In selecting a lathe an amateur may exercise more or less taste, and he may be governed somewhat by the length of his purse; the same is true in the matter of chucks; but when he comes to the selection or making of turning tools he must conform to fundamental principles; he must profit as far as possible by the experience of others, and will, after all, find enough to be learned by practice. Tools of almost every description may be purchased at reasonable prices, but the practice of making one's own tools cannot be too strongly recommended. It affords a way out of many an emergency, and where time is not too valuable, a saving will be realized. A few bars of fine tool steel, a hammer, and a small anvil, are all that are required, aside from fire and water. The steel should be heated to a low red, and shaped with as little hammering as possible; it may then be allowed to cool slowly, when it may be filed or ground to give it the required form. It may now be hardened by heating it to a cherry red and plunging it straight down into clean cool (not too cold) water. It should then be polished on two of its sides, when the temper may be drawn in the flame of an alcohol lamp or Bunsen gas burner; or, if these are not convenient, a heated bar of iron may be used instead, the tool being placed in contact with it until the required color appears. This for tools to be used in turning steel, iron, and brass may be a straw color. For turning wood it may be softer. The main point to be observed in tempering a tool is to have it as hard as possible without danger of its being broken while in use. By a little experiment the amateur will be able to suit the temper of his tools to the work in hand. In the engraving accompanying the present article a number of hand turning tools are shown, also a few tools for the slide rest. These tools are familiar to machinists and may be well known to many amateurs; but we give them for the benefit of those who are unacquainted with them and for the sake of completeness in this series of articles. Fig. 1 is the ordinary diamond tool, made from a square bar of steel ground diagonally so as to give it two similar cutting edges. This tool is perhaps more generally useful than any of the others. The manner of using it is shown in Fig. 23; it is placed on the tool rest and dexterously moved on the rest as a pivot, causing the point to travel in a circular path along the metal in the lathe. Of course only a small distance is traveled over before the tool is moved along on the rest. After a little experience it will be found that by exercising care a good job in plain turning may be done with the tool. Fig. 2 shows a sharp V shaped tool which will be found useful for many purposes. Fig. 3 is a V shaped tool for finishing screw threads. Figs. 4 and 5 are round-nosed tools for concave surfaces; Fig. 6, a square tool for turning convex and plane surfaces. The tool shown in Fig. 7 should be made right and left; it is useful in turning brass, ivory, hard wood, etc. Fig. 8 is a separating tool; Fig. 9 is an inside tool, which should be made both right and left, and its point may be either round, V shaped, or square. Fig. 24 shows the manner of holding an inside tool. Fig. 10 is a tool for making curved undercuts. Fig. 11 is a representative of a large class of tools for duplicating a given form. These figures represent a series of tools which may be varied infinitely to adapt them to different purposes. The user, if he is wide awake, is not long in discovering what angle to give the cutting edge, what shape to give the point, and what position to give the tool in relation to the work to be done. Having had experience with hand tools it requires only a little practice and observation to apply the same principles to slide rest tools. A few examples of this class of tools are given. Fig. 12 is the ordinary diamond pointed tool, which should be made right and left. The cutting edge may have a more or less acute angle, according to the work to be done, and the inclined or front end of the tool may be slightly squared or rounded, according to the work. Fig. 13 is a separating tool, which is a little wider at the cutting edge than any where else, so that it will clear itself as it is forced into the work. For brass this tool should be beveled downward slightly. By giving the point the form shown in Fig. 3 it will be adapted to screw cutting. Fig. 14 shows an inside tool for the slide rest; its point may be modified according to the work to be done. Fig. 15 is a side tool for squaring the ends of shafts; Figs. 16, 17, 18, and 19 represent tools for brass, Fig. 16 is a round-nosed tool for brass, Fig. 17 a V shaped tool, Fig. 18 a screw thread tool, and Fig. 19 a side tool. In boring, whether the object is cored or not, it is desirable, where the hole is not too large, to take out the first cut with a drill. The drill for the purpose is shown in Fig. 20, the drill holder in Fig. 21, and the manner of using in Fig 22. The drill holder, B, is held by a mortised post placed in the rest support. The