RESEARCHES ON THE ACOUSTIC TRANSPARENCY OF THE ATMOSPHERE IN RELATION TO THE QUESTION OF FOG-SIGNALLING Introduction—Instruments and Observations—Contradictory Results from the 19th of May to the 1st of July inclusive—Solution of Contradictions—AËrial Reflection and its Causes—AËrial Echoes—Acoustic Clouds—Experimental Demonstration of Stoppage of Sound by AËrial Reflection § 1. IntroductionWE ARE now fully equipped for the investigation of an important practical problem. The cloud produced by the puff of a locomotive can quench the rays of the noonday sun; it is not, therefore, surprising that in dense fogs our most powerful coast-lights, including even the electric light, should become useless to the mariner. Disastrous shipwrecks are the consequence. During the last ten years no less than two hundred and seventy-three vessels have been reported as totally lost on our own coasts in fog or thick weather. The loss, I believe, has been far greater on the American seaboard, where trade is more eager, and fogs more frequent, than they are here. No wonder, then, that earnest efforts should be made to find a substitute for light in sound-signals, powerful enough to give warning and guidance to mariners while still at a safe distance from the shore. Such signals have been established to some extent Jointly with the Elder Brethren of the Trinity House, and as their scientific adviser, I have recently had the honor of conducting an inquiry designed to fill the blank here indicated. One or two brief references will suffice to show the state of the question when this investigation began. “Derham,” says Sir John Herschel, “found that fogs and falling rain, but more especially snow, tend powerfully to obstruct the propagation of sound, and that the same effect was produced by a coating of fresh-fallen snow on the ground, though when glazed and hardened at the surface by freezing it had no such influence.” In a very clear and able letter, addressed to the President of the Board of Trade in 1863, “‘Light is scarcely available for this purpose. Blue lights are used in the Hooghly; but it is not stated at what distance they are visible in fog; their glare may be seen further than their flame. “‘Sound is the only known means really effective; but about it testimonies are conflicting, and there is scarcely one fact relating to its use as a signal which can be considered as established. Even the most important of all, the distance at which it ceases to be heard, is undecided. “‘Up to the present time all signal-sounds have been made in air, though this medium has grave disadvantages: its own currents interfere with the sound-waves, so that a gun or bell which is heard several miles down the wind is inaudible more than a few furlongs up it. A still greater evil is that it is least effective when most needed; for fog is a powerful damper of sound.’” Dr. Robinson here expresses the universally-prevalent opinion, and he then assigns the theoretic cause. “Fog,” he says, “is a mixture of air and globules of water, and at each of the innumerable surfaces where these two touch, a portion of the vibration is reflected and lost. Reflection being thus considered to take place at the Prior to the investigation now to be described, the views here enunciated were those universally entertained. That sound is unable to penetrate fogs was taken to be “a matter of common observation.” The bells and horns of ships were affirmed “not to be heard so far in fogs as in clear weather.” In the fogs of London the noise of the carriage-wheels was reported to be so much diminished that “they seem to be at a distance where really close by.” My knowledge does not inform me of the existence of any other source for these opinions regarding the deadening power of fog than the paper of Derham, published one hundred and sixty-seven years ago. In consequence of their À priori probability, his conclusions seem to have been transmitted unquestioned from generation to generation of scientific men. § 2. Instruments and ObservationsOn the 19th of May, 1873, this inquiry began. The South Foreland, near Dover, was chosen as the signal-station, steam-power having been already established there to work two powerful magneto-electro lights. The observations for the most part were made afloat, one of the yachts of the Trinity Corporation being usually employed for this purpose. Two stations had been established, the one at the top, the other at the bottom, of the South Foreland Cliff; and at each of them trumpets, air-whistles, and steam-whistles of great size were mounted. The whistles first employed were of English manufacture. To these was afterward added a large United States whistle, and also a Canadian whistle, of great reputed power. On the 8th of October another instrument, which has played a specially important part in these observations, was introduced. This was a steam-siren, constructed and patented by Mr. Brown of New York, and introduced by Prof. Henry into the lighthouse system of the United States. As an example of international courtesy worthy of imitation, I refer with pleasure to the fact that when informed by Major Elliot of the United States Army that our experiments had begun, the Lighthouse Board at Washington, of their own spontaneous kindness, forwarded to us for trial a very noble instrument of this description, which was immediately mounted at the South Foreland. In the steam-siren, as in the ordinary one, described in Chapter II., a fixed disk and a rotating disk are employed, but radial slits are used instead of circular apertures. One disk is fixed vertically across the throat of a To the siren, trumpets, and whistles were added three guns—an 18-pounder, a 5-1/2-inch howitzer, and a 13-inch mortar. In our summer experiments all three were fired; but the howitzer having shown itself superior to the other guns it was chosen in our autumn experiments as not only a fair but a favorable representative of this form of signal. The charges fired were for the most part those now employed at Holyhead, Lundy Island, and the Kish light-vessel; namely, 3 lbs. of powder. Gongs and bells were not included in this inquiry, because previous observations had clearly proved their inferiority to the trumpets and whistles. On the 19th of May the instruments tested were: On the top of the cliff: a. Two brass trumpets or horns, 11 feet 2 inches long, 2 inches in diameter at the mouth-piece, and opening out at the other end to a diameter of 22-1/2 inches. They were provided with vibrating steel reeds 9 inches long, 2 inches wide, and 1/4 inch thick, and were sounded by air of 18 lbs. pressure. b. A whistle, shaped like that of a locomotive, 6 inches in diameter, also sounded by air of 18 lbs. pressure. c. A steam-whistle, 12 inches in diameter, attached to a boiler, and sounded by steam of 64 lbs. pressure. At the bottom of the cliff: d. Two trumpets or horns, of the same size and arrangement as those above, and sounded by air of the same pressure. They were mounted vertically on the reservoir of compressed air; but within about two feet of their extremities they were bent at a right angle, so as to present their mouths to the sea. e. A 6-inch air-whistle, similar to the one above, and sounded by the same means. The upper instruments were 235 feet above high-water mark, the lower ones 40 feet. A vertical distance of 195 feet, therefore, separated the instruments. A shaft, provided with a series of twelve ladders, led from the one to the other. Numerous comparative experiments made at the outset gave a slight advantage to the upper instruments. They, therefore, were for the most part employed throughout the subsequent inquiry. Our first observations were a preliminary discipline rather than an organized effort at discovery. On May 19th the maximum distance reached by the sound was about three and a half miles. Mariners express the strength of the wind by a series of numbers extending from 0 = calm to 12 = a hurricane, The same instruments on May 20th covered a greater range of sound; but not much greater, though the disturbance due to local noises was absent. At 4 miles’ distance in the axes of the horns they were barely heard, the air at the time being calm, the sea smooth, and all other circumstances exactly those which have been hitherto regarded as most favorable to the transmission of sound. We crept a little further away, and by stretched attention managed to hear at intervals, at a distance of 6 miles, the faintest hum of the horns. A little further out we again halted; but though local noises were absent, and though we listened intently, we heard nothing. This position, clearly beyond the range of whistles and trumpets, was expressly chosen with the view of making what might be considered a decisive comparative experiment between horns and guns as instruments for fog-signalling. The distinct report of the 12 o’clock gun fired at Dover on the 19th suggested this comparison, and through the prompt courtesy of General Sir A. Horsford we were enabled to carry it out. At 12.30 precisely the puff of an 18-pounder, with a 3-lb. charge, was seen at Dover Castle, which was about a mile further off than the South Foreland. Thirty-six seconds afterward the loud report of the gun was heard, its complete superiority over the trumpets being thus, to all appearance, demonstrated. We clinched this observation by steaming out to a distance of 8-1/2 miles, where the report of a second gun The result seemed perfectly decisive. Applying the law of inverse