Chapter V APPENDAGES AND RULES GOVERNING THEM

Previous
Use of the Appendage

An appendage is a member added to the primary mass for utilitarian purposes. In the industrial arts, when an appendage is added merely for the purpose of decoration, it is as useless and functionless as the human appendix and, as a source of discord, should be removed.

An appendage in industrial arts may be, among other things, a plate rail, bracket, spout, cover, or handle, all of which are capable of service either for or with the primary mass. In architecture it may be a wing or ell added to the mass of the building. Simple as its design may seem, it is often so placed in relation to the main or primary mass that it does not seem to "fit" or to be in unity with that mass.

Designing an Appendage

Rule 4a. The appendage should be designed in unity with, and proportionately related to, the vertical or horizontal character of the primary mass, but subordinated to it.

Rule 4b. The appendage should have the appearance of flowing smoothly and, if possible, tangentially from the primary mass.

Rule 4c. The appendage should, if possible, echo or repeat some lines similar in character and direction to those of the primary mass.

Violations of Appendage Design

All of the foregoing rules are intended to promote the sense of unity between the primary mass and its appendages. If a mirror on a dresser looks top-heavy it is generally due to the fact that it has not been subordinated in size to the primary mass. Rule 4a. If the handle projects from the primary mass of an object similar to the handle on a pump, it has not been designed in accordance with Rules 4b and 4c. Again, if the appendage projects from a primary mass like a tall chimney from a long flat building, it has violated Rule 4a and has not been proportionately related to the character of the vertical or horizontal proportions of the primary mass.

Examples of Appendages in Class 1 (Wood) Added to the Primary Mass for Utilitarian Purposes Plate 16

It should be readily seen that if the primary mass has one dominant proportion while the appendage has another, there will be a serious clash and the final result will be the neutralization of both motives, resulting in either an insipid and characterless design or a downright lack of unity.

Appendages in Wood

The design of the small dressing table, Figure 37, Plate 16, with the mirror classing as an appendage, is an excellent illustration of Rule 4a. The main mass of the table is vertical in character and the mirror carries out or repeats the character of the primary mass by having a similar but subordinate vertical mass. In this instance it is so large that it has nearly the effect of a second primary mass.

As tangential junctions are difficult to arrange in wood construction and particularly in furniture, the break between the table top and the mirror has been softened by the introduction of a bracket or connecting link. The curves of the link cause the eye to move freely from the primary mass to the appendage and thus there is a sense of oneness or unity between the two masses.

The lantern in Figure 38 becomes an appendage and is subordinated to the large pedestal or support. The tangential junction has in this case been fully possible and the eye moves freely from the vertical lines of the base to the similar vertical mass of the lantern without noticeable break.

Unifying Appendage and Primary Mass

The service of the dressing table, Figure 39, with its three-division mirror makes the problem of adaptation of the appendage to the mass of the table, in accordance with the rules, much more difficult. Under the circumstances, about the best that can be done, at the same time keeping within the limitations of desired service, is to plan the mirrors in accordance with Rule 3b, with the dominant section in the center. To secure an approach to unity, each section of the mirror should echo the vertical proportion of the primary mass of the table.

Courtesy of Berkey and Gay

Figure 41a

The top of the writing stand, in Figure 40, is an example of a horizontal appendage which repeats the horizontal character of the front or typical face of the primary mass of the table. The small drawers and divisions again take up and repeat the horizontal motive of the table, while the entire appendage may be subdivided under Rule 3b, giving the dominance to the center portion. The short curves in the appendage all tend to lead the eye in a satisfactory and smooth transition from one mass to the other or from the table top to the appendage. The proportions of the small drawers are similar to the proportions of the table drawers. Rule 4c. All of these points of similarity bring the masses into close unity or oneness of appearance.

The table legs, in Figure 41, are more difficult to adjust satisfactorily. The idea of the designer is, however, apparent. The legs leave the column of the table with a tangential curve and, sweeping out with a strong curve, repeat the horizontal line of the table top in the horizontal lines of their bottom surfaces.

Industrial Applications

Figure 41a, a modification of Figure 39, shows close unity between the three divisions of the mirror due to the pleasing curve of the center section with its tendency to bind the other sections to it. Again, the echoing of the spacings of the three drawers in the similar spacings of the three mirrors, makes the bond of unity still closer to the ideal arrangement. Rule 4c.