slot of the drill holder is placed exactly opposite the tail center and made secure. The drill, which is flat, is drilled to receive the tail center, and it is kept from turning by the holder, and is kept from lateral movement and chattering by a wrench, C, which is turned so as to bind the drill in the slot of the holder. The relative position of the tool and work is shown in Figs. 25, 26, 27, and 28; Fig. 25 shows the position for brass; Fig. 26 for iron and steel; Fig. 27 the relative position of the engine rest tool and its work; and Fig. 28 the position of the tool for soft metal and wood. In all of these cases the point of the tool is above the center of the work. In the matter of the adjustment of the tool, as well as in all other operations referred to, experiment is recommended as the best means of gaining valuable knowledge in the matter of turning metals. ROTARY CUTTERS.The saving of files, time, materials, and patience, by the employment of such rotary cutters as may be profitably used in connection with a foot lathe, can hardly be appreciated by one who has never attempted to use this class of tools. It is astonishing how much very hard labor may be saved by means of a small circular saw like that shown in Fig. 1. This tool, like many others described in this series of articles, can, in most instances, be purchased cheaper than it can be made, and the chances are in favor of its being a more perfect article. However, it is not so difficult to make as one might suppose. A piece of sheet steel may be chucked upon the face plate, or on a wooden block attached to the face plate, where it may be bored to fit the saw mandrel, and cut in circular form by means of a suitable hand tool. It may then be placed upon the mandrel and turned true, and it is well enough to make it a little thinner in the middle than at the periphery. There are several methods of forming the teeth on a circular saw. It may be spaced and filed, or it may be knurled, as shown in Fig. 2, and then filed, leaving every third or fourth tooth formed by the knurl, or it may, for some purposes, be knurled and not filed at all. Another way of forming the teeth is to employ a hub, something like that used in making chasers, as shown in Fig. 3, the difference between this hub and the other one referred to, is that the thread has one straight side corresponding with the radial side of the tooth. The blank from which the saw is made is placed on a stud projecting from a handle made specially for the purpose, and having a rounded end which supports the edge of the blank, as the teeth are formed by the cutters on the hub. The saw, after the teeth are formed, may be hardened and tempered by heating it slowly until it attains a cherry red, and plunging it straight down edgewise into cool, clean water. On removing it from the water it should be dried, and cleaned with a piece of emery paper, and its temper drawn to a purple, over a Bunsen gas flame, over the flame of an alcohol lamp, or over a hot plate of iron. The small saw shown in Fig. 4 is easily made from a rod of fine steel. It is very useful for slotting sheet brass and tubes, slotting small shafts, nicking screws, etc. Being quite small it has the advantage of having few teeth to keep in order, and it may be made harder than those of larger diameter. A series of them, varying in diameter from one eighth to three eighths of an inch, and varying considerably in thickness, will be found very convenient. These cutters or saws, with the exception of the smaller one, may be used to the best advantage in connection with a saw table, like that shown in Fig. 8. This is a plane iron table having a longitudinal groove in its face to receive the guiding rib of the carriage, shown in Fig. 9, and a transverse groove running half way across, to receive a slitting gauge, as shown in Fig. 8. The table is supported by a standard or shank, which fits into the tool-rest socket. The saw mandrel is supported between the centers of the lathe, and the saw projects more or less through a slot formed in the table. The gauge serves to guide the work to be slotted, and other kinds of work may be placed on or against the carriage, shown in Fig. 9. It is a very simple matter to arrange guiding pieces for cutting at any angle, and the saw table may be used for either metal or wood. The saws for wood differ from those used for metal; the latter are filed straight, the former diagonally or fleaming. Among the many uses to which metal saws may be applied we mention the slitting of sheet metals, splitting wires and rods, slotting and grooving, nicking screws, etc. Fig. 10 shows a holder for receiving screws to be nicked. It is used in connection with the saw table, and is moved over the saw against the gauge. To facilitate the removal of the screws the holder may be split longitudinally and hinged together. Another method of nicking screws is illustrated by Fig. 11. A simple lever, fulcrumed on a bar held by the tool post, is drilled and tapped in the end to receive the screw. After adjusting the tool all that