squares, the sound of the gun at a distance of 6 miles from the Foreland must have had more than two and a half times the intensity of the sound of the trumpets. It would not have been rash under the circumstances to have reported without qualification the superiority of the gun as a fog-signal. No single experiment is, to my knowledge, on record to prove that a sound once predominant would not be always predominant, or that the atmosphere on different days would show preferences to different sounds. On many subsequent occasions, however, the sound of the horns proved distinctly superior to that of the gun. This selective power of the atmosphere revealed itself more strikingly in our autumn experiments than in our summer ones; and it was sometimes illustrated within a few hours of the same day: of two sounds, for example, one might have the greatest range at 10 A.M., and the other the greatest range at 2 P.M. In the experiments on May 19th and 20th the superiority of the trumpets over the whistles was decided; and indeed, with few exceptions, this superiority was maintained throughout the inquiry. But there were exceptions. On June 2d, for example, the whistles rose in several instances to full equality with, and on rare occasions subsequently even surpassed, the horns. The sounds were varied from day to day, and various shiftings of the horns and reeds were resorted to, with a view of bringing out their maximum power. On the date last On June 3d the three guns already referred to were permanently mounted at the South Foreland. They were ably served by gunners from Dover Castle. On the same day dense clouds quite covered the firmament, some of them particularly black and threatening, but a marked advance was observed in the transmissive power of the air. At a distance of 6 miles the horn-sounds were not quite quenched by the paddle-noises; at 8 miles the whistles were heard, and the horns better heard; while at 9 miles, with the paddles stopped, the horn-sounds alone were fairly audible. During the day’s observations a remarkable and instructive phenomenon was observed. Over us rapidly passed a torrential shower of rain, which, according to Derham, is a potent damper of sound. We could, however, notice no subsidence of intensity as the shower passed. It is even probable that, had our minds been free from bias, we should have noticed an augmentation of the sound, such as occurred with the greatest distinctness on various subsequent occasions during violent rain. The influence of “beats” was tried on June 3d, by throwing the horns slightly out of unison; but though the beats rendered the sound characteristic, they did not seem to augment the range. At a distance from the station curious fluctuations of intensity were noticed. Not The range of our best horns on June 10th was 8-3/4 miles. The guns at this distance were very feeble. That the loudness of the sound depends on the shape of the gun was proved by the fact that thus far the howitzer, with a 3-lb. charge, proved more effective than the other guns. On June 25th a gradual improvement in the transmissive power of the air was observed from morning to evening; but at the last the maximum range was only moderate. The fluctuations in the strength of the sound were remarkable, sometimes sinking to inaudibility and then rising to loudness. A similar effect, due to a similar cause, is often noticed with church-bells. The acoustic transparency of the air was still further augmented on the 26th: at a distance of 9-1/4 miles from the station the whistles and horns were plainly heard against a wind with a force of 4; while on the 25th, with a favoring wind, the maximum range was only 6-1/2 miles. Plainly, therefore, something else than the wind must be influential in determining the range of the sound. On Tuesday, July 1st, observations were made on the decay of the sound at various angular distances from the axis of the horn. As might be expected, the sound in the axis was loudest, the decay being gradual on both sides. In the case of the gun, however, the direction of pointing has very little influence. The day was acoustically clear; at a distance of 10 miles the horn yielded a plain sound, while the American whistle seemed to surpass the horn. Dense haze at this time quite hid the Foreland. At 10-1/2 miles occasional blasts of the horn came to us, but after a time all sound ceased to be audible; it seemed as if the air, after having been exceedingly transparent, had become gradually more opaque to the sound. At 4.45 P.M. we took the master of the Varne light-ship on board the “Irene.” He and his company had heard the sound at intervals during the day, although he was dead to windward and distant 12-3/4 miles from the source of sound. Here a word of reflection on our observations may be fitly introduced. It is, as already shown, an opinion entertained in high quarters that the waves of sound are reflected at the limiting surfaces of the minute particles which constitute haze and fog, the alleged waste of sound in fog being thus explained. If, however, this be an efficient practical cause of the stoppage of sound, and if clear calm air be, as alleged, the best vehicle, it would be impossible to understand how to-day, in a thick haze, the sound reached a distance of 12-3/4 miles, while on May 20th, in a calm and hazeless atmosphere, the maximum range was only from 5 to 6 miles. Such facts foreshadow a revolution in our notions regarding the action of haze and fogs upon sound. An interval of 12 hours sufficed to change in a surprising degree the acoustic transparency of the air. On the 1st of July the sound had a range of nearly 13 miles; on the 2d the range did not exceed 4 miles. § 3. Contradictory ResultsThus far the investigation proceeded with hardly a gleam of a principle to connect the inconstant results. The distance reached by the sound on the 19th of May was 3-1/2 miles; on the 20th it was 5-1/2 miles; on the 2d of June 6 miles; on the 3d more than 9 miles; on the 10th it was also 9 miles; on the 25th it fell to 6-1/2 miles; on the 26th it rose again to more than 9-1/4 miles; on the 1st of July, as we have just seen, it reached 12-3/4, whereas on the 2d the range shrunk to 4 miles. None of the meteorological agents observed could be singled out as the cause of these fluctuations. The wind exerts an acknowledged power over sound, but it could not account for these phenomena. On the 25th of June, for example, when the range was only 6-1/2 miles, the wind was favorable; on the 26th, when the range exceeded 9-1/4 miles, it was opposed to the sound. Nor could the varying optical clearness of the atmosphere be invoked as an explanation; for on July 1st, when the range was 12-3/4 miles, a thick haze hid the white cliffs of the Foreland, while on many other days, when the acoustic range was not half so great, the atmosphere was optically clear. Up to July 3d all remained enigmatical; but on this date observations were made which seemed to me to displace surmise and perplexity by the clearer light of physical demonstration. § 4. Solution of ContradictionsOn July 3d we first steamed to a point 2·9 miles S.W. by W. of the signal-station. No sounds, not even the guns, were heard at this distance. At 2 miles they were equally inaudible. But this being a position at “On smooth water,” says Sir John Herschel, “sound is propagated with remarkable clearness and strength.” Here was the condition; still, with the Foreland so close to us, the sea so smooth, and the air so transparent, it was difficult to realize that the guns had been fired or the trumpets blown at all. What could be the reason? Had the sound been converted by internal friction into Sulphur, in homogeneous crystals, is exceedingly transparent to radiant heat, whereas the ordinary brimstone of commerce is highly impervious to it—the reason being that the brimstone does not possess the molecular continuity of the crystal, but is a mere aggregate of minute grains not in perfect optical contact with each other. Where this is the case, a portion of the heat is always reflected on entering and on quitting a grain; hence, when the grains are minute and numerous, this reflection is so often repeated that the heat is entirely wasted before it can plunge to any depth into the substance. The same remark applies to snow, foam, clouds, and common salt, indeed, to all transparent substances in powder; they are all impervious to light, not through the immediate absorption or extinction of the light, but through repeated internal reflection. Humboldt, in his observations at the Falls of the Orinoco, is known to have applied these principles to sound. He found the noise of the falls far louder by night than by day, though in that region the night is far noisier than the day. The plain between him and the falls consisted of spaces of grass and rock intermingled. In the heat of the day he found the temperature of the rock to be considerably higher than that of the grass. Over every heated rock, he concluded, rose a column of air rarefied by the heat; its place being supplied by the descent of heavier air. He ascribed the deadening of the sound to the reflections which it endured at the limiting surfaces of the rarer and denser air. This philosophical explanation made it generally known that a non-homogeneous atmosphere is unfavorable to the transmission of sound. But what on July 3d, not with the variously-heated plain of Antures, but with a calm sea as a basis for the atmosphere, could so destroy