed-lobed-dome only in having its masonry courses running at right angles to the supporting walls. Its pressures are almost all downward with but little outward thrust though the arrangement of the masonry courses and the shape of the vault cells serves to concentrate both thrusts and pressures upon the ribs and piers instead of along the whole curve of the outer walls, thus rendering perfectly safe the introduction of large windows.[398] Chevets with Pierced Panels Still another interesting characteristic of certain chevet vaults is the presence of openings from one cell to the next in the lower portion of the panels between them. The simplest of these are to be seen in the cathedral of Auxerre (choir finished 1234) (Fig. 75), and it seems very reasonable from their square shape, comparatively small size, and their position at the beginning of the curve of the vault cells to assume that they were intended to hold wooden beams, used, quite possibly, as supports for scaffolding or centering for the rest of the vault. Whatever their use, they may be the prototypes of such larger openings as those in the cathedral of Bourges (after 1215) (Fig. 76), which may not only have been used in a similar manner but which, from their circular shape and moulded character, supply a certain amount of decoration to this part of the vault and even serve in a slight degree to distribute the light from its windows over a larger area.[399] An even greater amount of decoration is obtained by the use of tracery in the similar openings in the cathedral of Orleans (begun 1630), which are of larger size and of a generally triangular shape.[400] The final development of such tracery panels may be seen in the Brunnenkapelle of Magdeburg cathedral (fourteenth century)[401] where the apse vault proper becomes practically a flat ceiling the entire space between it and each of the ribs being filled with tracery.
|
|