Amidst the various researches undertaken in his laboratory, one study was placed by Pasteur above every other, one mystery constantly haunted his mind—that of hydrophobia. When he was received at the AcadÉmie FranÇaise, Renan, hoping to prove himself a prophet for once, said to him: “Humanity will owe to you deliverance from a horrible disease and also from a sad anomaly: I mean the distrust which we cannot help mingling with the caresses of the animal in whom we see most of nature’s smiling benevolence.” The two first mad dogs brought into the laboratory were given to Pasteur, in 1880, by M. Bourrel, an old army veterinary surgeon who had long been trying to find a remedy for hydrophobia. He had invented a preventive measure which consisted in filing down the teeth of dogs, so that they should not bite into the skin; in 1874, he had written that vivisection threw no light on that disease, the laws of which were “impenetrable to science until now.” It now occurred to him that, perhaps, the investigators in the laboratory of the Ecole Normale might be more successful than he had been in his kennels in the Rue Fontaine-au-Roi. One of the two dogs he sent was suffering from what is called dumb madness: his jaw hung, half opened and paralyzed, his tongue was covered with foam, and his eyes full of wistful anguish; the other made ferocious darts at anything held out to him, with a rabid fury in his bloodshot eyes, and, in the hallucinations of his delirium, gave vent to haunting, despairing howls. Much confusion prevailed at that time regarding this disease, its seat, its causes, and its remedy. Three things seemed positive: firstly, that the rabic virus was contained in the saliva of the mad animals; secondly, that it was communicated through Bouley had affirmed in April, 1870, that the germ of the evil was localized in the saliva, and a new fact had seemed to support this theory. On December 10, 1880, Pasteur was advised by Professor Lannelongue that a five-year-old child, bitten on the face a month before, had just been admitted into the HÔpital Trousseau. The unfortunate little patient presented all the characteristics of hydrophobia: spasms, restlessness, shudders at the least breath of air, an ardent thirst, accompanied with an absolute impossibility of swallowing, convulsive movements, fits of furious rage—not one symptom was absent. The child died after twenty-four hours of horrible suffering—suffocated by the mucus which filled the mouth. Pasteur gathered some of that mucus four hours after the child’s death, and mixed it with water; he then inoculated this into some rabbits, which died in less than thirty-six hours, and whose saliva, injected into other rabbits, provoked an almost equally rapid death. Dr. Maurice Raynaud, who had already declared that hydrophobia could be transmitted to rabbits through the human saliva, and who had also caused the death of some rabbits with the saliva of that same child, thought himself justified in saying that those rabbits had died of hydrophobia. Pasteur was slower in drawing conclusions. He had examined with a microscope the blood of those rabbits which had died in the laboratory, and had found in it a micro-organism; he had cultivated this organism in veal broth, inoculated it into rabbits and dogs, and, its virulence having manifested itself in these animals, their blood had been found to contain that same microbe. “But,” added Pasteur at the meeting of the Academy of Medicine (January 18, 1881), “I am absolutely ignorant of the connection there may be between this new disease and hydrophobia.” It was indeed a singular thing that the deadly issue of this disease should occur so early, when the incubation period of hydrophobia is usually so long. Was there not some unknown microbe associated with the rabic saliva? This query was followed by experiments made with the saliva of children who had died of ordinary diseases, and even with that of healthy adults. Thuillier, following up and studying this saliva microbe and its special virulence with his usual One day, Pasteur having wished to collect a little saliva from the jaws of a rabid dog, so as to obtain it directly, two of Bourrel’s assistants undertook to drag a mad bulldog, foaming at the mouth, from its cage; they seized it by means of a lasso, and stretched it on a table. These two men, thus associated with Pasteur in the same danger, with the same calm heroism, held the struggling, ferocious animal down with their powerful hands, whilst the scientist drew, by means of a glass tube held between his lips, a few drops of the deadly saliva. But the same uncertainty followed the inoculation of the saliva; the incubation was so slow that weeks and months often elapsed whilst the result of an experiment was being anxiously awaited. Evidently the saliva was not a sure agent for experiments, and if more knowledge was to be obtained, some other means had to be found of obtaining it. Magendie and Renault had both tried experimenting with rabic blood, but with no results, and Paul Bert had been equally unsuccessful. Pasteur tried in his turn, but also in vain. “We must try other experiments,” he said, with his usual indefatigable perseverance. As the number of cases observed became larger, he felt a growing conviction that hydrophobia has its seat in the nervous system, and particularly in the medulla oblongata. “The propagation of the virus in a rabid dog’s nervous system can almost be observed in its every stage,” writes M. Roux, Pasteur’s daily associate in these researches, which he afterwards made the subject of his thesis. “The anguish and fury due to the excitation of the grey cortex of the brain are followed