Soon afterwards Pasteur came upon a most curious illustration of the 'fixation' of atmospheric oxygen by a microscopic organism—the transformation of wine into vinegar. As its name indicates, vinegar is nothing else than wine turned sour. Everybody has remarked that wine, left to itself, in circumstances which occur daily, is frequently transformed into vinegar. This is noticed more particularly when bottles, having been uncorked, are left in a half-empty condition. Sometimes, however, wine turns sour even in corked bottles. In this case we may be sure that the bottles have been standing upright, and that corks more or less defective have permitted the air to penetrate into the wine. The presence of air, in fact, is indispensable to the chemical act of transforming wine into vinegar. How does this air intervene? And what is the little microscopic creature which, in conjunction with the air, becomes the agent of this fermentation? In a celebrated lecture given at Orleans at the request of the manufacturers of vinegar in that town, Pasteur, after having stated the two foregoing scientific questions, proceeded to examine the difference between wine and vinegar. What takes place in the fermentation of the juice of the grape which yields the wine? The sugar of this juice disappears, giving place to carbonic acid gas, which is exhaled during fermentation, and to alcohol, which remains in the fermented liquid. Formerly, chemists gave the name of 'spirit' to all volatile matters which could be collected from distillation. Now, when we distil wine and condense the vapour in a worm surrounded by cold water, we collect the spirit of wine at the extremity of the worm—this, when the water with which it is mixed during distillation is withdrawn from it, we designate by the name of alcohol. Vinegar contains no alcohol. When distilled it yields water and a spirit. But this spirit is acid, with a very pungent odour, and not inflammable like spirit of wine. Separated from the water which had accompanied it during the distillation, this spirit takes the name of acetic acid. This is the form in which it is used in smelling bottles—in those bottles of English salts the vapour of which is so penetrating. In the formation of vinegar in contact with air the alcohol disappears, and is replaced by acetic acid. The air has thus given up something to the wine. If we confine our knowledge to what has gone before, it would seem that alcohol diluted with water and exposed to the air ought to furnish acetic acid. It is not so, however. Pure water alcoholised to the degree of ordinary wines may remain for whole years There is doubtless always in the wine, when it turns sour, a necessary intermediary, producing the fixation of the oxygen of the air; since in no circumstances can pure alcohol, diluted to any degree whatever with pure water, transform itself into vinegar. But this necessary intermediary is not, as the German theory would have it, a dead albuminoid substance; We can appreciate here the uncertainties of pure observation. The great art—and no one practised it better than Pasteur—consists in instituting decisive experiments which leave no room for an inexact interpretation of facts. These decisive proofs of the true part played by the little microscopic fungus, by this flower of vinegar, this mycoderma aceti, are thus formulated by Pasteur. It is but another example of the method which he used in alcoholic, lactic, and tartaric fermentations. The theories of Berzelius, of Mitscherlich, and of Liebig were destined again to receive the rudest shocks by the demonstration of these rigorous facts. Let us place a little wine in a bottle, then hermetically seal it, and leave it to itself. In these But the master experiment is the following. We have seen that pure alcoholised water never turns sour unless some albuminoid matter is introduced into it. Pasteur saw that this albuminoid matter might be completely suppressed and replaced by saline crystallisable substances, alkaline and earthy phosphates, to which has been added a little phosphate of ammonia. In these conditions, especially if the alcoholised water Is there not a great charm in seeing an obscure subject clearly illuminated by facts well understood and well interpreted? If in a bottle containing wine and air and raised to a temperature of 50° or 60° the wine never turns sour, it is because the germs of the mycoderma aceti, which the wine and the air hold in suspension, are deprived of all vitality by the heat. Placed, however, in contact with ordinary air, this once-heated wine can turn sour; because, though the germs of the mycoderma aceti contained at first in the wine are killed, this is not the case with those derived from the surrounding air. Pure alcoholised water never turns sour, even in contact with ordinary air, and with whatever germs this air may carry, or that may be found in the dust of the vessels which receive it. The reason is that these Thus, to recapitulate in a few words the principles which have just been established; it is easy to see that the formation of vinegar is always preceded by the development, on the surface of the wine, of a little plant formed of strangulated particles, of an extreme tenuity, and the accumulation of which sometimes takes the form of a hardly visible veil, sometimes of a wrinkled film of very slight thickness, and greasy to the touch, because of the various fatty matters which the plant contains. This cryptogam has the singular property of condensing considerable quantities of oxygen and of provoking the fixation of this gas upon the alcohol, which What, then, can be more simple than to produce vinegar from wine—a manufacture which justly makes the reputation of the town of Orleans? Take some wine, and after having mixed with it one-fourth or one-third of its volume of vinegar already formed, sow on its surface the little plant which does the work of acetification. It is only necessary to skim off, by means of a wooden spatula, a little of the mycodermic film from a liquid covered with it, and to transfer it to the liquid to be acetified. The fatty matters which it contains render the wetting of it difficult. Thus, when we plunge into the liquid the spatula covered with the