§1. In works on Logic a chapter is generally devoted to the discussion of Fallacies, that is, to the description and classification of the different ways in which the rules of Logic may be transgressed. The analogy of Probability to Logic is sufficiently close to make it advisable to adopt the same plan here. In describing his own opinions an author is, of course, perpetually obliged to describe and criticise those of others which he considers erroneous. But some of the most widely spread errors find no supporters worth mentioning, and exist only in vague popular misapprehension. It will be found the best arrangement, therefore, at the risk of occasional repetition, to collect a few of the errors that occur most frequently, and as far as possible to trace them to their sources; but it will hardly be worth the trouble to attempt any regular system of arrangement and classification. We shall mainly confine ourselves, in accordance with the special province of this work, to problems which involve questions of logical interest, or to those which refer to the application of Probability to moral and social science. We shall avoid the discussion of isolated problems in games of chance and skill except when some error of principle seems to be involved in them. §2. (I.) One of the most fertile sources of error and confusion upon the subject has been already several times alluded to, and in part discussed in a previous chapter. This consists in choosing the class to which to refer an event, and therefore judging of the rarity of the event and the consequent improbability of foretelling it, after it has happened, and then transferring the impressions we experience to a supposed contemplation of the event beforehand. The process in itself is perfectly legitimate (however unnecessary it may be), since time does not in strictness enter at all into questions of Probability. No error therefore need arise in this way, if we were careful as to the class which we thus selected; but such carefulness is often neglected. An illustration may afford help here. A man once pointed to a small target chalked upon a door, the target having a bullet hole through the centre of it, and surprised some spectators by declaring that he had fired that shot from an old fowling-piece at a distance of a hundred yards, His statement was true enough, but he suppressed a rather important fact. The shot had really been aimed in a general way at the barn-door, and had hit it; the target was afterwards chalked round the spot where the bullet struck. A deception analogous to this is, I think, often practised unconsciously in other matters. We judge of events on a similar principle, feeling and expressing surprise in an equally unreasonable way, and deciding as to their occurrence on grounds which are really merely a subsequent adjunct of our own. Butler's remarks about ‘the story of CÆsar,’ discussed already in the twelfth chapter, are of this character. He selects a series of events from history, and then imagines a person guessing them correctly who at the time had not the history before him. As I have already pointed out, it is one §3. One aspect of this fallacy has been already discussed, but it will serve to clear up difficulties which are often felt upon the subject if we reexamine the question under a somewhat more general form. In the class of examples under discussion we are generally presented with an individual which is not indeed definitely referred to a class, but in regard to which we have no great difficulty in choosing the appropriate class. Now suppose we were contemplating such an event as the throwing of sixes with a pair of dice four times running. Such a throw would be termed a very unlikely event, as the odds against its happening would be 36×36×36×36-1 to1 or 1679615 to1. The meaning of these phrases, as has been abundantly pointed out, is simply that the event in question occurs very rarely; that, stated with numerical accuracy, it occurs once in 1679616 times. §4. But now let us make the assumption that the throw has actually occurred; let us put ourselves into the position of contemplating sixes four times running when it is known or reported that this throw has happened. The same phrase, namely that the event is a very unlikely one, will often be used in relation to it, but we shall find that this phrase may be employed to indicate, on one occasion or another, extremely different meanings. (1) There is, firstly, the most correct meaning. The §5. (2) But there is a second and very different conception sometimes introduced, especially when the event in question is supposed to be known, not as above by the evidence of our experience, but by the report of a witness. We may then mean by the ‘chances against the event’ (as was pointed out in ChapterXII.) not the proportional number of times we should be right in guessing the event, but the proportional number of times the witness will be right in reporting it. The bases of our inference are here shifted on to new ground. In the former case the statistics were the throws and their respective frequency, now they are the witnesses' statements and their respective truthfulness. §6. (3) But there is yet another meaning sometimes intended to be conveyed when persons talk of the chances against such an event as the throw in question. They may mean—not, Here is an event, how often should I have guessed it?—nor, Here is a report, how often will it be correct?—but something different from either, namely, Here is an event, how often will it be found to be produced by some one particular kind of cause? When, for example, a man hears of dice giving the same throw several times running, and speaks of this as very §7. The reader will easily be able to supply examples in illustration of the distinctions just given; we will briefly examine but one. I hide a banknote in a certain book in a large library, and leave the room. A person tells me that, after I went out, a stranger came in, walked straight up to that particular book, and took it away with him. Many people on hearing this account would reply, How extremely improbable! On analysing the phrase, I think we shall find that certainly two, and possibly all three, of the above meanings might be involved in this exclamation. (1)What may be meant is this,—Assuming that the report is true, and the stranger innocent, a rare event has occurred. Many books might have been thus taken without