is required is to insert the screw and press down the handle so as to bring the screw head into contact with the saw. Where a lathe is provided with an engine rest, the cutter shown in Fig. 6, mounted on the mandrel shown in Fig. 5, is very useful; it is used by clamping the work to the slide rest and moving it under the cutter by working the slide rest screw. To make a cutter of this kind is more difficult than to make a saw, and to do it readily a milling machine would be required. It may be done, however, on a plain foot lathe, by employing a V-shaped cutter and using a holder (Fig. 7) having an angular groove for receiving the cylinder on which the cutting edges are formed. The blank can be spaced with sufficient accuracy, by means of a fine pair of dividers, and after the first groove is cut there will be no difficulty in getting the rest sufficiently accurate, as a nib inserted in the side of the guide enters the first groove and all of the others in succession and regulates the spacing. One of the best applications of this tool is shown in the small engraving. In this case a table similar to the saw table before described is supported in a vertical position, and arranged at right angles with the cutter mandrel. The mandrel is of the same diameter as the cutter, and serves as a guide to the pattern which carries the work to be operated upon. The principal use of this contrivance is to shape the edges of curved or irregular metal work. The casting to be finished is fastened—by cement if small, and by clamps if large—to a pattern having exactly the shape required in the finished work. By moving the pattern in contact with the table and the mandrel, while the latter revolves, the edges of the work will be shaped and finished at the same time. By substituting a conical cutter for a cylindrical one, the work may be beveled; by using both, the edge may be made smooth and square, while the corner is beveled. The tool shown in Fig. 12 might properly be called a barrel saw. It is made by drilling in the end of a steel rod and forming the teeth with a file. To avoid cracking in tempering a small hole should be drilled through the side near the bottom of the larger hole. To insure the free working of the tool it should be turned so that its cutting edge will be rather thicker than the position behind it. This tool should be made in various sizes. Tools for gear cutting and also cutters for wood have not been mentioned in this paper; as they are proper subjects for separate treatment. WOOD WORKING.It is not the intention of the writer to enter largely into the subject of wood working, but simply to suggest a few handy attachments to the foot lathe which will greatly facilitate the operations of the amateur wood worker, and will be found very useful by almost any one working in wood. It is not an easy matter to split even thin lumber into strips of uniform width by means of a handsaw, but by using the circular saw attachment, shown in Fig. 1, the operation becomes rapid and easy, and the stuff may be sawed or slit at any desired angle or bevel. The attachment consists of a saw mandrel of the usual form, and a wooden table supported by a right angled piece, A, of round iron fitted to the toolpost and clamped by a wooden cleat, B, which is secured to the under side of the table, split from the aperture to one end, and provided with a thumbscrew for drawing the parts together. By means of this arrangement the table may be inclined to a limited angle in either direction, the slot through which the saw projects being enlarged below to admit of this adjustment. The back of the table is steadied by a screw which rests upon the back end of the tool rest support, and enters a block attached to the under side of the table. The gauge at the top of the table is used in slitting and for other purposes which will be presently mentioned, and it is adjusted by aid of lines made across the table parallel with the saw. For the purpose of cross cutting or cutting on a bevel a thin sliding table is fitted to slide upon the main table, and is provided with a gauge which is capable of being adjusted at any desired angle. For cutting slots for panels, etc., thick saws may be used, or the saw may be made to wabble by placing it between two beveled washers, as shown in Fig. 2. The saw table has an inserted portion, C, held in place by two screws which may be removed when it is desired to use the saw mandrel for carrying a sticker head for planing small strips of moulding or reeding. The head for holding the moulding knives is best made of good tough brass or steam metal. The knives can be made of good saw steel about one-eighth inch thick. They may be filed into shape and afterward tempered. They are slotted and held to their places on the head by means of quarter-inch machine screws. It is not absolutely necessary to use two knives, but when only one is employed a counterbalance should be fastened to the head in place of the other. All kinds of moulding, beading, tonguing, and grooving may be done with this attachment, the