by an alteration of the voice and a difficulty in deglutition. The medulla oblongata and the nerves starting from it are attacked in their turn; finally, the spinal cord itself becomes invaded and paralysis closes the scene.” As long as the virus has not reached the nervous centres, it may sojourn for weeks or months in some point of the body; this explains the slowness of certain incubations, and the fortunate escapes after some bites from rabid dogs. The a priori supposition that the virus attacks the nervous centres went very far back; it had served as a basis to a theory enunciated by Dr. DubouÉ (of Pau), who had, however, not supported it by any experiments. On the contrary, when M. Galtier, a professor at the Lyons Veterinary School, had attempted experiments in that direction, he had to inform the Academy of Medicine, in January, 1881, that he had only ascertained the existence of virus in rabid dogs in the lingual glands and in the bucco-pharyngeal mucous membrane. “More than ten times, and always unsuccessfully, have I inoculated the product obtained by pressure of the cerebral substances of the cerebellum or of the medulla oblongata of rabid dogs.” Pasteur was about to prove that it was possible to succeed by operating in a special manner, according to a rigorous technique, unknown in other laboratories. When the post-mortem examination of a mad dog had revealed no characteristic lesion, the brain was uncovered, and the surface of the medulla oblongata scalded with a glass stick, so as to destroy any external dust or dirt. Then, with a long tube, previously put through a flame, a particle of the substance was drawn and deposited in a glass just taken from a stove heated up to 200° C., and mixed with a little water or sterilized broth by means of a glass agitator, also previously put through a flame. The syringe used for inoculation on the rabbit or dog (lying ready on the operating board) had been purified in boiling water. Most of the animals who received this inoculation under the “The seat of the rabic virus,” wrote Pasteur, “is therefore not in the saliva only: the brain contains it in a degree of virulence at least equal to that of the saliva of rabid animals.” But, to Pasteur’s eyes, this was but a preliminary step on the long road which stretched before him; it was necessary that all the inoculated animals should contract hydrophobia, and the period of incubation had to be shortened. It was then that it occurred to Pasteur to inoculate the rabic virus directly on the surface of a dog’s brain. He thought that, by placing the virus from the beginning in its true medium, hydrophobia would more surely supervene and the incubation might be shorter. The experiment was attempted: a dog under chloroform was fixed to the operating board, and a small, round portion of the cranium removed by means of a trephine (a surgical instrument somewhat similar to a fret-saw); the tough fibrous membrane called the dura-mater, being thus exposed, was then injected with a small quantity of the prepared virus, which lay in readiness in a Pravaz syringe. The wound was washed with carbolic and the skin stitched together, the whole thing lasting but a few minutes. The dog, on returning to consciousness, seemed quite the same as usual. But, after fourteen days, hydrophobia appeared: rabid fury, characteristic howls, the tearing up and devouring of his bed, delirious hallucination, and finally, paralysis and death. A method was therefore found by which rabies was contracted surely and swiftly. Trephinings were again performed on chloroformed animals—Pasteur had a great horror of useless sufferings, and always insisted on anÆsthesia. In every case, characteristic hydrophobia occurred after inoculation on the brain. The main lines of this complicated question were beginning to be traceable; but other obstacles were in the way. Pasteur could not apply the method he had hitherto used, i.e. to isolate, and then to cultivate in an artificial medium, the microbe of hydrophobia, for he failed in detecting this microbe. Yet its existence admitted of no doubt; perhaps it was beyond the limits of human sight. “Since this unknown being is living,” thought Pasteur, “we must cultivate it; failing an As soon as a trephined and inoculated rabbit died paralyzed, a little of his rabic medulla was inoculated to another; each inoculation succeeded another, and the time of incubation became shorter and shorter, until, after a hundred uninterrupted inoculations, it came to be reduced to seven days. But the virus, having reached this degree, the virulence of which was found to be greater than that of the virus of dogs made rabid by an accidental bite, now became fixed; Pasteur had mastered it. He could now predict the exact time when death should occur in each of the inoculated animals; his predictions were verified with surprising accuracy. Pasteur was not yet satisfied with the immense progress marked by infallible inoculation and the shortened incubation; he now wished to decrease the degrees of virulence—when the attenuation of the virus was once conquered, it might be hoped that dogs could be made refractory to rabies. Pasteur abstracted a fragment of the medulla from a rabbit which had just died of rabies after an inoculation of the fixed virus; this fragment was suspended by a thread in a sterilized phial, the air in which was kept dry by some pieces of caustic potash lying at the bottom of the vessel and which was closed by a cotton-wool plug to prevent the entrance of atmospheric dusts. The temperature of the room where this desiccation took place was maintained at 23° C. As the medulla gradually became dry, its virulence