that particular one being selected. I should not therefore have expected the event, and when it has happened I am surprised. Now a man has a perfect right to be surprised, but he has no Each of the above three meanings is a possible and a legitimate meaning. The only requisite is that we should be careful to ascertain which of them is present to the mind, so as to select the appropriate statistics. The first makes in itself the most legitimate use of Probability; the drawback being that at the time in question the functions of Probability are superseded by the event being otherwise known. The second or third, therefore, is the more likely meaning to be present to the mind, for in these cases Probability, if it could be practically made use of, would, at the time in question, be a means of drawing really important inferences. The drawbacks are the difficulty of finding such statistics, and the extreme disturbing influence upon these statistics of the circumstances of the special case. §8. (II.) Closely connected with the tendency just mentioned is that which prompts us to confound a true Sometimes the result is not so much an actual fallacy as a slight misreckoning of the order of probability of the event under consideration. For instance, in the Pyramid question, we saw that it made some difference whether we considered that palone was to be taken into account or whether we put this constant into a class with a small number of other similar ones. In deciding, however, whether or not there is anything remarkable in the actual falling short of the representation of the number7 in the evaluation ofp (v. p.247) the whole question turns upon considerations of this kind. The only enquiry raised is whether there is anything remarkable in this departure from the mean, and the answer depends upon whether we suppose that we are referring to a predetermined digit, or to whatever digit of the ten happens to be most above or below the average. Or, take the case raised by Cournot (Exposition de la ThÉorie des Chances, §§102,114), that a certain deviation from the mean in the case of Departmental returns of the proportion between male and female births is significant and indicative of a difference in kind, provided that we select at random a single French Department; but that the same deviation may §9. We are peculiarly liable to be misled in this way when we are endeavouring to determine the cause of some phenomenon, by mere statistics, in entire ignorance as to the direction in which the cause should be expected. In such cases an ingenious person who chooses to look about over a large field can never fail to hit upon an explanation which is plausible in the sense that it fits in with the hitherto observed facts. With a tithe of the trouble which Mr Piazzi Smyth expended upon the measurement of the great pyramid, I think I would undertake to find plausible intimations of several of the important constants and standards which he discovered there, in the dimensions of the desk at which I am writing. The oddest instance of this sort of conclusion is perhaps to be found in the researches of a writer who has discovered[2] that there is a connection of a striking kind between the respective successes of the Oxford and the Cambridge boat in the annual race, and the greater and less frequency of sun-spots. Of course our usual practical resource in such cases is to make appeal to our previous knowledge of the subject in question, which enables us to reject as absurd a great number of hypotheses which can nevertheless make a fair show when they are allowed to rest upon a limited amount of adroitly selected instances. But it must be remembered that if any theory chooses to appeal to statistics, to statistics it must be suffered to go for judgment. Even the boat race theory §10. (III.) The fallacy described at the commencement of this chapter arose from determining to judge of an observed or reported event by the rules of Probability, but employing a wrong set of statistics in the process of judging. Another fallacy, closely connected with this, arises from the practice of taking some only of the characteristics of such an event, and arbitrarily confining to these the appeal to Probability. Suppose I toss up twelve pence and find that eleven of them give heads. Many persons on witnessing such an occurrence would experience a feeling which they would express by the remark, How near that was to getting all heads! And if any thing very important were staked on the throw they would be much excited at the occurrence. But in what sense were we near to twelve? There is a not uncommon error, I apprehend, which consists in unconsciously regarding the eleven heads as a thing which is already somehow secured, so that one might as it were keep them, and then take our chance for securing the remaining one. The eleven are mentally set aside, looked upon as certain (for they have already happened), and we then introduce the notion of chance merely for the twelfth. But this twelfth, having also happened, has no better claim to such a distinction than any of the others. If we will introduce the notion of chance in the case of the one that gave tail we must do the same in §11. In the above example the error is transparent. But in forming a judgment upon matters of greater complexity than dice and pence, especially in the case of what are called ‘narrow escapes,’ a mistake of an analogous kind is, I apprehend, far from uncommon. A person, for example, who has just experienced a narrow escape will often be filled with surprise and anxiety amounting almost to terror. The event being past, these feelings are, at the time, in strictness inappropriate. If, as is quite possible, they are merely instinctive, or the result of association, they do not fall within the province of any kind of Logic. If, however, as seems more likely, they partially arise from a supposed transference of ourselves into that point of past time at which the event was just about to happen, and the production by imagination of the feelings we should then expect to experience, this process partakes of the nature of an inference, and can be right or wrong. In other words, the alarm may be proportionate or disproportionate to the amount of danger that might fairly have been reckoned upon in such a hypothetical anticipation. If the supposed transfer were completely carried out, there would be no fallacy; but it is often very A man, for example, is out with a friend, whose rifle goes off by accident, and the bullet passes through his hat. He trembles with anxiety at thinking what might have happened, and perhaps remarks, ‘How very near I was to being killed!’ Now we may safely assume that he means something more than that a shot passed very close to him. He has some vague idea that, as he would probably say, ‘his chance of being killed then was very great.’ His surprise and terror may be in great part physical and instinctive, arising simply from the knowledge that the shot had passed very near him. But his mental state may be analysed, and we shall then most likely find, at bottom, a fallacy of the kind described above. To speak or think of chance in connection with the incident, is to refer the particular incident to a class of incidents of a similar character, and then to consider the comparative frequency with which the contemplated result ensues. Now the series which we may suppose to be most naturally selected in this case is one composed of shooting excursions with his friend; up to this point the proceedings are assumed to be designed, beyond it only, in the subsequent event, was there accident. Once in a thousand times perhaps on such occasions the gun will go off accidentally; one in a thousand only of those discharges will be directed near his friend's head. If we will make the accident a matter of Probability, we ought by rights in this way (to adopt the language of the first example), to ‘toss up again’ fairly. But we do not do this; we seem to assume for certain that the shot goes within an inch of our heads, detach §12. (IV.) We will now notice a fallacy connected with the subjects of betting and gambling. Many or most of the popular misapprehensions on this subject imply such utter ignorance and confusion as to the foundations of the science that it would be needless to discuss them here. The following however is of a far more plausible kind, and has been a source of perplexity to persons of considerable acuteness. The case, put into the simplest form, is as follows.[3] Suppose that a personA is playing againstB, Bbeing either another individual or a group of individuals, say a gambling bank. They begin by tossing for a shilling, and Amaintains that he is in possession of a device which will insure his winning. If he does win on the first occasion he has clearly gained his point so far. If he loses, he stakes next time two shillings instead of one. The result of course is that if he wins on the second occasion he replaces his former loss, and is left with one shilling profit as well. So he goes on, doubling his stake after every loss, with the obvious result that on the first occasion of success he makes good all his previous losses, and is left with a shilling over. But such an occasion must come sooner or later, by the assumptions of chance on which the game is founded. Hence it follows that he can insure, sooner or later, being left a final winner. Moreover he may win to any amount; firstly from the obvious consideration that he might make his initial stake as large as he pleased, a hundred pounds, for §13. I have classed this opinion among fallacies, as the present is the most convenient opportunity of discussing it, though in strictness it should rather be termed a paradox, since the conclusion is perfectly sound. The only fallacy consists in regarding such a way of obtaining the result as mysterious. On the contrary, there is nothing more easy than to insure ultimate success under the given conditions. The point is worth enquiry, from the principles it involves, and because the answers commonly given do not quite meet the difficulty. It is sometimes urged, for instance, that no bank would or does allow the speculator to choose at will the amount of his stake, but puts a limit to the amount for which it will consent to play. This is quite true, but is of course no answer to the hypothetical enquiry before us, which assumes that such a state of things is allowed. Again, it has been urged that the possibility in question turns entirely upon the fact that credit must be supposed to be given, for otherwise the fortune of the player may not hold out until his turn of luck arrives:—that, in fact, sooner or later, if he goes on long enough, his fortune will not hold out long enough, and all his gains will be swept away. It is quite true that credit is a condition of success, but it is in no sense the cause. We may suppose both parties to agree at the outset that there shall be no payments until the game be ended, Ahaving the right to decide when it shall be considered to be ended. It still remains true that whereas in ordinary gambling, i.e. with fixed or haphazard stakes, Acould §14. What causes perplexity here is the supposed fact that in some mysterious way certainty has been conjured out of uncertainty; that in a game where the detailed events are utterly inscrutable, and where the average, by supposition, shows no preference for either side, one party is nevertheless succeeding somehow in steadily drawing the luck his own way. It looks as if it were a parallel case with that of a man who should succeed by some device in permanently securing more than half of the tosses with a penny which was nevertheless to be regarded as a perfectly fair one. This is quite a mistake. The real fact is that Adoes not expose his gains to chance at all; all that he so exposes is the number of times he has to wait until he gains. Put such a case as this. I offer to give a man any sum of money he chooses to mention provided he will at once give it back again to me with one pound more. It does not need much acuteness to see that it is a matter of indifference to me whether he chooses to mention one pound, or ten, or a hundred. Now suppose that instead of leaving it to his choice which of these sums is to be selected each time, the two parties agree to leave it to chance. Let them, for instance, draw a number out of a bag each time, and let that be the sum which Agives toB under the prescribed conditions. The case is not altered. Astill gains his pound each time, for the introduction of the element of chance has not in any way touched this. All that it does is to make this pound the result of an uncertain subtraction, sometimes 10 minus9, sometimes 50 minus49, and so on. It is these numbers only, not their difference, which he submits to luck, and this is of no consequence