its homogeneity as to enable it to quench in so short a distance so vast a body of sound? My course of thought at the time was thus determined: As I stood upon the deck of the “Irene” pondering the question, I became conscious of the exceeding power of the sun beating against my back and heating the objects near me. Beams of equal power were falling on the sea, and must have produced copious evaporation. That the vapor generated should so rise and mingle with the air as to form an absolutely homogeneous medium, was in the highest degree improbable. It would be sure, I thought, to rise in invisible streams, breaking through the superincumbent air now at one point, now at another, thus rendering the air flocculent with wreaths and striÆ, charged in different degrees with the buoyant vapor. At the limiting surfaces of these spaces, though invisible, we should have the conditions necessary to the production of partial echoes and the consequent waste of sound. Ascending and descending air-currents, of different temperatures, as far as they existed, would also contribute to the effect. Curiously enough, the conditions necessary for the testing of this explanation immediately set in. At 3.15 P.M. a solitary cloud threw itself athwart the sun, and shaded the entire space between us and the South Foreland. The heating of the water and the production of vapor- and air-currents were checked by the interposition of this screen; hence the probability of suddenly-improved transmission. To test this inference, the steamer was immediately turned and urged back to our last position of It was now 4 P.M., and my intention at first was to halt at this distance, which was beyond the sound-range, but not far beyond it, and see whether the lowering of the sun would not restore the power of the atmosphere to transmit the sound. But after waiting a little the anchoring of a boat was suggested, so as to liberate the steamer for other work; and though loth to lose the anticipated revival of the sounds myself, I agreed to this arrangement. Two men were placed in the boat and requested to give all attention, so as to hear the sound if possible. With perfect stillness around them they heard nothing. They were then instructed to hoist a signal if they should hear the sounds, and to keep it hoisted as long as the sounds continued. At 4.45 we quitted them and steamed toward the South Sand Head light-ship. Precisely 15 minutes after we had separated from them the flag was hoisted; the sound had at length succeeded in piercing the body of air between the boat and the shore. We continued our journey to the light-ship, went on board, heard the report of the lightsmen, and returned to our anchored boat. We then learned that when the flag was hoisted the horn-sounds were heard, that they were succeeded after a little time by the whistle-sounds, and that both increased in intensity as the evening advanced. On our arrival, of course, we heard the sounds ourselves. We pushed the test further by steaming further out. At 5-3/4 miles we halted and heard the sounds: at 6 miles we heard them distinctly, but so feebly that we thought we had reached the limit of the sound-range; but while we waited the sounds rose in power. We steamed to the Varne buoy, which is 7-3/4 miles from the signal-station, and heard the sounds there better than at 6 miles’ distance. We continued our course outward to 10 miles, halted there for a brief interval, but heard nothing. Steaming, however, on to the Varne light-ship, which is situated at the other end of the Varne shoal, we hailed the master, and were informed by him that up to 5 p.m. nothing had been heard, but that at that hour the sounds began to be audible. He described one of them as “very gross, resembling the bellowing of a bull,” which very accurately characterizes the sound of the large American steam-whistle. At the Varne light-ship, therefore, the sounds had been heard toward the close of the day; though it is 12-3/4 miles from the signal-station. I think it probable that, at a point 2 miles from the Foreland, the sound at 5 P.M. possessed fifty times the intensity which it possessed at 2 P.M. To such undreamed-of fluctuations is the atmosphere liable. On our return to Dover Bay, at 10 P.M., we heard the sounds, not only distinct but loud, where nothing could be heard in the morning. § 5. Other Remarkable Instances of Acoustic OpacityIn his excellent lecture entitled “Wirkungen aus der Ferne,” Dove has collected some striking cases of the interception of sound. The Duke of Argyll has also favored me with some highly-interesting illustrations; but nothing of this description that I have read equals in point of interest the following account of the battle of Gaines’s Farm, for which I am indebted to the Rector of the University of Virginia:
I learn from a subsequent letter that during the battle the air was still.—J. T. § 6. Echoes from Invisible Acoustic CloudsBut both the argument and the phenomena have a complementary side, which we have now to consider. A stratum of air less than 3 miles thick on a calm day has been proved competent to stifle both the cannonade and My first care in the early part of the day in question was to assure myself that our inability to hear the sound did not arise from any derangement of the instruments on shore. Accompanied by the private secretary of the Deputy Master of the Trinity House, at 1 P.M. I was rowed to the shore, and landed at the base of the South Foreland Cliff. The body of air which had already shown such extraordinary power to intercept the sound, and which manifested this power still more impressively later in the day, was now in front of us. On it the sonorous waves impinged, and from it they were sent back with astonishing intensity. The instruments, hidden from view, were on the summit of a cliff 235 feet above us, the sea was smooth and clear of ships, the atmosphere was without a cloud, and there was no object in sight which could possibly produce the observed effect. From the perfectly transparent air the echoes came, at first with Here, in my opinion, we have the key to many of the mysteries and discrepancies of evidence which beset this question. The foregoing observations show that there is no need to doubt either the veracity or the ability of the conflicting witnesses, for the variations of the atmosphere are more than sufficient to account for theirs. The mistake, indeed, hitherto has been, not in reporting incorrectly, but in neglecting the monotonous operation of repeating the observations during a sufficient time. I shall have occasion to remark subsequently on the mischief likely to arise from giving instructions to mariners founded on observations of this incomplete character. It required, however, long pondering and repeated observation before this conclusion took firm root in my mind; for it was opposed to the results of great observers, and to the statements of celebrated writers. In science as elsewhere, a mind of any depth which accepts a doctrine undoubtingly, discards it unwillingly. The This explanation of the MontlhÉry echoes is an inference from observations made at Villejuif. The inference requires qualification. Some hundreds of cannon-shots have been fired at the South Foreland, many of them when the heavens were completely free from clouds, and never in a single case has a roulement similar to that noticed at MontlhÉry been absent. It follows, moreover, so hot upon the direct sound as to present hardly a sensible breach of continuity between the sound and the echo. This could not be the case if the clouds were its origin. A reflecting cloud, at the distance of a mile; would leave a silent interval of nearly ten seconds between sound and echo; and had such an interval been observed at MontlhÉry, it could hardly have escaped record by the philosophers stationed there; but they have not recorded it. I think both the fact and the inference need reconsideration. For our observations prove to demonstration that air of perfect visual transparency is competent to produce echoes of great intensity and long duration. The subject is worthy of additional illustration. On the 8th of October, as already stated, the siren was established at the South Foreland. I visited the station on that day, and listened to its echoes. They were far more powerful than those of the horn. Like the others, they were perfectly continuous, and faded, as if into distance, gradually away. The direct sound seemed rendered complex and multitudinous by its echoes, which resembled a band of trumpeters, first responding close at hand, and then retreating rapidly toward the coast of France. The In the case of the siren, moreover, the reinforcement of the direct sound by its echo was distinct. About a second after the commencement of the siren-blast the echo struck in as a new sound. This first echo, therefore, must have been flung back by a body of air not more than 600 or 700 feet in thickness. The few detached clouds visible at the time were many miles away, and could clearly have had nothing to do with the effect. On the 10th of October I was again at the Foreland listening to the echoes, with results similar to those just described. On the 15th I had an opportunity of remarking something new concerning them at Dungeness, where a horn similar to, but not so powerful as, those at the South Foreland, has been mounted. It rotates automatically through an arc of 210°, halting at four different points on the arc and emitting a blast of 6 seconds’ duration, these blasts being separated from each other by intervals of silence of 20 seconds. The new point observed was this: as the horn rotated the echoes were always returned along the line in which the axis of the horn pointed. Standing either behind or in front of the lighthouse tower, or closing the eyes so as to exclude all knowledge of the position of the horn, the direction of its axis when sounded could always be inferred from the direction in which the aËrial echoes reached the shore. Not only, therefore, is knowledge of direction given by a sound, but it may also be given by the aËrial echoes of the sound. On the 17th of October, at about 5 P.M., the air being perfectly free from clouds, we rowed toward the Foreland, At the base of the cliff a series of concurrent observations made the duration of the aËrial siren-echoes from 13 to 14 seconds. Lying on the shingle under a projecting roof of chalk, the somewhat enfeebled diffracted sound reached me, and I was able to hear with great distinctness, about a second after the starting of the siren-blast, the echoes striking in and reinforcing the direct sound. The first rush of echoed sound was very powerful, and it came, as usual, from a stratum of air 600 or 700 feet in thickness. On again testing the duration of the echoes, it was found to be from 14 to 15 seconds. The perfect clearness of the afternoon caused me to choose it for the examination of the echoes. It is worth remarking that this was our day of longest echoes, and it was also our day of greatest acoustic transparency, this association suggesting that the duration of the echo is a measure of the atmospheric depths from which it comes. On no day, it is to be remembered, was the atmosphere free from invisible acoustic clouds; and on this day, and when their presence did not prevent the direct sound from reaching to a distance of 15 or 16 nautical miles, they were able to send us echoes of 15 seconds’ duration. On various occasions, when fully three miles from the shore, the Foreland bearing north, we have had the dis To sum up this question of aËrial echoes. The siren sounded three blasts a minute, each of 5 seconds’ duration. From the number of days and the number of hours per day during which the instrument was in action we can infer the number of blasts. They reached nearly twenty thousand. The blasts of the horns exceeded this number, while hundreds of shots were fired from the guns. Whatever might be the state of the weather, cloudy or serene, stormy or calm, the aËrial echoes, though varying in strength and duration from day to day, were never absent; and on many days, “under a perfectly clear sky,” they reached, in the case of the siren, an astonishing intensity. It is doubtless to these air-echoes, and not to cloud-echoes, that the rolling of thunder is to be ascribed. § 7. Experimental Demonstration of Reflection from GasesThus far we have dealt in inference merely, for the interception of sound through aËrial reflection has never been experimentally demonstrated; and, indeed, according to Arago’s observation, which has hitherto held undisputed possession of the scientific field, it does not sensibly exist. But the strength of science consists in verification, and I was anxious to submit the question of aËrial reflection to an experimental test. The knowledge gained in the last lecture enables us to apply such a test; but, as in most similar cases, it was not the simplest combinations that were first adopted. Two gases of different densities were to be chosen, and I chose carbonic acid and coal-gas. With the aid of my skillful To indicate this waste an objective test was found in one of the sensitive flames described in the last chapter. Acquainted with it, we are prepared to understand a drawing and description of the apparatus first employed in the demonstration of aËrial reflection. The following clear account of the apparatus was given by a writer in “Nature,” February 5, 1874: “A tunnel t t' (Fig. 146), 2 inches square, 4 feet 8 inches long, open at both ends, and having a glass front, runs through the box a b c d. The spaces above and below are divided into cells opening into the tunnel by transverse orifices exactly corresponding vertically. Each alternate cell of the upper series—the 1st, 3d, 5th, etc.—communicates by a bent tube (e e e) with a common upper reservoir (g), its counterpart cell in the lower series having a free outlet into the air. In like manner the 2d, 4th, 6th, etc., of the lower series of cells are connected by bent tubes (n n n) with the lower reservoir (i), each having its direct passage into the air through the cell immediately above it. The gas-distributors (g and i) are filled from both ends at the same time, the upper with carbonic-acid gas, the lower with coal-gas, by branches from their respective supply-pipes (f and h). A well-padded box (P) open to the end of the tunnel forms a little cavern, whence the sound-waves are sent “The bell was set ringing. The flame, with quick response to each blow of the hammer, emitted a sort of musical roar, shortening and lengthening as the successive sound-pulses reached it. The gases were then admitted. Twenty-five flat jets of coal-gas ascended from the tubes below, and twenty-five cascades of carbonic acid fell from the tubes above. That which was a homogeneous medium had now fifty limiting surfaces, from each of which a portion of the sound was thrown back. In a few moments these successive reflections became so effective that no sound having sufficient power to affect the flame could pierce the clear, optically-transparent, but acoustically-opaque, atmosphere in the tunnel. So long as the gases continued to flow the flame remained perfectly tranquil. When the supply was cut off, the gases rapidly diffused into the air. The atmosphere of the tunnel became again homogeneous, and therefore acoustically transparent, and the flame responded to each sound-pulse as before.” Not only do gases of different densities act thus upon sound, but atmospheric air in layers of different temperatures does the same. Across a tunnel resembling t t', Fig. 146, sixty-six platinum wires were stretched, all of them being in metallic connection. The bell, in its padded box, was placed at one end of the tunnel, and the sensitive flame k, near its flaring-point, at the other. When the bell rang the flame flared. A current from a § 8. Reflection from VaporsBut not only do gases of different densities, and air of different temperatures, act thus upon sound, but air saturated, in different degrees, with the vapors of volatile liquids can be shown by experiment to produce the same effect. Into the path pursued by the carbonic acid in our first experiment a flask, which I have frequently employed to charge air with vapor, was introduced. Through a volatile liquid, partially filling the flask, air was forced into the tunnel t t', which was thus divided into spaces of air saturated with the vapor, and other spaces in their ordinary condition. The action of such a medium upon the sound-waves issuing from the bell is very energetic, instantly reducing the violently-agitated flame to stillness and steadiness. The removal of the heterogeneous medium instantly restores the noisy flaring of the flame. A few illustrations of the action of non-homogeneous atmospheres, produced by the saturation of layers of air with the vapors of volatile liquids, may follow here: Bisulphide of Carbon.—Flame very sensitive, and noisily responsive to the sound. The action of the non-homogeneous atmosphere was prompt and strong, stilling the agitated flame. Chloroform.—Flame still very sensitive; action similar to the last. Iodide of Methyl.—Action prompt and energetic. Amylene.—Very fine action; a short and violently-agitated flame was immediately rendered tall and quiescent. Sulphuric Ether.—Action prompt and energetic. The vapor of water at ordinary temperatures is so small in quantity and so attenuated that it requires special precautions to bring out its action. But with such precautions it was found competent to reduce to quiescence the sensitive flame. As the skill and knowledge of the experimenter augment he is often able to simplify his experimental combinations. Thus, in the present instance, by the suitable arrangement of the source of sound and the sensitive flame, it was found that not only twenty-five layers, but three or four layers of coal-gas and carbonic acid sufficed to still the agitated flame. Nay, with improved manipulation, the action of a single layer of either gas was rendered perfectly sensible. So also as regards heated layers of air, not only were sixty-six or twenty-two heated platinum wires found sufficient, but the heated air from two or three candle-flames, or even from a single flame, or a heated poker, was found perfectly competent to stop the flame’s agitation. The same remark applies to vapors. Three or four heated layers of air, saturated with the vapor of a volatile liquid, stilled the flame; and, by improved manipulation, the action of a single My assistant has devised the simple apparatus sketched in Fig. 147, for showing reflection by gases, vapors, and heated air. At the end A of the square pipe A B is a small vibrating reed of high pitch, the sound of which violently agitates the sensitive flame f. To the horizontal tube g g' are attached four small burners, and above them four chimneys, through which the heated gases from the flames can ascend into A B. When the coverings of the chimneys are removed