§1. On the principles which have been adopted in this work, it becomes questionable whether several classes of problems which may seem to have acquired a prescriptive right to admission, will not have to be excluded from the science of Probability. The most important, perhaps, of these refer to what is commonly called the credibility of testimony, estimated either at first hand and directly, or as influencing a juryman, and so reaching us through his sagacity and trustworthiness. Almost every treatise upon the science contains a discussion of the principles according to which credit is to be attached to combinations of the reports of witnesses of various degrees of trustworthiness, or the verdicts of juries consisting of larger or smaller numbers. A great modern mathematician, Poisson, has written an elaborate treatise expressly upon this subject; whilst a considerable portion of the works of Laplace, DeMorgan, and others, is devoted to an examination of similar enquiries. It would be presumptuous to differ from such authorities as these, except upon the strongest grounds; but I confess that the extraordinary ingenuity and mathematical ability which have been devoted to these problems, considered as questions in Probability, fails to convince me that they ought to have been so considered. The following are the principal grounds for this opinion. §2. It will be remembered that in the course of the chapter on Induction we entered into a detailed investigation of the process demanded of us when, instead of the appropriate propositions from which the inference was to be made being set before us, the individual presented himself, and the task was imposed upon us of selecting the requisite groups or series to which to refer him. In other words, instead of calculating the chance of an event from determinate conditions of frequency of its occurrence (these being either obtained by direct experience, or deductively inferred) we have to select the conditions of frequency out of a plurality of more or less suitable ones. When the problem is presented to us at such a stage as this, we may of course assume that the preliminary process of obtaining the statistics which are extended into the proportional propositions has been already performed; we may suppose therefore that we are already in possession of a quantity of such propositions, our principal remaining doubt being as to which of them we should then employ. This selection was shown to be to a certain extent arbitrary; for, owing to the fact of the individual possessing a large number of different properties, he became in consequence a member of different series or groups, which might present different averages. We must now examine, somewhat more fully than we did before, the practical conditions under which any difficulty arising from this source ceases to be of importance. §3. One condition of this kind is very simple and obvious. It is that the different statistics with which we are presented should not in reality offer materially different results, If, for instance, we were enquiring into the probability of a man aged forty dying within the year, we might if we pleased take into account the fact of his having red hair, or his having been born in a certain county or town. Or again; although the different sets of statistics may not as above give almost identical results, yet they may do what practically comes to very much the same thing, that is, arrange themselves into a small number of groups, all of the statistics in any one group practically coinciding in their results. If for example a consumptive man desired to insure his life, there would be a marked difference in the statistics according as we took his peculiar state of health into account or not. We should here have two sets of statistics, so clearly marked off from one another that they might almost rank with the distinctions of natural kinds, and which would in consequence offer decidedly different results. If we were to specialize still further, by taking into account insignificant qualities like those mentioned in the last paragraph, we might indeed get more limited sets of statistics applicable to persons still more closely resembling the individual in §4. The reasons for the conditions above described are not difficult to detect. Where these conditions exist the process of selecting a series or class to which to refer any individual is very simple, and the selection is, for the particular purposes of inference, final. In any case of insurance, for example, the question we have to decide is of the very simple kind; Is A.B. a man of a certain age? If so one in fifty in his circumstances will die in the course of the year. If any further questions have to be decided they would be of the following description. Is A.B. a healthy man? Does he follow a dangerous trade? But here too the classes in question are but few, and the limits by which they are bounded are tolerably precise; so that the reference of an individual to one or other of them is easy. And when we have once chosen our class we remain untroubled by any further considerations; for since no other statistics are supposed to offer a materially different average, we have no occasion to take account of any other properties than those already noticed. The case of games of chance, already referred to, offers of course an instance of these conditions in an almost ideal state of perfection; the same circumstances which fit them so eminently for the purposes of fair gambling, fitting them