decreased, until, at the end of fourteen days, it had become absolutely extinguished. This now inactive medulla was crushed and mixed with pure water, and injected under the skin of some dogs. The next day they were inoculated with medulla which had been desiccating for thirteen days, and so on, using increased virulence until the medulla was used of a rabbit dead the same day. These dogs might now be bitten by rabid dogs given them as companions for a few minutes, or submitted to the intracranial inoculations of the deadly virus: they resisted both. Having at last obtained this refractory condition, Pasteur was anxious that his results should be verified by a Commission. The Minister of Public Instruction acceded to this desire, and a Commission was constituted in May, 1884, composed of Messrs. BÉclard, Dean of the Faculty of Medicine, Paul Bert, Bouley, Villemin, Vulpian, and Tisserand, Director of the Bouley was taking notes for a report to be presented to the Minister: “M. Pasteur tells us that, considering the nature of the rabic virus used, the rabbits and the two new dogs will develop rabies within twelve or fifteen days, and that the two refractory dogs will not develop it at all, however long they may be detained under observation.” On May 29, Mme. Pasteur wrote to her children: “The Commission on rabies met to-day and elected M. Bouley as chairman. Nothing is settled as to commencing experiments. Your father is absorbed in his thoughts, talks little, sleeps little, rises at dawn, and, in one word, continues the life I began with him this day thirty-five years ago.” On June 3, Bourrel sent word that he had a rabid dog in the kennels of the Rue Fontaine-au-Roi; a refractory dog and a new dog were immediately submitted to numerous bites; the latter was violently bitten on the head in several places. The rabid dog, still living the next day and still able to bite, was given two more dogs, one of which was refractory; this dog, and the refractory dog bitten on the 3rd, were allowed to receive the first bites, the Commission having thought that perhaps the saliva might then be more abundant and more dangerous. On June 6, the rabid dog having died, the Commission proceeded to inoculate the medulla of the animal into six more dogs, by means of trephining. Three of those dogs were refractory, the three others were fresh from the kennels; there were also two rabbits. On the 10th, Bourrel telegraphed the arrival of another rabid dog, and the same operations were gone through. “This rabid, furious dog,” wrote Pasteur to his son-in-law, “had spent the night lying on his master’s bed; his appearance had been suspicious for a day or two. On the morning of the “This morning the rabic condition is beginning to appear on one of the new dogs trephined on June 1, at the same time as two refractory dogs. Let us hope that the other new dog will also develop it and that the two refractory ones will resist.” At the same time that the Commission examined this dog which developed rabies within the exact time indicated by Pasteur, the two rabbits on whom inoculation had been performed at the same time were found to present the first symptoms of rabic paralysis. “This paralysis,” noted Bouley, “is revealed by great weakness of the limbs, particularly of the hind quarters; the least shock knocks them over and they experience great difficulty in getting up again.” The second new dog on whom inoculation had been performed on June 1 was now also rabid; the refractory dogs were in perfect health. During the whole of June, Pasteur found time to keep his daughter and son-in-law informed of the progress of events. “Keep my letters,” he wrote, “they are almost like copies of the notes taken on the experiments.” Towards the end of the month, dozens of dogs were submitted to control-experiments which were continued until August. The dogs which Pasteur declared to be refractory underwent all the various tests made with rabic virus; bites, injections into the veins, trephining, everything was tried before Pasteur would decide to call them vaccinated. On June 17, Bourrel sent word that the new dog bitten on June 3 was becoming rabic; the members of the Commission went to the Rue Fontaine-au-Roi. The period of incubation had only lasted fourteen days, a fact attributed by Bouley to the bites having been chiefly about the head. The dog was destroying his kennel and biting his chain ferociously. More new dogs developed rabies the following days. Nineteen new dogs had been experimented upon: three died out of six bitten by a rabid dog, six out of eight after intravenous inoculation, and five out of five after subdural inoculation. Bouley thought that Bouley’s report was sent to the Minister of Public Instruction at the beginning of August. “We submit to you to-day,” he wrote, “this report on the first series of experiments that we have just witnessed, in order that M. Pasteur may refer to it in the paper which he proposes to read at the Copenhagen International Scientific Congress on these magnificent results, which devolve so much credit on French Science and which give it a fresh claim to the world’s gratitude.” The Commission wished that a large kennel yard might be built, in order that the duration of immunity in protected dogs might be timed, and that other great problem solved, viz., whether it would be possible, through the inoculation of attenuated virus, to defy the virus from bites. By the Minister’s request, the Commission investigated the Meudon woods in search of a favourable site; an excellent place was found in the lower part of the Park, away from dwelling houses, easy to enclose and presumably in no one’s way. But, when