and the gas is ignited, the air within A B is rendered rapidly non-homogeneous, and immediately stills the agitated flame. Fig. 147. The pipe A B may be turned upside down, an orifice seen between A and B fitting on to the stand which supports the tube. The conduit t leads into a shallow rectangular box, which communicates by a series of trans Fig. 148. In the experiments at the South Foreland, not only was it proved that the acoustic clouds stopped the sound; but, in the proper position, the sounds which had been refused transmission were received by reflection. I wished very much to render this echoed sound evident experimentally; and stated to my assistant that we ought to be able to accomplish this. Mr. Cottrell met my desire by the following beautiful experiment, which has been thus described before the Royal Society: A vibrating reed B (Fig. 148) was placed so as to send sound-waves through a tin tube, 38 inches long, and 1-3/4 inch diameter, in the direction B A, the action of the sound being rendered manifest by its causing a sensitive flame placed at F' to become violently agitated. “The invisible heated layer immediately above the luminous portion of an ignited coal-gas flame issuing from an ordinary bat’s-wing burner was allowed to stream upward across the end A of the tin tube. A portion of the sound issuing from the tube was reflected at the limiting surfaces of the heated layer; the part transmitted being now only competent to slightly agitate the sensitive flame at F'. “The heated layer was then placed at such an angle that the reflected portion of the sound was sent through a second tin tube, A F (of the same dimensions as B A). Its action was rendered visible by causing a second sensitive flame placed at the end of the tube at F to become violently affected. This echo continued active as long as the heated layer intervened; but upon its withdrawal the sensitive flame placed at F', receiving the whole of the direct pulse, became again violently agitated, and at the same moment the sensitive flame at F, ceasing to be affected by the echo, resumed its former tranquillity. “Exactly the same action takes place when the luminous portion of a gas-flame is made the reflecting layer; but in the experiments above described the invisible layer above the flame only was used. By proper adjustment of the pressure of the gas the flame at F' can be rendered so moderately sensitive to the direct sound-wave that the portion transmitted through the reflecting layer shall be incompetent to affect the flame. Then by the introduction and withdrawal of the bat’s-wing flame the two sensitive flames can be rendered alternately quiescent and strongly agitated. “An illustration is here afforded of the perfect analogy between light and sound; for if a beam of light be Thus far, therefore, we have placed our subject in the firm grasp of experiment; nor shall we find this test failing us further on. PART IIINVESTIGATION OF THE CAUSES WHICH HAVE HITHERTO BEEN SUPPOSED EFFECTIVE IN PREVENTING THE TRANSMISSION OF SOUND THROUGH THE ATMOSPHERE Action of Hail and Rain—Action of Snow—Action of Fog; Observations in London—Experiments on Artificial Fogs—Observations on Fogs at the South Foreland—Action of Wind—Atmospheric Selection—Influence of Sound-Shadow § 1. Action of Hail and RainIn the first part of this chapter it was demonstrated that the optic transparency and acoustic transparency of our atmosphere were by no means necessarily coincident; that on days of marvellous optical clearness the atmosphere may be filled with impervious acoustic clouds, while days optically turbid may be acoustically clear. We have now to consider, in detail, the influence of various agents which have hitherto been considered potent in reference to the transmission of sound through the atmosphere. Derham, and after him all other writers, considered that falling rain tended powerfully to obstruct sound. A squall approached us from the west. In the Alps or elsewhere I have rarely seen the heavens blacker. Vast cumuli floated to the N.E. and S.E.; vast streamers of rain descended in the W.N.W.; huge scrolls of cloud hung in the N.; but spaces of blue were to be seen to the N.N.E. At 7 miles’ distance the siren and horn were both feeble, while the gun sent us a very faint report. A dense shower now enveloped the Foreland. The rain at length reached us, falling heavily all the way between us and the Foreland; but the sound, instead of being deadened, rose perceptibly in power. Hail was now added to the rain, and the shower reached a tropical violence, the hailstones floating thickly on the flooded deck. In the midst of this furious squall both the horns and the siren were distinctly heard; and as the shower lightened, thus lessening the local pattering, the sounds so rose in power that we heard them at a distance of 7-1/2 miles At 4 P.M. the rain had ceased and the sun shone clearly through the calm air. At 9 miles’ distance the horn was heard feebly, the siren clearly, while the howitzer sent us a loud report. All the sounds were better heard at this distance than they had previously been at 5-1/2 miles; from which, by the law of inverse squares, it follows that the intensity of the sound at 5-1/2 miles’ distance must have been augmented at least threefold by the descent of the rain. On the 23d of October our steamer had forsaken us for shelter, and I sought to turn the weather to account by making other observations on both sides of the fog-signal station. Mr. Douglass, the chief engineer of the Trinity House, was good enough to undertake the observations N.E. of the Foreland; while Mr. Ayers, the assistant engineer, walked in the other direction. At 12.50 P.M. the wind blew a gale, and broke into a thunderstorm with violent rain. Inside and outside the Cornhill Coast-guard Station, a mile from the instruments in the direction of Dover, Mr. Ayers heard the sound of the siren through the storm; and after the rain had ceased, all sounds were heard distinctly louder than before. Mr. Douglass had sent a fly before him to Kingsdown, and the driver had been waiting for fifteen minutes before he arrived. During this time no sound had been heard, though 40 blasts had been blown in the interval; nor had the coast-guard man on duty, a practiced observer, heard any of them throughout the day. During the thunderstorm, and while the rain was actually falling with a violence which Mr. Douglass describes as perfectly To rain, in short, I have never been able to trace the slightest deadening influence upon sound. The reputed barrier offered by “thick weather” to the passage of sound was one of the causes which tended to produce hesitation in establishing sound-signals on our coasts. It is to be hoped that the removal of this error may redound to the advantage of coming generations of seafaring men. § 2. Action of SnowFalling snow, according to Derham, is the most serious obstacle of all to the transmission of sound. We did not extend our observations at the South Foreland into snowy weather; but a previous observation of my own bears directly upon this point. On Christmas night, 1859, I arrived at Chamouni, through snow so deep as to obliterate the road-fences, and to render the labor of reaching the village arduous in the extreme. On the 26th and 27th it fell heavily. On the 27th, during a lull in the storm, I reached the Montavert, sometimes breast deep in snow. On the 28th, with great difficulty, two lines of stakes were set out across the glacier, with the view of determining its winter motion. On the 29th the entry in my journal, written in the morning, is: “Snow, heavy snow; it must have descended through the entire night, the quantity freshly fallen is so great.” Under these circumstances I planted my theodolite beside the Mer de Glace, having waded to my position through snow, which, being dry, reached nearly to my breast. Assistants were sent across the glacier with instructions to measure the displacement of a transverse § 3. Passage of Sound through Textile Fabrics, and through Artificial ShowersThe flakes here were so thick that it was only at intervals that I was able to pick up the retreating forms of the men. Still the air through which the flakes fell was continuous. Did the flakes merely yield passively to the sonorous waves, swinging like the particles of air themselves to and fro as the sound-waves passed them? Or did the waves bend by diffraction round the flakes, and emerge from them without sensible loss? Experiment will aid us here by showing the astonishing facility with which sound makes its way among obstacles, and passes through tissues, so long as the continuity of the air in their interstices is preserved. A piece of millboard or of glass, a plank of wood, or the hand, placed across the open end t' of the tunnel a b c d, Fig. 146 (page 334), intercepts the sound of the bell, placed in the padded box P, and stills the sensitive flame k. An ordinary cambric pocket-handkerchief, on the other hand, placed across the tunnel-end produced hardly an appreciable effect upon the sound. Through two layers of the handkerchief the flame was strongly agitated; through four layers it was still agitated; while through six layers, though nearly stilled, it was not entirely so. Dipping the same handkerchief into water, and stretching a single wetted layer across the tunnel-end, it stilled the flame as effectually as the millboard or the wood. Hence the conclusion that the sound-waves in the first instance passed through the