equally to become examples in Probability. When a die is to be thrown, all persons alike stand on precisely the same footing of knowledge and of ignorance about the result; the §5. Let us now examine how far the above conditions are fulfilled in the case of problems which discuss what is called the credibility of testimony. The following would be a fair specimen of one of the elementary enquiries out of which these problems are composed;—Here is a statement made by a witness who lies once in ten times, what am I to conclude about its truth? Objections might fairly be raised against the possibility of thus assigning a man his place upon a graduated scale of mendacity. This however we will pass over, and will assume that the witness goes about the world bearing stamped somehow on his face the appropriate class to which he belongs, and consequently, the degree of credit to which he has a claim on such general grounds. But there are other and stronger reasons against the admissibility of this class of problems. §6. That which has been described in the previous sections as the ‘individual’ which had to be assigned to an appropriate class or series of statistics is, of course, in this case, a statement. In the particular instance in question this individual statement is already assigned to a class, that namely of statements made by a witness of a given degree of veracity; but it is clearly optional with us whether or not we choose to confine our attention to this class in forming our judgment; at least it would be optional whenever we were practically called on to form an opinion. But in the case of this statement, as in that of the mortality of the man whose insurance we were discussing, there are a multitude of other properties observable, besides the one which is supposed to mark the given class. Just as in the latter there were (besides his age), the place of his birth, the nature of his occupation, and so on; so in the former there are (besides its §7. It cannot be replied that under these circumstances we still refer the witness to a class, and judge of his veracity by an average of a more limited kind; that we infer, for example, that of men who look and act like him under such Statistics about the veracity of witnesses seem in fact to be permanently as inappropriate as all other statistics occasionally may be. We may know accurately the percentage of recoveries after amputation of the leg; but what surgeon would think of forming his judgment solely by such tables when he had a case before him? We need not deny, of course, that the opinion he might form about the patient's prospects of recovery might ultimately rest upon the proportions of deaths and recoveries he might have previously witnessed. But if this were the case, these data are lying, as one may say, obscurely in the background. He does not appeal to them directly and immediately in forming his judgment. There has been a far more important intermediate process of apprehension and estimation of what is essential to the case and what is not. Sharp senses, memory, judgment, and practical sagacity have had to be called into play, and there is not therefore the same direct conscious and sole appeal to statistics that there was before. The surgeon may have in his mind two or three instances in which the operation performed was equally severe, but in which the patient's constitution was different; the latter element therefore has to be properly allowed for. There may be other instances in which the constitution was similar, but the operation more severe; and so on. Hence, although the ultimate appeal may be to the statistics, it is not so directly; §8. Any one who knows anything of the game of whist may supply an apposite example of the distinction here insisted on, by recalling to mind the alteration in the nature of our inferences as the game progresses. At the commencement of the game our sole appeal is rightfully made to the theory of Probability. All the rules upon which each player acts, and therefore upon which he infers that the others will act, rest upon the observed frequency (or rather upon the frequency which calculation assures us will be observed) with which such and such combinations of cards are found to occur. Why are we told, if we have more than four trumps, to lead them out at once? Because we are convinced, on pure grounds of probability, capable of being stated in the strictest statistical form, that in a majority of instances we shall draw our opponent's trumps, and therefore be left with the command. Similarly with every other rule which is recognized in the early part of the play. But as the play progresses all this is changed, and towards its conclusion there is but little reliance upon any rules which either we or others could base upon statistical frequency of occurrence, observed or inferred. A multitude of other considerations have come in; we begin to be influenced partly by our knowledge of the character and practice of our partner and opponents; partly by a rapid combination of a multitude of judgments, founded upon our observation of the actual course of play, the grounds of which we could hardly realize or describe at the time and which may have been forgotten since. That is, the particular combination of cards, now before us, does not readily fall into any well-marked class to which alone it can §9. A criticism somewhat resembling the above has been given by Mill (Logic, Bk.III. Chap.XVIII. §3) upon the applicability of the theory of Probability to the credibility