the inhabitants of Meudon heard of this project, they protested vehemently, evidently terrified at the thought of rabid dogs, however securely bound, in their peaceful neighbourhood. Another piece of ground was then suggested to Pasteur, near St. Cloud, in the Park of Villeneuve l’Etang. Originally a State domain, this property had been put up for sale, but had found no buyer, not being suitable for parcelling out in small lots; the Bill was withdrawn which allowed of its sale and the greater part of the domain was devoted by the Ministry to Pasteur’s and his assistants’ experiments on the prophylaxis of contagious diseases. Pasteur, his mind full of ideas, started for the International Medical Congress, which was now to take place at Copenhagen. Sixteen hundred members arranged to attend, and nearly all of them found on arriving that they were to be entertained in the houses of private individuals. The Danes carry hospitality to the most generous excess; several of them had been learning French for the last three years, the better to entertain the French delegates. Pasteur’s son, then secretary of the French Legation at Copenhagen, had often spoken to his father with appreciative admiration of those Northerners, who The opening meeting took place on August 10 in the large hall of the Palace of Industry; the King and Queen of Denmark and the King and Queen of Greece were present at that impressive gathering. The President, Professor Panum, welcomed the foreign members in the name of his country; he proclaimed the neutrality of Science, adding that the three official languages to be used during the Congress would be French, English, and German. His own speech was entirely in French, “the language which least divides us,” he said, “and which we are accustomed to look upon as the most courteous in the world.” The former president of the London Congress, Sir James Paget, emphasized the scientific consequences of those triennial meetings, showing that, thanks to them, nations may calculate the march of progress. Virchow, in the name of Germany, developed the same idea. Pasteur, representing France, showed again as he had done at Milan in 1878, in London in 1881, at Geneva in 1882, and quite recently in Edinburgh, how much the scientist and the patriot were one in him. “In the name of France,” said he, “I thank M. le PrÉsident for his words of welcome.... By our presence in this Congress, we affirm the neutrality of Science ... Science is of no country.... But if Science has no country, the scientist must keep in mind all that may work towards the glory of his country. In every great scientist will be found a great patriot. The thought of adding to the greatness of his country sustains him in his long efforts, and throws him into the difficult but glorious scientific enterprises which bring about real and durable conquests. Humanity then profits by those labours coming from various directions....” At the end of the meeting Pasteur was presented to the King. The Queen of Denmark and the Queen of Greece, regardless of etiquette, walked towards him, “a signal proof,” wrote a French contemporary, “of the esteem in which our illustrious countryman is held at the Danish Court.” Five general meetings were to give some of the scientists an opportunity of expounding their views on subjects of universal interest. Pasteur was asked to read the first paper; his audience consisted, besides the members of the Congress, of It will be objected that there must have been a first rabid dog originally. “That,” said Pasteur, “is a problem which cannot be solved in the present state of knowledge, for it partakes of the great and unknown mystery of the origin of life.” The audience followed with an impassioned curiosity the history of the stages followed by Pasteur on the road to his great discovery: the preliminary experiments, the demonstration of the fact that the rabic virus invades the nervous centres, the culture of the virus within living animals, the attenuation of the rabic virus when passed from dogs to monkeys, and simultaneously with this graduated attenuation, a converse process by successive passages from rabbit to rabbit, the possibility of obtaining in this way all the degrees of virulence, and finally the acquired certainty of having obtained a preventive vaccine against canine hydrophobia. “Enthusiastic applause,” wrote the reporter of the Journal des DÉbats, “greeted the conclusion of the indefatigable worker.” In the course of one of the excursions arranged for the members of the Congress, Pasteur had the pleasure of seeing his methods applied on a large scale, not as in Italy to the progress of sericiculture, but to that of the manufacture of beer. J. C. Jacobsen, a Danish citizen, whose name was celebrated in the whole of Europe by his munificent donations to science, had founded in 1847 the Carlsberg Brewery, now In 1879, Jacobsen, who was unknown to Pasteur, wrote to him, “I should be very much obliged if you would allow me to order from M. Paul Dubois, one of the great artists who do France so much credit, a marble bust of yourself, which I desire to place in the Carlsberg laboratory in token of the services rendered to chemistry, physiology, and beer-manufacture, by your studies on fermentation, a foundation to all future progress in the brewer’s trade.” Paul Dubois’ bust is a masterpiece: it is most characteristic of Pasteur—the deep thoughtful far-away look in his eyes, a somewhat stern expression on his powerful features. Actuated, like his father, by a feeling of gratitude, the younger Jacobsen had placed a bronze reproduction of this bust in a niche in the wall of the brewery, at the entrance of