interstices of the cambric. Through a single layer of thin silk the sound passed without sensible interruption; through six layers the flame was strongly agitated; while through twelve layers the agitation was quite perceptible. A single layer of this silk, when wetted, stilled the flame. A layer of soft lint produced but little effect upon the sound; a layer of thick flannel was almost equally ineffectual. Through four layers of flannel the flame was perceptibly agitated. Through a single layer of green baize the sound passed almost as freely as through air; through four layers of the baize the action was still sensible. Through a layer of close hard felt, half an inch thick, the sound-waves passed with sufficient energy to sensibly agitate the flame. Through 200 layers of cotton-net the sound passed freely. I did not witness these effects without astonishment. A single layer of thin oiled silk stopped the sound and stilled the flame. A leaf of common note-paper, or a five-pound note, also stopped the sound. The sensitive flame is not absolutely necessary to these But though oiled silk, foreign post, or a banknote, can stop the sound, a film sufficiently thin to yield freely to the aËrial pulses transmits it. A thick soap-film produces an obvious effect upon the sensitive flame; a very thin one does not. The augmentation of the transmitted sound may be observed simultaneously with the generation and brightening of the colors which indicate the increasing thinness of the film. A very thin collodion-film acts in the same way. Acquainted with the foregoing facts regarding the passage of sound through cambric, silk, lint, flannel, baize, felt, and cotton-net, you are prepared for the statement that the sound-waves pass without sensible impediment through heavy artificial showers of rain, hail, and snow. Water-drops, seeds, sand, bran, and flocculi of various kinds, have been employed to form such showers; through all of these, as through the actual rain and hail already described, and through the snow on the Mer de Glace, the sound passes without sensible obstruction. § 4. Action of Fog. Observations in LondonBut the mariner’s greatest enemy, fog, is still to be dealt with; and here for a long time the proper conditions of experiment were absent. Up to the end of November we had had frequent days of haze, sufficiently thick to obscure the white cliffs of the Foreland, but no real fog. Still those cases furnished demonstrative evidence On December 9th a memorable fog settled down on London. I addressed a telegram to the Trinity House suggesting some gun observations. With characteristic promptness came the reply that they would be made in the afternoon at Blackwall. I went to Greenwich in the hope of hearing the guns across the river; but the delay of the train by the fog rendered my arrival too late. Over the river the fog was very dense, and through it came various sounds with great distinctness. The signal-bell of an unseen barge rang clearly out at intervals, and I could plainly hear the hammering at Cubitt’s Town, half a mile away, on the opposite side of the river. No deadening of the sound by the fog was apparent. Through this fog and various local noises, Captain Atkins and Mr. Edwards heard the report of a 12-pounder carronade with a 1-lb. charge distinctly better than the 18-pounder with a 3-lb. charge, an optically clear atmosphere, and all noises absent, on July 3d. Anxious to turn to the best account a phenomenon for which we had waited so long, I tried to grapple with the problem by experiments on a small scale. On the 10th, I stationed my assistant with a whistle and organ-pipe on the walk below the southwest end of the bridge dividing Hyde Park from Kensington Gardens. From An extraordinary amount of sound filled the air during these experiments. The resonant roar of the Bayswater and Knightsbridge roads; the clangor of the great bell of Westminster; the railway-whistles, which were frequently blown, and the fog-signals exploded at the various metropolitan stations, were all heard with extraordinary intensity. This could by no means be reconciled with the statements so categorically made regarding the acoustic impenetrability of a London fog. On the 11th of December, the fog being denser than before, I heard every blast of the whistle, and occasional blasts of the pipe, over the distance between the bridge and the eastern end of the Serpentine. On joining my assistant at the bridge, the loud concussion of a gun was heard by both of us. A police-inspector affirmed that it came from Woolwich, and that he had heard several shots about 2 P.M. and previously. The fact, if a fact, was of the highest importance; so I immediately telegraphed to Woolwich for information. Prof. Abel kindly furnished me with the following particulars: “The firing took place at 1.40 P.M. The guns proved were of comparatively small size—64-pounders, with 10-lb. charges of powder. “The concussion experienced at my house and office, about three-quarters of a mile from the butt, was decidedly more severe than that experienced when the heaviest guns are proved with charges of 110 to 120 lbs. of powder. There was a dense fog here at the time of firing.” These were the guns heard by the police-inspector; on subsequent inquiry it was ascertained that two guns were fired about 3 P.M. These were the guns heard by myself. Prof. Abel also communicated to me the following fact: “Our workman’s bell at the Arsenal Gate, which is of moderate size and anything but clear in tone, is pretty distinctly heard by Prof. Bloxam only when the wind is northeast. During the whole of last week the bell was heard with great distinctness, the wind being southwesterly (opposed to the sound). The distance of the bell from Bloxam’s house is about three-quarters of a mile as the crow flies.” Assuredly no question of science ever stood so much in need of revision as this of the transmission of sound through the atmosphere. Slowly, but surely, we mastered the question; and the further we advanced, the more plainly it appeared that our reputed knowledge regarding it was erroneous from beginning to end. On the morning of the 12th the fog attained its maximum density. It was not possible to read at my window, which fronted the open western sky. At 10.30 I sent an assistant to the bridge, and listened for his whistle and pipe at the eastern end of the Serpentine. The whistle During our summer observations I had once or twice been able to fix the position of the Foreland in thick haze by the direction of the sound. To-day my assistant, hidden by the fog, walked up to the Watermen’s Boathouse sounding his whistle; and I walked along the opposite side of the Serpentine, clearly appreciating for a time that the line joining us was oblique to the axis of the river. Coming to a point which seemed to be exactly abreast of him, I marked it; and on the following day, when the fog had cleared away, the marked position was found to be perfectly exact. When undisturbed by echoes, the ear, with a little practice, becomes capable of fixing with great precision the direction of a sound. On reaching the Serpentine this morning, a peal of bells, which then began to ring, seemed so close at hand that it required some reflection to convince me that they were ringing to the north of Hyde Park. The sounds fluctuated wonderfully in power. Prior to the striking of eleven by the great bell of Westminster, a nearer bell struck with loud clangor. The first five strokes of the Westminster bell were afterward heard, one of them being extremely loud; but the last six strokes were inaudible. An assistant was stationed to attend to the 12 At 7 P.M. the Westminster bell, striking seven, was not at all heard from the Serpentine, while the nearer bell already alluded to was heard distinctly. The fog had cleared away, and the lamps on the bridge could be seen from the eastern end of the Serpentine burning brightly; but, instead of the sound sharing the improvement of the light, what might be properly called an acoustic fog took the place of its optical predecessor. Several series of the whistle and organ-pipe were sounded in succession; one series only of the whistle-sounds was heard, all the others being quite inaudible. Three series of the organ-pipe were heard, but very faintly. On reversing the positions and sounding as before, nothing whatever was heard. At 8 o’clock the chimes and hour-bell of the Westminster clock were both very loud. The “acoustic fog” had shifted its position, or temporarily melted away. Extraordinary fluctuations were also observed in the case of the church-bells heard in the morning: in a few seconds they would sink from a loudly ringing-peal into utter silence, from which they would rapidly return to loud-tongued audibility. The intermittent drifting of fog over the sun’s disk (by which his light is at times obscured, at times revealed) is the optical analogue of these effects. As regards such changes, the acoustic deportment of the atmosphere is a true transcript of its optical deportment. At 9 P.M. three strokes only of the Westminster clock On the 13th, the fog being displaced by thin haze, I went again to the Serpentine. The carriage-sounds were damped to an extraordinary degree. The roar of the Knightsbridge and Bayswater roads had subsided, the tread of troops which passed us a little way off was unheard, while at 11 A.M. both the chimes and the hour-bell of the Westminster clock were stifled. Subjectively considered, all was favorable