Figures 41b and 41c are, in a way, parallel to Figure 41. The eye moves freely from the feet (appendages) along the smooth and graceful curves to the tall shaft or column of the primary mass. The turned fillets, introduced at the junction of the appendage and the primary mass, in Figure 41c, have a tendency to check this smooth passage making the arrangement in Figure 41b preferable. The hardware for the costumers is well chosen and in sympathy with the vertical proportions of the design.

Courtesy of Berkey and Gay

Figure 41bFigure 41c

Appendages in Clay

With the word "clay" all difficulties in the treatment of appendages vanish. It is by far the easiest medium for the adaptation of the appendage to the primary mass. Covers, handles, and spouts are a few of the more prominent parts falling under this classification.

The process of the designer is to create the primary rectangle, subdivide it into two horizontal subdivisions in accordance with Rule 2a, and proceed to add the desired number of appendages. The result may be suggested by the following illustrations. In Figure 43, Plate 17, the cover is a continuation of the curve of the top of the bowl, Rule 4a; the tops of the handles are continuations of the horizontal line in the top contour of the bowl, while the lower portions of the handles seem to spring or grow from the lower part of the bowl with a tangential curve.

Covers, Spouts, and Handles

Figure 44 is a horizontal primary mass with the horizontal subdivision in the upper section of that mass. The spout and handle spring naturally from the body and balance each other in proportion, while the cover handle rises smoothly from the primary mass. The horizontal character of the primary mass is consistently carried out in the appendages.

The handle, in Figure 45, leaving the body at a tangent, rises with a long straight curve to turn suddenly and join the pitcher in harmony with its top. The apparent abruptness of the junction is softened by the rounded corners typical of clay construction.

The Rookwood set, Figure 42, represents three similar primary masses. The proportionate ratios and the horizontal subdivisions are the same throughout. The handle for the teapot has been curved in the center to give variety to the handle. This variation is a difficult thing to manage without consequent loss of unity as by this variation Rule 4a is violated. One thing may be said in its favor. It brings the hand closer to the spout and thus supports the pouring weight. But the unusual in design is to be discouraged until sufficient skill in simple designing has been acquired.

In designing handle appendages for clay, they should be so placed that they readily control the weight of the material in the container and afford room for the fingers. Thus, it is better to have the larger portion of the handle opening at the top of the primary mass. The spout in all instances should continue sufficiently high to allow the container to be filled to its full capacity without danger of the contents running out of the spout. The glaze runs into rounded corners much more freely than into square ones, hence it is preferable to use rounded corners wherever possible.

Examples of Appendages in Class 2 (Pottery) Added to the Primary Mass For Utilitarian Purposes Plate 17
Requirements for Appendage Design
Freehand Curves

It is the unexpected curve that is welcome in all designing, provided it supports the structure and conforms to established rules. After completing a design involving appendages it should be checked from three points of view; (1) service, (2) unity between the primary mass and the appendages, and (3) variety of curvature. On this last point it is needless to say that compass curves are not desirable except in rounding small corners or in using fillets. It is well known that compass curves are difficult to assimilate into pleasing tangential effects. They are inclined to be monotonous and regular with a "made by the thousand" appearance to them. One should trust to freehand sweeps, drawn freely with a full arm movement when possible. All curves should spring naturally from the primary mass. Blackboard drawing is excellent practice for the muscles used in this type of designing. In a short time it will be found possible to produce the useful long, rather flat curve with its sudden turn (the curve of force) that will make the compass curve tame and commonplace by comparison.

Figures 55, 56, and 57, Plate 18, show the close bond between the appearance of the appendage in clay, and the one in metal. While it is technically more difficult to adapt metal to the rules governing appendages than is the case with clay, the final results are, in most instances, equally pleasing to the eye.

In most of the figures showing examples in metal, the appendages have to be secured to the primary mass by screws, rivets, or solder, whereas in clay they may be moulded into the primary mass. This tends to secure a more unified appearance; but in metal, the junction of the handle and the primary mass is often made a decorative feature of the design and gives added interest and variety to the project.

The simple primary mass, Figure 58, has a horizontal space division in the lower portion of the mass. This point of variation of the contour has been used in the primary masses in Figures 55, 56, and 57, also as the starting point of that dominant appendage, the handle. Springing tangentially from the body, it rises in a straight line of extreme value in service, then with a slight turn it parallels and joins the top of the bowl, thus fulfilling the design functions of an appendage from both points of service and beauty. The spout and lid, Figure 55, may be likewise analyzed.