whatever. To suggest to any individual or company that they should consent to go on playing upon such terms as these would be too barefaced a proposal. And yet the case in question is identical in principle, and almost identical in form, with this. To offer to give a man any sum he likes to name provided he gives you back again that same sum plus one, and to offer him any number of terms he pleases of the series 1,2, 4, 8, 16,&c., provided you have the next term of the set, are equivalent. The only difference is that in the latter case the result is attained with somewhat more of arithmetical parade. Similarly equivalent are the processes in case we prefer to leave it to chance, instead of to choice, to decide what sum or what number of terms shall be fixed upon. This latter is what is really done in the case in question. A man who consents to go on doubling his stake every time he wins, is leaving nothing else to chance than the determination of the particular number of terms of such a geometrical series which shall be allowed to pass before he stops. §15. It may be added that there is no special virtue in the particular series in question, viz. that in accordance with which the stake is doubled each time. All that is needed is that the last term of the series should more than balance all the preceding ones. Any other series which increased faster than this geometrical one, would answer the purpose as well or better. Nor is it necessary, again, that the game should be an even or ‘fair’ one. Chance, be it remembered, affects nothing here but the number of terms to which the series attains on each occasion, its final result being always arithmetically fixed. When a penny is tossed up it is only on one of every two occasions that the series runs to more than two terms, and so his fixed gains come in pretty regularly. But unless he was playing for a limited time only, it would §16. So regarded, the problem is simple enough, but there are two points in it to which attention may conveniently be directed. In the first place, it serves very pointedly to remind us of the distinction between a series of events (in this case the tosses of the penny) which really are subjects of chance, and our conduct founded upon these events, which may or may not be so subject.[4] It is quite possible that this latter may be so contrived as to be in many respects a matter of absolute certainty,—a consideration, I presume, familiar enough to professional betting men. Why is the ordinary way of betting on the throws of a penny fair to both parties? Because a ‘fair’ series is ‘fairly’ treated. The heads and tails occur at random, but on an average equally often, and the stakes are either fixed or also arranged at random. If a man backs heads every time for the same amount, he will of course in the long run neither win nor lose. Neither will he if he varies the stake every time, provided he does not vary it in such a way as to make its amount dependent on the fact of his having won or lost the time before. But he may, if he pleases, and the other party consents, so arrange his stakes (as in the case in question) that Chance, if one might so express it, does not get a fair chance. Here the human elements of choice and design have been so brought to bear upon a series of events which, regarded by themselves, §17. The meaning of the remark just made will be better seen by a comparison with the following case. It has been attempted[5] to explain the preponderance of male births over female by assuming that the chances of the two are equal, but that the general desire to have a male heir tends to induce many unions to persist until the occurrence of this event, and no longer. It is supposed that in this way there would be a slight preponderance of families which consisted of one son only, or of two sons and one daughter, and so forth. This is quite fallacious (as had been noticed by Laplace, in his Essai); and there could not be a better instance chosen than this to show just what we can do and what we cannot do in the way of altering the luck in a real chance-succession of events. To suppose that the number of actual births could be influenced in the way in question is exactly the same thing as to suppose that a number of gamblers could increase the ratio of heads to tails, to something over one-half, by each handing the coin to his neighbour as soon as he had thrown a head: that they have only to leave off as soon as head has appeared; an absurdity which we need not pause to explain at this stage. The essential point about the ‘Martingale’ is that, whereas the occurrence of the events on which the stakes are laid is unaffected, the stakes themselves can be so adjusted as to make the luck swing one way. §18. In the second place, this example brings before us what has had to be so often mentioned already, namely, that the series of Probability are in strictness supposed to be interminable. If therefore we allow either party to call upon us to stop, especially at a point which just happens to suit him, we may get results decidedly opposed to the integrity of the theory. In the case before us it is a necessary stipulation forA that he may be allowed to leave off when he wishes, that is at one of the points at which the throw is in his favour. Without this stipulation he may be left a loser to any amount. Introduce the supposition that one party may arbitrarily call for a stoppage when it suits him and refuse to permit it sooner, and almost any system of what would be otherwise fair play may be converted into a very one-sided arrangement. Indeed, in the case in question, Aneed not adopt this device of doubling the stakes every time he loses. He may play with a fixed stake, and nevertheless insure that one party shall win any assigned sum, assuming that the game is even and that he is permitted to play on credit. §19. (V.) A common mistake is to assume that a very unlikely thing will not happen at all. It is a mistake which, when thus stated in words, is too obvious to be committed, for the meaning of an unlikely thing is one that happens at rare intervals; if it were not assumed that the event would happen sometimes it would not be called unlikely, but impossible. This is an error which could scarcely occur except in vague popular misapprehension, and is so abundantly refuted in works on Probability, that it need only be touched upon briefly here. It follows of course, from our definition