of witnesses. But he has added other reasons which do not appear to me to be equally valid; he says “common sense would dictate that it is impossible to strike a general average of the veracity, and other qualifications for true testimony, of mankind or any class of them; and if it were possible, such an average would be no guide, the credibility of almost every witness being either below or above the average,” The latter objection would however apply with equal force to estimating the length of a man's life from tables of mortality; for the credibility of different witnesses can scarcely have a wider range of variation than the length of different lives. If statistics of credibility could be obtained, and could be conveniently appealed to when they were obtained, they might furnish us in the long run with as accurate inferences as any other statistics of the same general description. These statistics would however in practice naturally and rightly be neglected, because there can hardly fail to be circumstances in each individual statement which would more appropriately refer it to some new class depending on different statistics, and affording a far better chance of our being right in that particular case. In most instances of the kind in question, indeed, such a change is thus produced in the mode of formation of our opinion, that, as already pointed out, the mental operation ceases to be in any proper sense founded on appeal to statistics.[1] §10. The Chance problems which are concerned with testimony are not altogether confined to such instances as those hitherto referred to. Though we must, as it appears to me, reject all attempts to estimate the credibility of any particular witness, or to refer him to any assigned class in respect of his trustworthiness, and consequently abandon as unsuitable any of the numerous problems which start from such data as ‘a witness who is wrong once in ten times,’ yet it does not follow that testimony may not to a slight extent be treated by our science in a somewhat different manner. We may be quite unable to estimate, except in the roughest possible way, the veracity of any particular witness, and yet it may be possible to form some kind of opinion upon the veracity of certain classes of witnesses; to say, for instance, that Europeans are superior in this way to Orientals. So we might attempt to explain why, and to what extent, an opinion in which the judgments of ten persons, say jurors, concur, is superior to one in which five only concur. Something may also be done towards laying down the principles in accordance with which we are to decide whether, and why, extraordinary stories deserve less credence than ordinary ones, even if we cannot arrive at any precise and definite decision upon the point. This last question is further discussed in the course of the next chapter. §11. The change of view in accordance with which it follows that questions of the kind just mentioned need not be entirely rejected from scientific consideration, presents itself But although some resort to Probability may be admitted in such cases as these, it nevertheless does not appear to me that they can ever be regarded as particularly appropriate examples to illustrate the methods and resources of the theory. Indeed it is scarcely possible to resist the conviction that the refinements of mathematical calculation have here been pushed to lengths utterly unjustifiable, when we bear in mind the impossibility of obtaining any corresponding degree of accuracy and precision in the data from which we have to start. To cite but one instance. It would be hard to find a case in which love of consistency has prevailed over common sense to such an extent as in the admission of the conclusion that it is unimportant what are the numbers for and against a particular statement, provided Again, perfect independence amongst the witnesses or jurors is an almost necessary postulate. But where can this be secured? To say nothing of direct collusion, human beings are in almost all instances greatly under the influence of sympathy in forming their opinions. This influence, under the various names of political bias, class prejudice, local feeling, and so on, always exists to a sufficient degree to induce a cautious person to make many of those individual corrections which we saw to be necessary when we were estimating the trustworthiness, in any given case, of a single witness; that is, they are sufficient to destroy much, if not all, of the confidence with which we resort to statistics and averages in forming our judgment. Since then this Essay is mainly devoted to explaining and establishing the general principles of the science of Probability, we may very fairly be excused from any further treatment of this subject, beyond the brief discussions which are given in the next chapter. 1 It may be remarked also that there is another reason which tends to dissuade us from appealing to principles of Probability in the majority of the cases where testimony has to be estimated. It often, perhaps usually happens, that we are not absolutely forced to come to a decision; at least so far as the acquitting of an accused person may be considered as avoiding a decision. It may be of much greater importance to us to attain not merely truth on the average, but truth in each individual instance, so that we had rather not form an opinion at all than form one of which we can only say in its justification that it will tend to lead us right in the long run. CHAPTERXVII. |