the Pasteur Street, leading to Ny Carlsberg. This visit to the brewery was an object lesson to the members of the Congress, who were magnificently entertained by Jacobsen and his son; no better demonstration was ever made of the services which industry may receive from science. In the great laboratory, the physiologist Hansen had succeeded in finding differences in yeast; he had just separated from each other three kinds of yeast, each producing beer with a different flavour. The French scientists were delighted with the practical sense and delicate feelings of the Danish people. Though they had gone through bitter trials in 1864, though France, England, and Russia had countenanced the unrighteous invasion, in the face of the old treaties which guaranteed to Denmark the possession of Schleswig, the diminished and impoverished nation had not given vent to barren recriminations or declamatory protests. Proudly and silently sorrowing, the Danes had preserved their respect for the past, faith in justice and the cult of their great men. It is a strange thing that Shakespeare should have chosen that land of good sense and well-balanced reason for the surroundings of his mysterious hero, of all men the most haunted by the maddening enigma of destiny. Elsinore is but a short distance from Copenhagen, and no A Transport Company organized the visit to Elsinore for a day when the Congress had arranged to have a complete holiday. Five steamers, gay with flags, were provided for the thousand medical men and their families, and accomplished the two hours’ crossing to Elsinore on a lovely, clear day, with an absolutely calm sea. The scientific tourists landed at the foot of the old Kronborg Castle, ready for the lunch which was served out to them and which proved barely sufficient for their appetites; there was not quite enough bread for the Frenchmen, proverbially bread-eaters, and the water, running a little short, had to be supplemented with champagne. Some of the visitors returned from a neighbouring wood, where they had been to see the stones of the supposed tomb of Hamlet, disappointed at having looked in vain for Ophelia’s stream and for the willow tree which heard her sing her last song, her hands full of flowers. Evidently this place was but an imaginary scenery given by Shakespeare to the drama which stands like a point of interrogation before the mystery of human life; but his life-giving art has for ever made of Elsinore the place where Hamlet lived and suffered. Pasteur, to whom the Danish character, in its strength and simplicity, proved singularly attractive, remained in Copenhagen for some time after the Congress was over. He had much pleasure in visiting the Thorwaldsen Museum. Copenhagen, after showering honours on the great artist during his lifetime, has continued to worship him after his death. Every statue, every plaster cast, is preserved in that Museum with extraordinary care. Thorwaldsen himself lies in the midst of his works—his simple stone grave, covered with graceful ivy, is in one of the courtyards of the Museum. Pasteur went on to Arbois from Copenhagen. The laboratory he had built there not being large enough to take in rabid dogs, he dictated from his study the experiments to be carried out in Paris; his carefully kept notebooks enabled him to know exactly how things were going on. His nephew, Adrien Loir, now a curator in the laboratory of Rue d’Ulm, had gladly given up his holidays and remained in Paris with the faithful EugÈne Viala. This excellent assistant had come The letters written to him by Pasteur in 1884 show the exact point reached at that moment by the investigations on hydrophobia. Many people already thought those studies advanced enough to allow the method of treatment to be applied to man. Pasteur wrote to Viala on September 19, “Tell M. Adrien (Loir) to send the following telegram: ‘Surgeon Symonds, Oxford, England. Operation on man still impossible. No possibility at present of sending attenuated virus.’ See MM. Bourrel and BÉraud, procure a dog which has died of street-rabies, and use its medulla to inoculate a new monkey, two guinea-pigs and two rabbits.... I am afraid Nocard’s dog cannot have been rabid; even if you were sure that he was, you had better try those tests again. “Since M. Bourrel says he has several mad dogs at present, you might take two couple of new dogs to his kennels; when he has a good biting dog, he can have a pair of our dogs bitten, after which you will treat one of them so as to make him refractory (carefully taking note of the time elapsed between the bites and the beginning of the treatment). Mind you keep notes of every new experiment undertaken, and write to me every other day at least.” Pasteur pondered on the means of extinguishing hydrophobia or of merely diminishing its frequency. Could dogs be vaccinated? There are 100,000 dogs in Paris, about 2,500,000 more in the provinces: vaccination necessitates several preventive inoculations; innumerable kennels would have to be built for the purpose, to say nothing of the expense of keeping the dogs and of providing a trained staff capable of performing the difficult and dangerous operations. And, as M. Nocard truly remarked, where were rabbits to be found in sufficient number for the vaccine emulsions? Optional vaccination did not seem more practicable; it could The main question was the possibility of preventing hydrophobia from occurring in a human being, previously bitten by a rabid dog. The Emperor of Brazil, who took the greatest interest in the doings of the Ecole Normale laboratory, having written to Pasteur asking when the preventive treatment could be applied to man, Pasteur