of Probability, that to speak of a very rare combination of events as one that is ‘sure never to happen,’ is to use language incorrectly. Such a phrase may pass current as a “It is said that no person ever does arrive at such extremely improbable cases as the one just cited [drawing the same ball five times running out of a bag containing twenty balls]. That a given individual should never throw an ace twelve times running on a single die, is by far the most likely; indeed, so remote are the chances of such an event in any twelve trials (more than 2,000,000,000 to1 against it) that it is unlikely the experience of any given country, in any given century, should furnish it. But let us stop for a moment, and ask ourselves to what this argument applies. A person who rarely touches dice will hardly believe that doublets sometimes occur three times running; one who handles them frequently knows that such is sometimes the fact. Every very practised user of those implements has seen still rarer sequences. Now suppose that a society of persons had thrown the dice so often as to secure a run of six aces observed and recorded, the preceding argument would still be used against twelve. And if another society had practised long enough to see twelve aces following each other, they might still employ the same method of doubting as to a run of twenty-four; and so on, ad infinitum. The power of imagining cases which contain long combinations so much exceeds that of exhibiting and arranging them, that it is easy to assign a telegraph which should make a separate signal for every grain of sand in a globe as large as the visible universe, upon the hypothesis of the most space-penetrating astronomer. The fallacy of the preceding objection lies in supposing events in number beyond our experience, composed §20. The origin of this inveterate mistake is not difficult to be accounted for. It arises, no doubt, from the exigencies of our practical life. No man can bear in mind every contingency to which he may be exposed. If therefore we are ever to do anything at all in the world, a large number of the rarer contingencies must be left entirely out of account. And the necessity of this oblivion is strengthened by the shortness of our life. Mathematically speaking, it would be said to be certain that any one who lives long enough will be bitten by a mad dog, for the event is not an impossible, but only an improbable one, and must therefore come to pass in time. But this and an indefinite number of other disagreeable contingencies have on most occasions to be entirely ignored in practice, and thence they come almost necessarily to drop equally out of our thought and expectation. And when the event is one in itself of no importance, like a rare throw of the dice, a great effort of imagination may be required, on the part of persons not accustomed to abstract mathematical calculation, to enable them to realize the throw as being even possible. Attempts have sometimes been made to estimate what extremity of unlikelihood ought to be considered as equivalent to this practical zero point of belief. In so far as such attempts are carried out by logicians, or by those who The principal of these is perhaps Buffon. He has arrived at the estimate (ArithmÉtique Morale §VIII.) that this practical zero is equivalent to a chance of 1/10,000. The grounds for selecting this fraction are found in the fact that, according to the tables of mortality accessible to him, it represents the chance of a man of56 dying in the course of the next day. But since no man under common circumstances takes the chance into the slightest consideration, it follows that it is practically estimated as having no value. It is obvious that this result is almost entirely arbitrary, and in fact his reasons cannot be regarded as anything more than a slender justification from experience for adopting a conveniently simple fraction; a justification however which would apparently have been equally available in the case of any other fractions lying within wide limits of the one selected.[7] §21. There is one particular form of this error, which, from the importance occasionally attached to it, deserves perhaps more special examination. As stated above, there can be no doubt that, however unlikely an event may be, if we (loosely speaking) vary the circumstances sufficiently, or §22. We will begin with the comparatively simple, determinate, and intelligible problem of the possible production of the works of a great human genius by chance. With regard to this possibility, it may be a consolation to some timid minds to be reminded that the power of producing the works of a Shakespeare, in time, is not confined to consummate genius and to mere chance. There is a third alternative, viz. that of purely mechanical procedure. Any one, down almost to an idiot, might do it, if he took sufficient time about the task. For suppose that the required number of letters were procured and arranged, not by chance, but designedly, and according to rules suggested by the theory of permutations: the letters of the alphabet and the number of them to be employed being finite, every order in which they could occur would come in its due turn, and therefore every thing which can be expressed in language would be arrived at some time or other. There is really nothing that need shock any one in such a result. Its possibility arises from the following cause. §23. The case of the possible production of the world by chance leads us into an altogether different region of discussion. We are not here dealing with figures the nature and use of which are within the fair powers of the understanding, however the imagination may break down in attempting to realize the smallest fraction of their full significance. If it were worth while seriously to set about answering such a question, and if some one would furnish us with the number of the letters of such an alphabet, and the length of the work to be written with them, we could proceed to indicate the result. But so much as this may surely be affirmed about it;—that, far from merely finding the length of this small volume insufficient for containing the figures in which the adverse odds would be given, all the paper which the world has hitherto produced would be used up before we had got far on our way in writing them down. §24. The most seductive form in which the difficulty about the occurrence of very rare events generally presents itself is probably this. ‘You admit (some persons will be disposed to say) that such an event may sometimes happen; nay, that it does sometimes happen in the infinite course of time. How then am I to know that this occasion is not one of these possible occurrences?’ To this, one answer only can be given,—the same which must always be given where statistics and probability are concerned,—‘The present may be such an occasion, but it is inconceivably unlikely that it §25. There is another form of this practical inability to distinguish between one high number and another in the estimation of chances, which deserves passing notice from its importance in arguments about heredity. People will often urge an objection to the doctrine that qualities, mental and bodily, are transmitted from the parents to the offspring, on the ground that there are a multitude of instances to the contrary, in fact a great majority of such instances. To raise this objection implies an utter want of appreciation of the very great odds which possibly may exist, and which the argument in support of heredity implies do exist against any given person being distinguished for intellectual or other eminence. This is doubtless partly a matter of definition, depending upon the degree of rarity which we consider to be implied by eminence; but taking any reasonable sense of the term, we shall readily see that a very great proportion of failures may still leave an enormous preponderance of evidence in favour of the heredity doctrine. Take, for instance, that degree of eminence which is implied by being one of four thousand. This is a considerable distinction, though, since there are about two thousand such persons to be found amongst the total adult male population of Great Britain, it is far from implying any conspicuous genius. Now suppose that in examining the cases of a large number of the children of such persons, we had found that 199 out of 200 of them failed to reach the same distinction. Many persons would conclude that this was pretty conclusive evidence against any hereditary transmission. To be able to adduce only one favourable, as against 199 hostile instances, would §26. (VI.) In discussing the nature of the connexion between Probability and Induction, we examined the claims of a rule commonly given for inferring the probability that an event which had been repeatedly observed would recur again. I endeavoured to show that all attempts to obtain and prove such a rule were necessarily futile; if these reasons were conclusive the employment of such a rule must of course be regarded as fallacious. A few examples may conveniently be added here, tending to show how instead of there being merely a single rule of succession we might better divide the possible forms into three classes. (1) In some cases when a thing has been observed to happen several times it becomes in consequence more likely §27. (2) Or, secondly, the past recurrence may in itself give no valid grounds for inference about the future; this is the case which most properly belongs to Probability.[10] §28. The way in which events will justify the answer given by this formula is often misunderstood. For the benefit therefore of those unacquainted with some of the conceptions familiar to mathematicians, a few words of explanation may be added. Suppose then that we have had X twelve times in succession. This is clearly an anomalous state of things. To suppose anything like this continuing to occur would be obviously in opposition to the statistics, which assert that in the long run only one in ten isX. But how is this anomaly got over? In other words, how do we obviate the conclusion that X'smust occur more frequently than once in ten times, after such a long succession of them as we have now had? Many people seem to believe that there must be a diminution ofX's afterwards to counterbalance their past preponderance. This however would be quite a mistake; the proportion in which they occur in future must remain the same throughout; it cannot be altered if we are to adhere to our statistical formula. The fact is that the rectification of the exceptional disturbance If we had to do only with a finite number of terms, however large that number might be, such a disturbance as we have spoken of would, it is true, need a special alteration in the subsequent proportions to neutralize its effects. But when we have to do with an infinite number of terms, this is not the case; the ‘limit’ of the series, which is what we then have to deal with, is unaffected by these temporary disturbances. In the continued progress of the series we shall find, as a matter of fact, more and more of such disturbances, and these of a more and more exceptional character. But whatever the point we may occupy at any time, if we look forward or backward into the indefinite extension of the series, we shall still see that the ultimate limit to the proportion in which its terms are arranged remains the same; and it is with this limit, as above mentioned, that we are concerned in the strict rules of Probability. The most familiar example, perhaps, of this kind is that of tossing up a penny. Suppose we have had four heads in succession; people[11] have tolerably realized by now that ‘head the fifth time’ is still an even chance, as ‘head’ was each §29. (3) There are other cases which, though rare, are by no means unknown, in which such an inference as that obtained from the Rule of Succession would be the direct reverse of the truth. The oftener a thing happens, it may be, the more unlikely it is to happen again. This is the case whenever we are drawing things from a limited source (as balls from a bag without replacing them), or whenever the act of repetition itself tends to prevent the succession (as in giving false alarms). I am quite ready to admit that we believe the results described in the last two classes on the strength of some such general Inductive rule, or rather principle, as that involved in the first. But it would be a great error to confound this with an admission of the validity of the rule in each special instance. We are speaking about the application of the rule to individual cases, or classes of cases; this is quite a distinct thing, as was pointed out in a previous chapter, from giving the grounds on which we rest the rule itself. If a man were to lay it down as a universal rule, that the testimony of all persons