film, the latter detaches itself and spreads out over the surface instead of falling to the bottom. When we operate in summer, or in a room heated to 15° or 25° Centigrade in winter, in twenty-four or On one occasion, in a discussion which he was holding at the Academy of Sciences, Pasteur, wishing to affirm the prodigious activity of the life and multiplication of this little organism, expressed himself thus:— 'I would undertake in the space of twenty-four hours to cover with mycoderma aceti a surface of vinous liquid as large as the hall in which we are here assembled. I should only have to sow in it the day before almost invisible particles of newly-formed mycoderma aceti.' Let the reader try to imagine the millions upon millions of little mycoderma particles which would come to life in that one day. But how is the mycoderm seed to be obtained in the first instance? Nothing more simple. The mycoderma aceti is one of those little so-called 'spontaneous' productions which are sure to appear of themselves on the surface of liquids or infusions suitable to their development. In wine, in vinegar, or suspended in air, everywhere around us, in our towns, in our houses, there exist germs of this little plant. If we wish to procure some fresh mycoderm it is only necessary to put a mixture of wine and vinegar into a warm place. In a few days, generally, if not always, there appear here and there little greyish patches scattering the light At Orleans the process for the manufacture of vinegar is very simple. Barrels ranged over each other have on each of their vertically-placed bottoms a circular opening some centimeters in diameter, and a smaller hole adjacent, called fausset, for the air to pass in and out when the large opening is closed, either by the funnel, through which the wine is introduced, or by the syphon, which is used for drawing off the vinegar. These barrels, of which the capacity is 230 litres, are half filled. The manual labour consists in keeping up a suitable temperature in the vessel, and in drawing from it every eight days A barrel in which this give-and-take of wine and vinegar goes on is technically called a 'mother.' The starting of a 'mother' is not a rapid process. We begin by introducing into the barrel 100 litres of very good and very limpid vinegar; then two litres only of wine are added. Eight days after, three litres of wine are added, a week later four or five, until the barrel contains about 180 to 200 litres. Then for the first time vinegar is drawn off in sufficient quantity to bring back the volume of the liquid to about 100 litres. At this moment the labours of the 'mother' begin. Henceforward ten litres of vinegar may be drawn off every eight days, to be replaced by ten litres of wine. This is the maximum that a cask can yield in a week. When the casks work badly, as is often the case, it is necessary to diminish their production. This Orleans system has many drawbacks. It requires three or four months to prepare what is called a 'mother,' which must be nourished with wine very regularly once a week under penalty of seeing it lose all its power. Then it is necessary to continue the manufacture at all times, whether the vinegar be required or not. To reconstitute a 'mother,' one must begin from the very beginning, a process which involves a loss of three or four months' time. Lastly—a condition which is at times very inconvenient Pasteur advised the suppression of the 'mothers.' He recommended an apparatus, which is simply a vat, placed in a chamber the temperature of which can be raised to 20° or 25° Centigrade. In these vats vinegar already formed is mixed with wine. On the surface is sown the little plant which converts the wine into vinegar. The mode of sowing it has been already explained. The acetification begins with the development of the plant. A great merchant of Orleans, who had from the first adopted Pasteur's process, and who had won the prize offered by the 'Society for the Encouragement of National Industry' for a manufactory perfected after these principles, has stated that at the end of nine or ten days, sometimes even in eight, all the acetified wine is converted into vinegar. From a hundred litres of wine he drew off ninety-five litres of vinegar. After the great rise of temperature observed at the moment of the formation of the vinegar, and which is caused by the chemical union of the alcohol and the oxygen of the air, the vinegar is allowed to cool. It may then be drawn from the vat, introduced into barrels, refined, and straightway delivered, fit for consumption. When the vat is quite emptied, and well cleaned, a new mixture is made of vinegar and wine, In the vessels where vinegar is preserved, whether in the manufactories, in private houses, or in grocers' shops, it often happens that the liquid becomes turbid, and impoverished in an extraordinary manner; it even ends in putrefaction, if a remedy be not promptly applied. Pasteur has pointed out the cause of these phenomena. After the alcohol has become acetic acid by the combustive action of the mycoderm, the question remains, what becomes of the mycoderm? Most frequently it falls to the bottom of the vessel, having no more work to accomplish. This is a phase of the manufacture which must be watched with care. It is shown by the experiments of Pasteur that the mycoderma aceti can live on vinegar already formed, maintaining its power of fixing the oxygen on certain constituents of the liquid. In this case the acetic acid itself is the seat of the chemical action—in other words, the oxygen unites with the carbon of the acetic acid, and transforms it into carbonic acid, and as the acetic acid has a composition which can be represented by carbon and water, it follows that if the combustion is allowed to take its course, instead of vinegar we have eventually nothing but water mixed with a small proportion of nitrogenous and mineral matters, and the remains of the mycoderm. Another cause of the deterioration of the quality of vinegar, which is sometimes very annoying to the manufacturer, consists in the frequent presence of little eel-like organisms, very curious when viewed with a strong magnifier. Their bodies are so transparent that their internal organs can be