to auditory impressions; but the very cause that damped the local noises extinguished our experimental sounds. The voice across the Serpentine to-day, with my assistant plainly visible in front of me, was distinctly feebler than it had been when each of us was hidden from the other in the densest fog. Placing the source of sound at the eastern end of the Serpentine I walked along its edge from the bridge toward the end. The distance between these two points is about 1,000 paces. After 500 of them had been stepped, the sound was not so distinct as it had been at the bridge on the day of densest fog; hence, by the law of inverse squares, the optical cleansing of the air through the melting away of the fog had so darkened it acoustically that a sound generated at the eastern end of the Serpentine was lowered to one-fourth of its intensity at a point midway between the end and the bridge. To these demonstrative observations one or two sub During the exceedingly dense and “dripping” fog of January 22d, from the same railings, I heard every stroke of the bell. At the end of the Serpentine, when the fog was densest, the Westminster bell was heard striking loudly eleven. Toward evening this fog began to melt away, and at 6 o’clock I went to the end of the Serpentine to observe the effect of the optical clearing upon the sound. Not one of the strokes reached me. At 9 o’clock and at 10 o’clock my assistant was in the same position, and on both occasions he failed to hear a single stroke of the bell. It was a case precisely similar to that of December 13th, when the dissolution of the fog was accompanied by a decided acoustic thickening of the air. § 5. Observations at the South ForelandSatisfactory, and indeed conclusive, as these results seemed, I desired exceedingly to confirm them by experiments with the instruments actually employed at the South Foreland. On the 10th of February I had the “My dear Tyndall—The inclosed will show how accurately your views have been verified, and I send them on at once without waiting for the details. I think you will be glad to have them, and as soon as I get the report it shall be sent to you. I made up my mind ten days ago that there would be a chance in the light foggy-disposed weather at home, and therefore sent the ‘Argus’ off at an hour’s notice, and requested the Fog Committee to keep one member on board. On Friday I was so satisfied that the fog would occur that I sent Edwards down to record the observations. “Very truly yours, “Fred. Arrow.” The inclosure referred to was notes from Captain Atkins and Mr. Edwards. Captain Atkins writes thus: “As arranged, I came down here by the mail express, meeting Mr. Edwards at Cannon Street. We put up at the Dover Castle, and next morning at 7 I was awoke by sounds of the siren. On jumping up I discovered that the long-looked-for fog had arrived, and that the ‘Argus’ had left her moorings. “However, had I been on board, the instructions I left with Troughton (the master of the ‘Argus’) could not have been better carried out. About noon the fog cleared up, and the ‘Argus’ returned to her moorings, when I learned that they had taken both siren and horn sounds to a distance of 11 miles from the station, where they dropped a buoy. This I knew to be correct, as I have this morning recovered the buoy, and the distances both Mr. Edwards, who was constantly at my side during our summer and autumn observations, and who is thoroughly competent to form a comparative estimate of the strength of the sounds, states that those of the 7th were “extraordinarily loud,” both Captain Atkins and himself being awoke by them. He does not remember ever before hearing the sounds so loud in Dover; it seemed as though the observers were close to the instruments. Other days of fog preceded this one, and they were all days of acoustic transparency, the day of densest fog being acoustically the clearest of all. The results here recorded are of the highest importance, for they bring us face to face with a dense fog and an actual fog-signal, and confirm in the most conclusive manner the previous observations. The fact of Captain Atkins and Mr. Edwards being awakened by the siren proves, beyond all our previous experience, its power during this dense fog. It is exceedingly interesting to compare the transmission of sound on February 7th with its transmission on October 14th. The wind on both days had the same strength and direction. My notes of the observations show the latter to have been throughout a day of extreme optical clearness. The range was 10 miles. During the fog of February 7th the “Argus” heard the sound at 11 miles; and it was also heard at the Varne light-vessel, which is 12-3/4 miles from the Foreland. It is also worthy of note that through the same fog the sounds were well heard at the South Sand Head light-vessel, which is in the opposite direction from the South Foreland, and was actually behind the siren. For this important circumstance is to be borne in mind: on February 7th the siren happened to be pointed, not toward the “Argus,” but toward Dover. Had the yacht been in the axis of the instrument it is highly probable that the sound would have been heard all the way across to the coast of France. It is hardly necessary for me to say a word to guard myself against the misconception that I consider sound to be assisted by the fog itself. The fog-particles have no more influence upon the waves of sound than the suspended particles stirred up over the banks of Newfoundland have upon the waves of the Atlantic. A homogeneous air is the usual associate of fog, and hence the acoustic clearness of foggy weather. § 6. Experiments on Artificial FogsThese observations are clinched and finished by being brought within the range of laboratory experiment. Here we shall learn incidentally a lesson as to the caution required from an experimenter. The smoke from smouldering brown paper was allowed to stream upward through its rectangular apertures, into the tunnel a b c d (Fig. 146); the action upon the sound-waves was strong, rendering the short and agitated sensitive flame k tall and quiescent. Air first passed through ammonia, then through hydrochloric acid, and, thus loaded with thick fumes, was sent into the tunnel; the agitated flame was rendered imme Air passed through perchloride of tin and sent into the tunnel produced exceedingly dense fumes. The action upon the sound-waves was very strong. The dense smoke of resin, burned before the open end of the tunnel, and blown into it with a pair of bellows, had also the effect of stopping the sound-waves, so as to still the agitated flame. The conclusion seems clear, and its perfect harmony with the prevalent À priori notions as to the action of fog upon sound makes it almost irresistible. But caution is here necessary. The smoke of the brown paper was hot; the flask containing the hydrochloric acid was hot; that containing the perchloride of tin was hot; while the resin fumes produced by a red-hot poker were also obviously hot. Were the results, then, due to the fumes or to the differences of temperature? The observations might well have proved a trap to an incautious reasoner. Instead of the smoke and heated air, the heated air alone from four red-hot pokers was permitted to stream upward into the tunnel; the action on the sound-waves was very decided, though the tunnel was optically empty. The flame of a candle was placed at the upper end, and the hot air just above its tip was blown into the tunnel; the action on the sensitive flame was decided. A similar effect was produced when the air, ascending from a red-hot iron, was blown into the tunnel. In these latter cases the tunnel remained optically clear, while the same effect as that produced by the resin, smoke, and fumes was observed. Clearly, then, we are not entitled to ascribe, without further investigation, to Having eliminated the fog and proved the non-homogeneous air effective, our reasoning will be completed by eliminating the heat, and proving the fog ineffective. Instead of the tunnel a b c d, Fig. 146, a cupboard with glass sides, 3 feet long, 2 feet wide, and about 5 feet high, was filled with fumes of various kinds. Here it was thought the fumes might remain long enough for differences of temperature to disappear. Two apertures were made in two opposite panes of glass 3 feet asunder. In front of one aperture was placed the bell in its padded box, and behind the other aperture, and at some distance from it, the sensitive flame. Phosphorus placed in a cup floating on water was ignited within the closed cupboard. The fumes were so dense that considerably less than the three feet traversed by the sound extinguished totally a bright candle-flame. At first there was a slight action upon the sound; but this rapidly vanished, the flame being no more affected than if the sound had passed through pure air. The first action was manifestly due to differences of temperature, and it disappeared when the temperature was equalized. The cupboard was next filled with the dense fumes of gunpowder. At first there was a slight action; but this disappeared even more rapidly than in the case of the phosphorus, the sound passing as if no fumes were there. It required less than half a minute to abolish the action in the case of the phosphorus, but a few seconds sufficed in the case of the gunpowder. These fumes were far more than sufficient to quench the candle-flame. The dense smoke of resin, when the temperature had become equable, exerted