was to be believed, and we adduced an instance of a man having lied, it would not be considered that he saved his rule by showing that we believed that it was a lie on the word of other persons. But it is perfectly consistent to give as a merely general, but not universal, rule, that the testimony of men is credible; then to separate off a second class of men whose word is not to be trusted, and finally, if any one wants to know our ground for the second rule, to rest it upon the first. If we were speaking of necessary laws, such a conflict as this would be as hopeless as the old ‘Cretan’ puzzle in logic; but in instances §30. A familiar example will serve to bring out the three different possible conclusions mentioned above. We have observed it rain on ten successive days. Aand B conclude respectively for and against rain on the eleventh day; Cmaintains that the past rain affords no data whatever for an opinion. Which is right? We really cannot determine Àpriori. An appeal must be made to direct observation, or means must be found for deciding on independent grounds to which class we are to refer the instance. If, for example, it were known that every country produces its own rain, we should choose the third rule, for it would be a case of drawing from a limited supply. If again we had reasons to believe that the rain for our country might be produced anywhere on the globe, we should probably conclude that the past rainfall threw no light whatever on the prospect of a continuance of wet weather, and therefore take the second. Or if, finally, we knew that rain came in long spells or seasons, as in the tropics, then the occurrence of ten wet days in succession would make us believe that we had entered on one of these seasons, and that therefore the next day would probably resemble the preceding ten. Since then all these forms of such an Inductive rule are possible, and we have often no Àpriori grounds for preferring one to another, it would seem to be unreasonable to attempt to establish any universal formula of anticipation. All that we can do is to ascertain what are the circumstances under which one or other of these rules is, as a matter of fact, found to be applicable, and to make use of it under those circumstances. §31. (VII.) In the cases discussed in (V.) the almost infinitely small chances with which we were concerned were For instance, we may be confronted with a difficulty out of which there appears to be only one appreciably possible mode of escape. The attempt is made to force us into accepting this, however great the odds apparently are against it, on the ground that improbable as it may seem, it is at any rate vastly more probable than any of the others. I can quite admit that, on practical grounds, we may often find it reasonable to adopt this course; for we can only act on one supposition, and we naturally and rightly choose, out of a quantity of improbabilities, the least improbable. But when we are not forced to act, no such decisive preference is demanded of us. It is then perfectly reasonable to refuse assent to the proposed explanation; even to say distinctly that we do not believe it, and at the same time to decline, at present, to accept any other explanation. We remain, in fact, in a state of suspense of judgment, a state perfectly right and reasonable so long as no action demanding a specific choice is forced upon us. One alternative may be decidedly probable as compared with any other individually, but decidedly improbable as compared with all others collectively. This in itself is intelligible enough; what people often fail to see is that there is no necessary contradiction between saying and feeling this, and yet being prepared vigorously to act, when action is forced upon us, as though this alternative were really the true one. §32. To take a specific instance, this way of regarding the matter has often occurred to me in disputes upon ‘Spiritualist’ manifestations. Assent is urged upon us because, it is said, no other possible solution can be suggested. It may be quite true that apparently overwhelming difficulties may lie as against each separate alternative solution; but is it always sufficiently realized how numerous such solutions may be? No matter that each individually may be almost incredible: they ought all to be massed together and thrown into the scale against the proffered solution, when the only question asked is, Are we to accept this solution? There is no unfairness in such a course. We are perfectly ready to adopt the same plan against any other individual alternative, whenever any person takes to claiming this as the solution of the difficulty. We are looking at the matter from a purely logical point of view, and are quite willing, so far, to place every solution, spiritualist or otherwise, upon the same footing. The partisans of every alternative are in somewhat the same position as the members of a deliberative assembly, in which no one will support the motion of any other member. Every one can aid effectively in rejecting every other motion, but no one can succeed in passing his own. Pressure of urgent necessity may possibly force them out of this state of practical inaction, by, so to say, breaking through the opposition at some point of least resistance; but unless aided by some such pressure they are left in a state of hopeless dead-lock. §33. Assuming that the spiritualistic solution admits of, and is to receive, scientific treatment, this, it seems to me, is the conclusion to which one might sometimes be led in the face of the evidence offered. We might have to say to every individual explanation, It is incredible, I cannot accept it; and unless circumstances should (which it is hardly possible §34. (VIII.) The very common fallacy of ‘judging by the event,’ as it is generally termed, deserves passing notice here, as it clearly belongs to Probability rather than to Logic; though its nature is so obvious to those who have grasped the general principles of our science, that a very few words of remark will suffice. In one sense every proposition must consent to be judged by the event, since this is merely, in other words, submitting it to the test of experience. But there is the widest difference between the test appropriate to a universal proposition and that appropriate to a merely proportional or statistical one. The former is subverted by a single exception; the latter not merely admits