Examples of Appendages in Class 3 (Metal) Plate 18
Tangential Junctions

The points of tangency, in Figure 54, become a decorative feature of the design. The handles in the parts of the fire set, Figures 48 and 49, offer different problems. It is difficult to analyze the latter figures to determine the appendages as they are in such thorough unity with the handles and are practically subdivisions of the primary mass. But referring to the rule stating the fact that the appendages are subordinated to and attached to the primary mass, it may justly be stated that the shovel portion of the design may legitimately be classed as an appendage. This will explain the need of a curve at the junction points and the feature of the decorative twists in Figure 49. Both designs may be analyzed into three horizontal divisions.

Andiron Design

The andirons, Figures 50 to 53, illustrate interesting transitions in wrought iron from the primary mass to the appendage. The vertical shaft of wrought iron has been treated as a primary mass while the feet may be classed as appendages. In Figure 50 we have an example of a frankly square junction point. Figure 51 discloses a weld with rounded corners, forming a more pleasing junction than does the abrupt angle of Figure 50. This conforms to Rule 4b. The appendage legs echo or repeat the vertical lines of the primary mass and there is consequently a sense of unity between them.

In Figure 52 the appendage foot is curved, and the primary mass has a similar curve on the top of the vertical column to apply Rule 4c to repeat the curve. The small links at X indicate an attempt to make the junction point more pleasing to the eye, but the link is too large to accomplish the desired result successfully. In Figure 53 the links have been materially reduced in size and in the amount of curvature. In this example the eye goes unhampered from appendage to primary or back again, without perceptible interruption and the unity of the mass, seriously threatened in Figure 52, is restored in Figure 53.

In Figure 46 there is an example of a link becoming large enough to be classed as an appendage connecting two primary masses, e.g., the lantern and the wall. Under these conditions, one end of the appendage harmonizes with the lantern and the other end with the wall. Figure 47 shows a cast brass candlestick which is an excellent example, from the Studio, of tangential junction.

Influence of Tools and Materials

Clay may readily stand as the most adaptable material for appendages, with metal ranking second, and wood third. The grain of wood seems to interfere with the tangential junction of the appendage and primary mass. Appendages of wood are, however, quite necessary at times. Their use is merely a matter of lessening the contrast of conflicting lines in an addition of this nature.

The band and bracket saws are required in many instances to construct the connecting link between opposing masses of wood. Hand building or casting is the means used to construct the appendages in plastic materials. Appendages in cement are seen in the uprights for cement seats and are generally translated into the primary mass by means of mouldings or curves.

Forging or thin and raised metal construction affords many examples of the adaptability of material in constructing appendages. Rivets form decorative features at the junction points and should be placed with great care and relation to the decoration and the point of tangency.

Applied and Constructive Design. Principle 4 Plate 19

INSTRUCTION SHEET FOR CLASS PRESENTATION

The typical views to be used in classroom work, with the ordinary range of problems, are shown on Plate 19. These typical views should be supplemented by dimensions, cross sections, and other views whenever necessary. Wood construction has been omitted from this sheet, but its development in design is quite similar to the steps indicated in the summary.

SUMMARY OF DESIGN STEPS

(a) Draw the primary rectangle.

(b) Subdivide the rectangle into two or three horizontal and, if necessary, vertical divisions.

(c) Estimate the dimensions of the appendage necessary to perform the desired service in the best manner.

(d) If the appendage is a handle, place it in such a position that it not only appears to but actually does support the weight of the primary mass.

(e) Complete the contour curves of the primary mass based upon the horizontal division which acts as a unit of measurement or a turning point.

(f) Join the appendages to the primary mass by means of tangential curves.

(g) Establish unity between the primary mass and the appendages by applying Rules 4a, 4b, and 4c.

(h) Dimension and otherwise prepare the drawing for shop use. See Plate 26.

SUGGESTED PROBLEMS

Design a sugar bowl, cream pitcher, and teapot. Consider them as different members of one set.

Design a sideboard 3 feet 3 inches high with plate rack, the design to contain two vertical and two horizontal divisions exclusive of the appendage.

SUMMARY OF RULES

Rule 4a. The appendage should be designed in unity with, and proportionately related to, the vertical or horizontal character of the primary mass, but subordinated to it. Rule 4b. The appendage should have the appearance of flowing smoothly and, if possible, tangentially from the primary mass.

Rule 4c. The appendage should, if possible, echo or repeat some lines similar in character and direction to those of the primary mass.

REVIEW QUESTIONS

1. State the nature and use of the appendage.

2. What is the relation of the size of the appendage to the size of the primary mass?

3. How should the appendage be attached to the primary mass?

4. How does Rule 4c help to secure unity between the appendage and the primary mass?

5. Are compass curves permissible in appendage design?

6. State influence of tools and materials upon appendage design.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page