answered as follows— “September 22. “Sire—Baron Itajuba, the Minister for Brazil, has handed me the letter which Your Majesty has done me the honour of writing on August 21. The Academy welcomed with unanimous sympathy your tribute to the memory of our illustrious colleague, M. Dumas; it will listen with similar pleasure to the words of regret which you desire me to express on the subject of M. Wurtz’s premature death. “Your Majesty is kind enough to mention my studies on hydrophobia; they are making good and uninterrupted progress. I consider, however, that it will take me nearly two years more to bring them to a happy issue.... “What I want to do is to obtain prophylaxis of rabies after bites. “Until now I have not dared to attempt anything on men, in spite of my own confidence in the result and the numerous opportunities afforded to me since my last reading at the Academy of Sciences. I fear too much that a failure might compromise the future, and I want first to accumulate successful cases on animals. Things in that direction are going very well indeed; I already have several examples of dogs made refractory after a rabietic bite. I take two dogs, cause them both to be bitten by a mad dog; I vaccinate the one and leave the other without any treatment: the latter dies and the first remains perfectly well. “But even when I shall have multiplied examples of the prophylaxis of rabies in dogs, I think my hand will tremble when I go on to Mankind. It is here that the high and powerful initiative of the head of a State might intervene for the good of humanity. If I were a King, an Emperor, or even the President of a Republic, this is how I should exercise my right of pardoning criminals condemned to death. I should invite the counsel of a condemned man, on the eve of the day fixed “All condemned men would accept these conditions, death being their only terror. “This brings me to the question of cholera, of which Your Majesty also has the kindness to speak to me. Neither Dr. Koch nor Drs. Straus and Roux have succeeded in giving cholera to animals, and therefore great uncertainty prevails regarding the bacillus to which Dr. Koch attributes the causation of cholera. It ought to be possible to try and communicate cholera to criminals condemned to death, by the injection of cultures of that bacillus. When the disease declared itself, a test could be made of the remedies which are counselled as apparently most efficacious. “I attach so much importance to these measures, that, if Your Majesty shared my views, I should willingly come to Rio Janeiro, notwithstanding my age and the state of my health, in order to undertake such studies on the prophylaxis of hydrophobia and the contagion of cholera and its remedies. “I am, with profound respect, Your Majesty’s humble and obedient servant.” In other times, the right of pardon could be exercised in the form of a chance of life offered to a criminal lending himself to an experiment. Louis XVI, having admired a fire balloon rising above Versailles, thought of proposing to two condemned men that they should attempt to go up in one. But PilÂtre des Roziers, whose ambition it was to be the first aËronaut, was indignant at the thought that “vile criminals should be the first to rise up in the air.” He won his cause, and in November, 1783, he organized an ascent at the Muette which lasted twenty minutes. In England, in the eighteenth century, before Jenner’s discovery, successful attempts had been made at the direct inoculation of small-pox. In some historical and medical Researches on Vaccine, published in 1803, Husson relates that the King of England, wishing to have the members of his family inoculated, began by having the method tried on six There is undoubtedly a beautiful aspect of that idea of utilizing the fate of a criminal for the cause of Humanity. But in our modern laws no such liberty is left to Justice, which has no power to invent new punishments, or to enter into a bargain with a condemned criminal. Before his departure from Arbois, Pasteur encountered fresh and unforeseen obstacles. The successful opposition of the inhabitants of Meudon had inspired those of St. Cloud, Ville d’Avray, Vaucresson, Marnes, and Garches with the idea of resisting in their turn the installation of Pasteur’s kennels at Villeneuve l’Etang. People spoke of public danger, of children exposed to meet ferocious rabid dogs wandering loose about the park, of popular Sundays spoilt, picnickers disturbed, etc., etc. A former pupil of Pasteur’s at the Strasburg Faculty, M. Christen, now a Town Councillor at Vaucresson, warned Pasteur of all this excitement, adding that he personally was ready to do his best to calm the terrors of his townspeople. Pasteur answered, thanking him for his efforts. “...I shall be back in Paris on October 24, and on the morning of the twenty-fifth and following days I shall be pleased to see any one desiring information on the subject.... But you may at once assure your frightened neighbours, Sir, that there will be no mad dogs at Villeneuve l’Etang, but only dogs made refractory to rabies. Not having enough room in my laboratory, I am actually obliged to quarter on various veterinary surgeons those dogs, which I should like to enclose in covered kennels, quite safely secured, you may be sure.” Pasteur, writing about this to his son, could not help saying, “Months of fine weather have been wasted! This will keep my plans back almost a year.” Little by little, in spite of the opposition which burst out now and again, calm was again re-established. French good sense and appreciation of great things got the better of the struggle; in January, 1885, Pasteur was able