exceptions, but implies them. Nothing, however, is more common than to blame advice (in others) because it has happened to turn §35. The distinction drawn in the above instance deserves careful consideration; for owing to the wide difference between the kind of propositions dealt with in Probability and in ordinary Logic, and the consequent difference in the nature of the proof offered, it is quite possible for arguments of the same general appearance to be valid in the former and fallacious in the latter, and conversely. For instance, take the well-known fallacy which consists in simply converting a universal affirmative, i.e. in passing from AllA isB to AllB isA. When, as in common Logic, the conclusion is to be as certain as the premise, there is not a word to be said for such a step. But if we look at the process with the more indulgent eye of Induction or Probability we see that a very fair case may sometimes be made out for it. The mere fact that ‘SomeB isA’ raises a certain presumption that any particularB taken at random will be anA. There is some reason, at any rate, for the belief, though in the absence of statistics as to the relative frequency of A andB we are unable to assign a value to this belief. I suspect that there may be many cases in which a man has inferred that some particularB is anA on the Now for a case of the opposite kind, i.e. one in which Probability fails us, whereas the circumstances seem closely analogous to those in which ordinary inference would be able to make a stand. Suppose that I know that one letter in a million is lost when in charge of the post. I write to a friend and get no answer. Have I any reason to suppose that the fault lies with him? Here is an event (viz. the loss of the letter) which has certainly happened; and we suppose that, of the only two causes to which it can be assigned, the ‘value,’ i.e. statistical frequency, of one is accurately assigned, does it not seem natural to suppose that something can be inferred as to the likelihood that the other cause had been operative? To say that nothing can be known about its adequacy under these circumstances looks at first sight like asserting that an equation in which there is only one unknown term is theoretically insoluble. As examples of this kind have been amply discussed in the chapter upon Inverse rules of Probability I need do no more here than remind the reader that no conclusion whatever can be drawn as to the likelihood that the fault lay with my friend rather than with the Post Office. Unless we either know, or make some assumption about, the frequency with which he neglects to answer the letters he receives, the problem remains insoluble. The reason why the apparent analogy, indicated above, to an equation with only one unknown quantity, fails to hold good, is that for the purposes of Probability there are really two unknown quantities. What we deal with are proportional or statistical propositions. Now we are only told that 1 Discussed by Mr F.Y. Edgeworth, in the Phil. Mag. for April, 1887. 2 Journal of the Statistical Soc. (Vol.XLII. p.328) Dare one suspect a joke? 3 It appears to have been long known to gamblers under the name of the Martingale. There is a paper by Babbage (Trans. of Royal Soc. of Edinburgh, for 1823) which discusses certain points connected with it, but scarcely touches on the subject of the sections which follow. 4 Attention will be further directed to this distinction in the chapter on Insurance and Gambling. 5 As by PrÉvost in the BibliothÈque Universelle de GenÈve, Oct. 1829. The explanation is noted, and apparently accepted, by Quetelet (Physique Sociale, I.171). 6 Essay on Probabilities, p.126. 7 This theoretical or absolute neglect of what is very rare must not be confused with the practical neglect sometimes recommended by astronomical and other observers. A criterion, known as Chauvenet's, for indicating the limits of such rejection will be found described in Mr Merriman's Least Squares (p.166). But this rests on the understanding that a smaller balance of error would thus result in the long run. The very rare event is deliberately rejected, not overlooked. 8 The process of calculation may be readily indicated. There are, say, about 350,000 letters in the work in question. Since any of the 26letters of the alphabet may be drawn each time, the possible number of combinations would be 26350,000; a number which, as may easily be inferred from a table of logarithms, would demand for its expression nearly 500,000 figures. Only one of these combinations is favourable, if we reject variations of spelling. Hence unity divided by this number would represent the chance of getting the desired result by successive random selection of the required number of 350,000 letters. If this chance is thought too small, and any one asks how often the above random selection must be repeated in order to give him odds of 2 to1 in favour of success, this also can be easily shown. If the chance of an event on each occasion is1/n, the chance of getting it once at least in ntrials is 1-(n-1/n)n; for we shall do this unless we fail ntimes running. When (as in the case in question) nis very large, this may be shown algebraically to be equivalent to odds of about 2 to1. That is, when we have drawn the requisite quantity of letters a number of times equal to the inconceivably great number above represented, it is still only 2 to1 that we shall have secured what we want:—and then we have to recognize it. 9 The longest life which could reasonably be attributed to any language would of course dwindle into utter insignificance in the face of such periods of time as are being here arithmetically contemplated. 10 We are here assuming of course that the ultimate limit to which our average tends is known, either from knowledge of the causes or from previous extensive experience. We are assuming that e.g. the die is known to be a fair one; if this is not known but a possible bias has to be inferred from its observed performances, the case falls under the former head. 11 Except indeed the gamblers. According to a gambling acquaintance whom Houdin, the conjurer, describes himself as having met at Spa, “the oftener a particular combination has occurred the more certain it is that it will not be repeated at the next coup: this is the groundwork of all theories of probabilities and is termed the maturity of chances” (Card-sharping exposed, p.85). CHAPTERXV. |