gauge being used to guide the edge of the stuff. If the boards are too thin to support themselves against the action of the knives they must be backed up by a thick strip of wood planed true. The speed for this cutter head should be as great as possible. Fig. 5 shows an attachment to be used in connection with the cutter head and saw table for cutting straight, spiral, or irregular flutes on turned work. It consists of a bar, D, carrying a central fixed arm, and at either end an adjustable arm, the purpose of the latter being to adapt the device to work of different lengths. The arm projecting from the center of the bar, D, supports an arbor having at one end a socket for receiving the twisted iron bar, E, and at the other end a center and a short finger or pin. A metal disk having three spurs, a central aperture, and a series of holes equally distant from the center and from each other, is attached by its spurs to the end of the cylinder to be fluted, and the center of the arbor in the arm, D, enters the central hole in the disk while its finger enters one of the other holes. The opposite end of the cylinder is supported by a center screw. A fork attached to the back of the table embraces the twisted iron, E, so that as the wooden cylinder is moved diagonally over the cutter it is slowly rotated, making a spiral cut. After the first cut is made the finger of the arbor is removed from the disk and placed in an adjoining hole, when the second cut is made, and so on. Figs. 6 and 7 show a convenient and easily made attachment for moulding the edges of irregular work, such as brackets, frames, parts of patterns, etc. It consists of a brass frame, F, supporting a small mandrel turning at the top in a conical bearing in the frame, and at the bottom upon a conical screw. A very small grooved pulley is fastened to the mandrel and surrounded by a rubber ring which bears against the face plate of the lathe, as shown in the engraving. The frame, F, is let into a wooden table supported by an iron rod which is received by the tool rest holder of the lathe. The cutter, G, is made by turning upon a piece of steel the reverse of the required moulding, and slotting it transversely to form cutting edges. The shank of the cutter is fitted to a hole in the mandrel and secured in place by a small set screw. The edge of the work is permitted to bear against the shank of the cutter. Should the face plate of the lathe be too small to give the required speed, a wooden disk may be attached to it by means of screws and turned off. Figs. 8, 9, and 10 represent a cheaply and easily made scroll saw attachment for the foot lathe. It is made entirely of wood and is practically noiseless. The board, H, supports two uprights, I, between which is pivoted the arm, J, whose under side is parallel with the edge of the board. A block is placed between the uprights, I, to limit the downward movement of the arm, and the arm is clamped by a bolt which passes through it and through the two uprights and is provided with a wing nut. A wooden table, secured to the upper edge of the board, H, is perforated to allow the saw to pass through, and is provided with an inserted hardwood strip which supports the back of the saw, and which may be moved forward from time to time and cut off as it becomes worn. The upper guide of the saw consists of a round piece of hard wood inserted in a hole bored in the end of the arm, J. The upper end of the saw is secured in a small steel clamp pivoted in a slot in the end of a wooden spring secured to the top of the arm, J, and the lower end of the saw is secured in a similar clamp pivoted to the end of the wooden spring, K. Fig. 10 is an enlarged view showing the construction of clamp. The relation of the spring, K, to the board, H, and to the other part is shown in Fig. 9. It is attached to the side of the board and is pressed upward by an adjusting screw near its fixed end. The saw is driven by a wooden eccentric placed on the saw mandrel shown in Figs. 1 and 2, and the spring, K, always pressed upward against the eccentric by its own elasticity, and it is also drawn in an upward direction by the upper spring. This arrangement insures a continuous contact between the spring, K, and the eccentric, and consequently avoids noise. The friction surfaces of the eccentric and spring may be lubricated with tallow and plumbago. The eccentric may, with advantage, be made of metal. The tension of the upper spring may be varied by putting under it blocks of different heights, or the screw which holds the back end may be used for this purpose. The saw is attached to the lathe by means of an iron bent twice at right angles, attached to the board, H, and fitted to the tool rest support. The rear end of the sawing apparatus may be supported by a brace running to the lower part of the lathe or to the floor. The simple attachments above described will enable the possessor to make many small articles of furniture which he would not undertake without them, and for making models of small patterns they are almost invaluable. |