easily distinguished. These eel-like creatures multiply with extraordinary rapidity. Certainly there is not a single barrel of vinegar manufactured by the Orleans system which does not contain them in alarming numbers. Connecting these observations with the other fact Nearly all Pasteur's publications have had from the moment of their appearance to undergo the severest criticism. Their novelty caused them to clash with the prejudices and errors current in science. His researches on fermentation provoked lively opposition. Liebig did not accept without recrimination a series of researches which concurred in upsetting the theory he had enunciated and defended in all his works. After having kept silence for ten years, he published, at Munich, where he was professor, a long memoir entirely directed against Pasteur's results. In 1870, on the eve of the war, Pasteur, who was at that time returning from a scientific journey into Austria, determined to pass by Munich, with the view of attempting to convince his distinguished adversary. Liebig received him with great courtesy, but, hardly recovered from an illness, he alleged his convalescence as a reason for declining all discussion. Then followed the Franco-German war. Hardly was it terminated when Pasteur brought before the Academy of Sciences at Paris a defence of what he had published, as a sort of challenge to his illustrious opponent. The memoir of Liebig was filled with the most skilful arguments. 'I pondered it for nearly ten years before producing it,' he wrote. Pasteur, putting aside all subtleties of argument, went straight to the two objections of the German chemist which lay at the root of the discussion. It may be remembered that one of the most decisive proofs by which Pasteur overthrew Liebig's theory resulted from the experiments in which by the aid of mineral bodies and fermentable matter he produced a special living ferment for each definite fermentation. By removing all nitrogenous organic matter, which in Liebig's theory constitutes the ferment, Pasteur established, at one and the same time, the life of the ferment and the absence of all action of albuminoid matter in process of alteration. Liebig here formally contested the fact that Pasteur had been able to produce yeast and alcoholic fermentation in a sweetened mineral medium by sowing therein an infinitesimal quantity of yeast. It is certain that, ten years previously, when Pasteur announced the production of yeast life and alcoholic fermentation under such conditions, his experiment was one so difficult to perform that it sometimes happened to Pasteur himself to be unable to reproduce it. The cells of yeast sown in the sweetened mineral medium found themselves often associated with other microscopic organisms, which were singularly hurtful to the life of the yeast. Pasteur was at this period far from being familiarised with the delicacy which such experiments 'Choose,' said he to Liebig, 'from the members of the Academy one or several, and ask them to decide between you and me. I am ready to prepare before you and before them, in a sweetened mineral medium, as much yeast as you can reasonably ask for, and with substances provided by yourself.' Liebig's second objection had reference to acetic fermentation. The process of acetification known as that of 'beech shavings' is widely practised in Germany and even in France. It consists in causing alcohol diluted with water and with the addition of some milliÈmes of acetic acid to trickle slowly into barrels or vats filled with shavings of beech, either massed According to Pasteur, the shavings perform only a passive part in the manufacture. They promote the division of the liquid and cause a considerable augmentation of the surface exposed to the air. They moreover serve as a support for the ferment, which is still, according to him, the mycoderma aceti, under the mucous form proper to it when submerged. Certainly appearances were far from being favourable to this view. When the shavings of a barrel which has been in work for several months or even for several years are examined, they are found to be extraordinarily Liebig, who somewhere speaks, not without a certain contempt, of the microscope, denied formally the exactitude of these assertions. 'With diluted alcohol, which is used for the rapid manufacture of vinegar,' he wrote, 'the elements of nutrition of the mycoderm are excluded, and the vinegar is made without its intervention.' He asserted also in his memoir of 1869 that he had consulted the head of one of the principal manufactories of vinegar in Germany, that in this manufactory the diluted alcohol did not receive during the whole course of its transformation any foreign addition, and that beyond the air and the surfaces of wood and charcoal—for charcoal is sometimes associated with the beech shavings—nothing can act upon the alcohol. Liebig added that the director of the manufactory did not believe at all in the presence of the mycoderm, and that finally he, Liebig, in examining the shavings which had been used for twenty-five years in the manufactory, saw no trace of mycoderm on their surface. The argument appeared conclusive. How, in fact, could we understand the production of a plant containing within itself nitrogen and mineral elements which was nevertheless to be nourished by water and alcohol. 'You do not take into account,' replied Pasteur, 'the nature of the water which serves to dilute your alcohol. This water, like all ordinary waters, even the purest, contains salts of ammonia and mineral matters which are capable of nourishing the plant. Finally, you have not rightly examined with the microscope the surface of the shavings, otherwise you would have seen the little particles of the mycoderma aceti united, in some cases, to a thin film which can even be lifted up. I propose to you, moreover, to send to the Academic Commission charged with the decision of the debate, some shavings that you have obtained yourself in the manufactory at Munich, and in the presence of its director. I will undertake to prove before the members of the commission the presence of the mycoderm on the surface of these shavings.' Liebig did not accept this challenge. To-day the question is decided. |