to go to Villeneuve l’Etang to superintend the arrangements. The old stables were turned into an immense kennel, paved with asphalte. A wide passage went from one end to the other, on each side of which accommodation for sixty dogs was arranged behind a double barrier of wire netting. The subject of hydrophobia goes back to the remotest antiquity; one of Homer’s warriors calls Hector a mad dog. The supposed allusions to it to be found in Hippocrates are of the vaguest, but Aristotle is quite explicit when speaking of canine rabies and of its transmission from one animal to the other through bites. He gives expression, however, to the singular opinion that man is not subject to it. More than three hundred years later we come to Celsus, who describes this disease, unknown or unnoticed until then. “The patient,” said Celsus, “is tortured at the same time by thirst and by an invincible repulsion towards water.” He counselled cauterization of the wound with a red-hot iron and also with various caustics and corrosives. Pliny the Elder, a worthy precursor of village quacks, recommended the livers of mad dogs as a cure; it was not a successful one. Galen, who opposed this, had a no less singular recipe, a compound of cray-fish eyes. Later, the shrine of St. Hubert in Belgium was credited with miraculous cures; this superstition is still extant. Sea bathing, unknown in France until the reign of Louis XIV, became a fashionable cure for hydrophobia, Dieppe sands being supposed to offer wonderful curing properties. In 1780 a prize was offered for the best method of treating hydrophobia, and won by a pamphlet entitled Dissertation sur la Rage, written by a surgeon-major of the name of Le Roux. This very sensible treatise concluded by recommending cauterization, now long forgotten, instead of the various quack remedies which had so long been in vogue, and the use of butter of antimony. Le Roux did not allude in his paper to certain tenacious and cruel prejudices, which had caused several hydrophobic persons, or persons merely suspected of hydroprobia, to be killed like wild beasts, shot, poisoned, strangled, or suffocated. It was supposed in some places that hydrophobia could be transmitted through the mere contact of the saliva or even by the breath of the victims; people who had been bitten were in terror of what might be done to them. A girl, bitten by a mad dog and taken to the HÔtel Dieu Hospital on May 8, 1780, begged that she might not be suffocated! Those dreadful occurrences must have been only too frequent, for, in 1810, a philosopher asked the Government to enact a Bill in the following terms: “It is forbidden, under pain of In 1819, newspapers related the death of an unfortunate hydrophobe, smothered between two mattresses; it was said À propos of this murder that “it is the doctor’s duty to repeat that this disease cannot be transmitted from man to man, and that there is therefore no danger in nursing hydrophobia patients.” Though old and fantastic remedies were still in vogue in remote country places, cauterization was the most frequently employed; if the wounds were somewhat deep, it was recommended to use long, sharp and pointed needles, and to push them well in, even if the wound was on the face. One of Pasteur’s childish recollections (it happened in October, 1831) was the impression of terror produced throughout the Jura by the advent of a rabid wolf who went biting men and beasts on his way. Pasteur had seen an Arboisian of the name of Nicole being cauterized with a red-hot iron at the smithy near his father’s house. The persons who had been bitten on the hands and head succumbed to hydrophobia, some of them amidst horrible sufferings; there were eight victims in the immediate neighbourhood. Nicole was saved. For years the whole region remained in dread of that mad wolf. The long period of incubation encouraged people to hope that some preventive means might be found, instead of the painful operation of cauterization; some doctors attempted inoculating another poison, a viper’s venom for instance, to neutralize the rabic virus—needless to say with fatal results. In 1852 a reward was promised by the Government to the finder of a remedy against hydrophobia; all the old quackeries came to light again, even Galen’s remedy of cray-fish eyes! Bouchardat, who had to report to the Academy on these remedies, considered them of no value whatever; his conclusion was that cauterization was the only prophylactic treatment of hydrophobia. Such was also Bouley’s opinion, eighteen years later, when he wrote that the object to keep in view was the quickest possible destruction of the tissues touched by rabietic saliva. Failing an iron heated to a light red heat, or the sprinkling of Thus, after centuries had passed, and numberless remedies had been tried, no progress had been made, and nothing better had been found than cauterization, as indicated by Celsus in the first century. As to the origin of rabies, it remained unknown and was erroneously attributed to divers causes. Spontaneity was still believed in. Bouley himself did not absolutely reject the idea of it, for he said in 1870: “In the immense majority of cases, this disease proceeds from contagion; out of 1,000 rabid dogs, 999 at least owe their condition to inoculation by a bite.” Pasteur was anxious to uproot this fallacy, as also another very serious error, vigorously opposed by Bouley, by M. Nocard, and by another veterinary surgeon in a Manual on Rabies, published in 1882, and still as tenacious as most prejudices, viz., that the word hydrophobia is synonymous with rabies. The rabid dog is not hydrophobe, he does not abhor water. The word is applicable