COTTON SEED OIL IN BREAD-MAKING BY DAVID CHIDLOW

Previous

Cotton seed oil has received so much attention from bread makers in the past few years that it would seem there was nothing left unsaid regarding its advantages in bread-making; but thoughtful bakers will be alert to learn anything new regarding the properties of oil for shortening, which will make them better bakers by using shortenings, with an understanding of their properties in bread-making.

Why Are Shortenings Used?

Shortenings are used in bread-making to accomplish certain definite results, the most common being: first, the coating of each little cell in the loaf whereby the moisture is retained in the loaf, preventing its escape exactly in the manner that waxed or oiled paper would prevent the escape of moisture from a loaf around which it was wrapped. Cut a good loaf after it has been baked about twelve hours, examine it in full daylight, and notice the sheen reflected from each rounded cell. This sheen is greater in loaves which have been properly fermented, using the right proportion of shortening, than in the loaves where the shortening was either deficient in amount or of improper character. Of this matter we will say more further on. Secondly, the use of shortening whitens the bread. Thirdly, a part of the shortening combines with the gluten to make it elastic, and thereby expands more readily and makes a reasonably large loaf. All of these points you can test very readily by making up small batches, using 100 ounces of flour. Take a reasonably good spring wheat patent flour and use 6 pounds 4 ounces of flour, 1½ ounces of yeast, 1½ ounces of salt, 2 ounces of sugar and 3 pounds 12 ounces of water, taking the water at such a temperature so that you will have the dough at 84. Make up the dough and place it in a wooden pail, previously oiled, then cover the dough. At the end of two hours take the dough out and fold it over two or three times. At the end of three hours do the same thing again; again at three and one-half hours. See that dough temperature is maintained as near 84 as possible. At four hours scale it off into sizes for your pan, and prove about sixty minutes in a proving chamber having a temperature of 90.

So far I have said nothing about the quantity of oil to be used. This is because I want you to realize what an influence the amount of shortening has on dough and its expansion. In one dough of the size given above use 1 ounce of oil; in another use 2 ounces; in the third use 3 ounces. Add the oil to the sugar and salt, rub down smoothly until it is a creamy mass; then add a little of the water and a little of the flour and rub down again. Do this with each of the doughs so that the oil will be uniformly mixed in the dough. You will note that the texture of the loaf containing the least amount of shortening is broken. The loaf will not really stand the amount of proof that is given to it, because the gluten will not stretch sufficiently to hold in the gas. The loaf containing the 2 ounces of shortening will be improved very much, and the one containing the 3 ounces will not only be improved in texture and appearance, but will retain the moisture very much longer, as you will find, if you will put a loaf from each of the doughs aside for two days, weighing before and after standing.

Each Shortening in Its Proper Place.

In a number of experiments at Chidlow Institute, Chicago, seven years ago, it was found that every kind of fat that could be used in bread-making had a character of its own which it exhibited in various ways. In fact, they varied so widely as to suggest much deeper research than was at first contemplated at that time. In making up a number of doughs, small amounts of each shortening was added to the loaves, increasing the amount until a proportion of 40 pounds per barrel of flour was used, the lowest amount of shortening used being 2 pounds per barrel of flour. The loaves from each of these batches were placed aside with a view of finding out how much of the shortening was brought to the outside of the loaf by escape of the moisture, and it was found that nearly all shortenings came to the surface or crust of the loaf in different proportions. These tests were made many times over, and always with the same results. With some shortenings the amount of fat brought out was nearly one-half of what was added; in others it would be less than one-fourth, and in some it was as high as three-fourths. Evidently the shortening that would carry three-fourths of the quantity to the crust was unfitted for bread-making by that particular method and with that particular flour.

The details of these experiments are of no service here. They are only referred to as indicating a difference of result obtained by the use of different shortenings. The same thing was noted in making experimental doughs. These were made of the same weight of flour, yeast, sugar, shortening, and water. They were then placed in a glass jar which was marked off so as to give clear readings of the expansion of each dough. The jars were then placed in a water bath maintained at a uniform temperature, and covered with glass to keep the surface of the dough moist. Some of the shortenings used permitted the doughs to rise very much higher than where other shortenings were used, and it made no difference how often these doughs were made and the tests repeated. The shortenings that permitted a very high expansion of the dough on one test always gave a high expansion in another test, so that the results were uniform. This gave us the very information we were in search of, showing us that we must find the best method for each kind of shortening, and for each kind of flour.

Best Method of Using Cotton Seed Oil.

The following instructions are based upon a part of these experiments under the following specific conditions: In the first place it must be understood that a method of making bread is best suited for a particular flour, and that alteration of flour usually requires an alteration in the method, or at least a modification of the method. Many of the spring wheat patent flours being sold are second patents, and as such they are best made into doughs by use of sponges. Take, then, spring wheat second patent flour and a four to six hour sponge. One-half of the total oil should be used in the sponge and the other half in the dough. This brings shortening in accomplishing the expansion of the loaf, in giving a clear whiteness to the loaf, and a bright sheeny coating of the cells making up the structure of the loaf. The average amount of shortening used for pan bread in the United States is five pounds per barrel of flour. Assuming this proportion, then, at least one-half pound of shortening can be discarded without any loss of the shortening power.

The foregoing instructions are not applicable to other flours than of the type given, nor can they be used properly with straight doughs.—Cotton Seed.

leaf

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page