Chapter II THE PRIMARY MASS AND ITS PROPORTIONS

Previous
The Architectural Method

Upon first observing a building, one seldom notices details of structure. He sees the large mass as it is silhouetted against the sky. Nearer approach discloses mouldings, cornices, and doorways; while careful analytical study shows the technical points of construction. The architect, in his original planning, thinks in terms of masses, widths, and heights, disregarding at first the details and color. As architecture stands for parent design principles and represents some of the world's best examples of composition and design, industrial design should be based upon the best examples of architectural design. To a certain degree, also, the methods of the industrial arts designer should be those of the architect.

The Industrial Arts Method

It is necessary to think at first of our problem as a single mass or solid, bounded by enclosing dimensions of width, height, and thickness. Details like a mirror, handles, brackets, or knobs may project outside of this mass, but for the time being, they may be disregarded. Figure B, Plate 2, shows this manner of thinking, and will enable us to regard the problem as a big, simple mass so that the entire object, unobstructed by small details, may be seen.

The Primary Mass

This is the method of thinking about the problem which should precede the drawing. To further describe this mass, which will be called the single or Primary Mass, it is necessary to think of the intended service of the project. A rather hazy idea of making a vase or a stool to be put to no particular use, may have been the original motive. Now the exact service should be defined as it will have a marked effect upon the shape of this primary mass.

Analysis of the Primary Mass Plate 4
Service
Horizontal and Vertical Primary Masses

Rule 1a. A primary mass must be either vertical or horizontal according to the intended service, unless prohibited by technical requirements. Service is an important factor inasmuch as it limits the intended use of the mass. A mass is horizontal when its largest dimension is horizontal. When the horizontal dimension of this mass is reduced until the main vertical dimension is longer than the main horizontal one, it becomes a vertical mass. As an example, a davenport is generally a horizontal mass intended to hold a number of people. When the mass is narrowed to the point where the vertical dimension exceeds the horizontal, it becomes a chair for one person. A low bowl may be intended for pansies, but as soon as the service changes and we design it for goldenrod, it becomes a vertical mass. The fable of the fox who, upon being invited to dine with the stork, found the tall vases unfitted for his use illustrates the change of mass with the change of service.

Figures 1 and 4, Plate 4, are examples of horizontal masses with the dark lines indicating the dominance of the horizontal lines and planes. The shelter house contains a long bench, making necessary the long horizontal lines of the building. The calendar holder has to be a horizontal mass because of the restrictions imposed by the shape of the calendar pad.

Figures 2 and 3 are vertical masses. The vase is intended for tall flowers, while the chair, as has already been mentioned, must meet the needs of a single person. Utility and service then have been found to give the primary mass a given direction or dominance.

Drawing the Primary Mass

The designer now represents this mass by drawing a rectangle similar to the block outline of Figure B, Plate 2. It is now necessary to see if the foundation stones of this rectangle have been laid correctly; in other words, to test the proportions of the primary vertical or horizontal mass.

Proportions of the Primary Masses

Rule 1b. A primary mass should have the ratio of one to three, three to four, three to five, five to eight, seven to ten, or some similar proportion difficult for the eye to detect readily and analyze. Proportions are generally expressed in terms of ratios. A surface of five by eight inches would give a ratio of five to eight; ten by sixteen feet is reducible to the same ratio. Certain ratios are monotonous and offend the eye by their lack of variety. Ratios such as one to one or one to two are of this class and should be avoided. If these ratios could speak they would resemble people talking in a low monotonous tone of voice.

Proportionate Ratios. Process of Designing Plate 5
Unsatisfactory Ratios

Certain other ratios are weak and indeterminate, showing a lack of clear thinking. They are like people with no definite or cleancut ideas upon a subject they discuss. Examples in this class show ratios of two to two and one-eighth, or three to three and one-fourth, neither positively square nor frankly rectangular. They hide around the corner, as it were, waiting to be anything. Figure 5, Plate 5, is an example of unsatisfactory proportionate ratios of the primary mass. The blotting tablet is nearly square, while the candlestick and sconce, which should have been designed with strongly vertical masses, lack the type of definite thinking that results in a decided vertical dimension.

Disregarding the improvement in technic, Figure 6 shows problems designed with a definite knowledge of proportion. The metal objects are refined in their dimensions, and pleasing to the eye. Tests have been made with the idea of determining what the eye considers perfectly natural and agreeable proportion. This has been found to be the ratio of two to three. Consequently, it is clear why Figure 6 shows objects more pleasing than those in Figure 5.

It may be felt that too much space is being given to this subject of proportion. It should be remembered, however, that the industrial arts are intimately associated with daily life and that unless proportions are pleasing to our aesthetic sense, many articles of common use shortly become intolerable.

Preliminary Thinking in Terms of Design

This preliminary portion of the designer's task has been given to thinking out the problem and drawing one rectangle. There is a tendency to start the design by pushing the pencil over the paper with a forlorn hope that a design may be evolved with little mental effort. This should be regarded as illogical and unworthy of the desired end. A rectangle of the most prominent surface of the problem, based upon the desired service of the project, and the best proportions which our knowledge of design and understanding of the limitations of construction will permit, should be the final result of the first study. From now on through the succeeding steps, the details of the problem will become more and more clear, as the technical limitations of the tools and materials governing the designer's ideas and controlling and shaping the work are better understood, until all governing factors become crystallized in the form of a working drawing or model. This is a strictly professional practice as illustrated in Figure 7, which shows the skilled Rookwood potter developing a vase form, the definite embodiment of correct thinking in terms of the material which is constantly before him.

SUMMARY OF RULES

Rule 1a. A primary mass must be either vertical or horizontal according to the intended service, unless prohibited by technical requirements.

Rule 1b. A primary mass should have the ratio of one to three, three to four, three to five, five to eight, seven to ten, or some similar proportion difficult for the eye to readily detect and analyze.

REVIEW QUESTIONS

1. How does the architect first plan his elevations?

2. How should the designer first think of his problem?

3. Define a horizontal primary mass.

4. Define a vertical primary mass.

5. State some desirable ratios to be used in designing the proportions of the primary mass. Explain.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page