to rabid human beings, but is false concerning rabid dogs. Many people in the country, constantly seeing Pasteur’s name associated with the word rabies, fancied that he was a consulting veterinary surgeon, and pestered him with letters full of questions. What was to be done to a dog whose manner seemed strange, though there was no evidence of a suspicious bite? Should he be shot? “No,” answered Pasteur, “shut him up securely, and he will soon die if he is really mad.” Some dog owners hesitated to destroy a dog manifestly bitten by a mad dog. “It is such a good dog!” “The law is absolute,” answered Pasteur; “every dog bitten by a mad dog must be destroyed at once.” And it irritated him that village mayors should close their eyes to the non-observance of the law, and thus contribute to a recrudescence of rabies. Pasteur wasted his precious time answering all those letters. On March 28, 1885, he wrote to his friend Jules Vercel— “Alas! we shall not be able to go to Arbois for Easter; I shall be busy for some time settling down, or rather settling my dogs down at Villeneuve l’Etang. I also have some new experiments on rabies on hand which will take some months. “I have not yet dared to treat human beings after bites from rabid dogs; but the time is not far off, and I am much inclined to begin by myself—inoculating myself with rabies, and then arresting the consequences; for I am beginning to feel very sure of my results.” Pasteur gave more details three days later, in a letter to his son, then Secretary of the French Embassy at the Quirinal— “The experiments before the Rabies Commission were resumed on March 10; they are now being carried out, and the Commission has already held six sittings; the seventh will take place to-day. “As I only submit to it results which I look upon as acquired, this gives me a surplus of work to do; for those control experiments are added to those I am now carrying out. For I am continuing my researches, trying to discover new principles, and hardening myself by habit and by increased conviction in order to attempt preventive inoculations on man after a bite. “The Commission’s experiments have led to no result so far, for, as you know, weeks have to pass before any results occur. But no untoward incident has occurred up to now; and if all continues equally well, the Commission’s second report will be as favorable as that of last year, which left nothing to be desired. “I am equally satisfied with my new experiments in this difficult study. Perhaps practical application on a large scale may not be far off....” In May, everything at Villeneuve l’Etang was ready for the reception of sixty dogs. Fifty of them, already made refractory to bites or rabic inoculation, were successively accommodated in the immense kennel, where each had his cell and his experiment number. They had been made refractory by being inoculated with fragments of medulla, which had hung for a fortnight in a phial, and of which the virulence was extinguished, after which further inoculations had been made, gradually increasing in virulence until the highest degree of it had again been reached. All those dogs, which were to be periodically taken back to Paris for inoculations or bite tests, in order to see what was A lover of animals might have drawn an interesting contrast between the fate of those laboratory dogs, living and dying for the good of humanity, and that of the dogs buried in the neighbouring dogs’ cemetery at Bagatelle, founded by Sir Richard Wallace, the great English philanthropist. Here lay toy dogs, lap dogs, drawing-room dogs, cherished and coddled during their useless lives, and luxuriously buried after their useless deaths, while the dead bodies of the others went to the knacker’s yard. Rabbit hutches and guinea-pig cages leaned against the dogs’ palace. Pasteur, having seen to the comfort of his animals, now thought of himself; it was frequently necessary that he should come to spend two or three days at Villeneuve l’Etang. The official architect thought of repairing part of the little palace of Villeneuve, which was in a very bad state of decay. But Pasteur preferred to have some rooms near the stables put into repair, which had formerly been used for non-commissioned officers of the Cent Gardes; there was less to do to them, and the position was convenient. The roof, windows, and doors were renovated, and some cheap paper hung on the walls inside. “This is certainly not luxurious!” exclaimed an astonished millionaire, who came to see Pasteur one day on his way to his own splendid villa at Marly. On May 29 Pasteur wrote to his son— “I thought I should have done with rabies by the end of April; I must postpone my hopes till the end of July. Yet I have not remained stationary; but, in these difficult studies, one is far from the goal as long as the last word, the last decisive proof is not acquired. What I aspire to is the possibility of treating a man after a bite with no fear of accidents. “I have never had so many subjects of experiment on hand “What do you say of the Rue Pasteur in the large city of Lille? The news has given me very great pleasure.” What Pasteur briefly called “Rollin” in this letter was the former LycÉe Rollin, the old buildings of which had been transformed into outhouses for his laboratory. Large cages had been set up in the old courtyard, and the place was like a farm, with its population of hens, rabbits, and guinea-pigs. Two series of experiments were being carried out on those 125 dogs. The first consisted in making dogs refractory to rabies by preventive inoculations; the second in preventing the onset of rabies in dogs bitten or subjected to inoculation. |