no action on the sound. The fumes of gum-mastic were equally ineffectual. The fumes of the perchloride of tin, though of extraordinary density, exerted no sensible effect upon the sound. Exceedingly dense fumes of chloride of ammonium next filled the cupboard. A fraction of the length of the 3-foot tube sufficed to quench the candle-flame. Soon after the cupboard was filled, the sound passed without the least sensible deterioration. An aperture at the top of the cupboard was opened; but though a dense smoke-column ascended through it, many minutes elapsed before the candle-flame could be seen through the attenuated fog. Steam from a copper boiler was so copiously admitted into the cupboard as to fill it with a dense cloud. No real cloud was ever so dense; still the sound passed through it without the least sensible diminution. This being the case, cloud-echoes are not a likely phenomenon. In all of these cases, when a couple of Bunsen’s burners were ignited within the cupboard containing the fumes, less than a minute’s action rendered the air so heterogeneous that the sensitive flame was completely stilled. These acoustically inactive fogs were subsequently proved competent to cut off the electric light. Experiment and observation go, therefore, hand in hand in demonstrating that fogs have no sensible action upon sound. The notion of their impenetrability, which so powerfully retarded the introduction of phonic coast-signals, being thus abolished, we have solid ground for § 7. Action of WindIn stormy weather we were frequently forsaken by our steamer, which had to seek shelter in the Downs or Margate Roads, and on such occasions the opportunity was turned to account to determine the effect of the wind. On October 11th, accompanied by Mr. Douglass and Mr. Edwards, I walked along the cliffs from Dover Castle toward the Foreland, the wind blowing strongly against the sound. About a mile and a half from the Foreland, we first heard the faint but distinct sound of the siren. The horn-sound was inaudible. A gun fired during our halt was also unheard. As we approached the Foreland we saw the smoke of a gun. Mr. Edwards heard a faint crack, but neither Mr. Douglass nor I heard anything. The sound of the siren was at the same time of piercing intensity. We waited for ten minutes, when another gun was fired. The smoke was at hand, and I thought I heard a faint thud, but could not be certain. My companions heard nothing. On pacing the distance afterward we were found to be only 550 yards from the gun. We were shaded at the time by a slight eminence from both the siren and the gun, but this could not account for the utter extinction of the gun-sound at so short a distance, and at a time when the siren sent to us a note of great power. Mr. Ayres at my request walked windward along the cliff, while Mr. Douglass proceeded to St. Margaret’s Bay. During their absence I had three guns fired. Mr. Ayres heard only one of them. Favored by the wind, Mr. Joining Mr. Douglass, we continued our walk to a distance of three-quarters of a mile beyond St. Margaret’s Bay. Here, being dead to leeward, though the wind blew with unabated violence, the sound of the siren was borne to us with extraordinary power. It is within the mark to say that the gun on October 11th was heard five times, and might have been heard fifteen times, as far to leeward as to windward. In windy weather the shortness of its sound is a serious drawback to the use of the gun as a signal. In the case of the horn and siren, time is given for the attention to be fixed upon the sound; and a single puff, while cutting out a portion of the blast, does not obliterate it wholly. Such a puff, however, may be fatal to the momentary gun-sound. On the leeward side of the Foreland, on the 23d of October, the sounds were heard at least four times as far as on the windward side, while in both directions the siren possessed the greatest penetrative power. On the 24th the wind shifted to E.S.E., and the sounds, which, when the wind was W.S.W., failed to reach Dover, were now heard in the streets through thick rain. On the 27th the wind was E.N.E. In our writing-room in the Lord Warden Hotel, in the bed This well-known effect of the wind is exceedingly difficult to explain. Indeed, the only explanation worthy of the name is one offered by Prof. Stokes, and suggested by some remarkable observations of De la Roche. In Vol. I. of “Annales de Chimie” for 1816, p. 176, Arago introduces De la Roche’s memoir in these words: “L’auteur arrive À des conclusions, qui d’abord pourront paraÎtre paradoxales, mais ceux qui savent combien il mettait de soins et d’exactitude dans toutes ses recherches se garderont sans doute d’opposer une opinion populaire À des expÉriences positives.” The strangeness of De la Roche’s results consisted in his establishing, by quantitative measurements, not only that sound has a greater range in the direction of the wind than in the In a short but exceedingly able communication, presented to the British Association in 1857, the eminent physicist above mentioned points out a cause which, if sufficient, would account for the results referred to. The lower atmospheric strata are retarded by friction against the earth, and the upper ones by those immediately below them; the velocity of transition, therefore, in the case of wind, increases from the ground upward. It may be proved that this difference of velocity tilts the sound-wave upward in a direction opposed to, and downward in a direction coincident with, the wind. In this latter case the direct wave is reinforced by the wave reflected from the earth. Now the reinforcement is greatest in the direction in which the direct and reflected waves inclose the smallest angle; and this is at right angles to the direction of the wind. Hence the greater range in this direction. It is not, therefore, according to Prof. Stokes, a stifling of the sound to windward, but a tilting of the sound-wave over the heads of the observers, that defeats the propagation in that direction. This explanation calls for verification, and I wished much to test it by means of a captive balloon rising high enough to catch the deflected wave; but on communicating with Mr. Coxwell, who has earned for himself so high a reputation as an aeronaut, and who has always shown himself so willing to promote a scientific object, I learned with regret that the experiment was too dangerous to be carried out. § 8. Atmospheric SelectionIt has been stated that the atmosphere on different days shows preferences to different sounds. This point is worthy of further illustration. After the violent shower which passed over us on October 18th, the sounds of all the instruments, as already stated, rose in power; but it was noticed that the horn-sound, which was of lower pitch than that of the siren, improved most, at times not only equalling, but surpassing, the sound of its rival. From this it might be inferred that the atmospheric change produced by the rain favored more especially the transmission of the longer sonorous waves. But our programme enabled us to go further than mere inference. It had been arranged on the day mentioned that up to 3.30 P.M. the siren should perform 2,400 revolutions a minute, generating 480 waves a second. As long as this rate continued, the horn, after the shower, had the advantage. The rate of rotation was then changed to 2,000 a minute, or 400 waves a second, when the siren-sound immediately surpassed that of the horn. A clear connection was thus established between aËrial reflection and the length of the sonorous waves. The 10-inch Canadian whistle being capable of adjustment so as to produce sounds of different pitch, on the 10th of October I ran through a series of its sounds. The shrillest appeared to possess great intensity and penetrative power. The belief is common that a note of this character (which affects so powerfully, and even painfully, an observer close at hand) has also the greatest range. Mr. A. Gordon, in his examination before the On the 14th of October the point was submitted to an experimental test. It had been arranged that up to 11.30 A.M. the Canadian whistle, which had been heard with such piercing intensity on the 10th, should sound its shrillest note. At the hour just mentioned we were beside the Varne buoy, 7-3/4 miles from the Foreland. The siren, as we approached the buoy, was heard through the paddle-noises; the horns were also heard, but more feebly than the siren. We paused at the buoy and listened for the 11.30 gun. Its boom was heard by all. Neither before nor during the pause was the shrill-sounding Canadian whistle once heard. At the appointed time it was adjusted to produce its ordinary low-pitched note, which was immediately heard. Further out the low boom of the cannon continued audible after all the other sounds had ceased. But it was only during the early part of the day that this preference for the longer wave was manifested. At 3 P.M. the case was completely altered, for then the high-pitched siren was heard when all the other sounds were inaudible. On many other days we had illustrations of the varying comparative power of the siren and the gun. On the 9th of October sometimes the one, sometimes the other, was predominant. On the morning of the 13th the siren was clearly heard on Shakespeare’s Cliff, while two guns with their puffs perfectly visible were unheard. On October 16th, 2 miles from the signal-station, the gun October 17th began with a preference for the shorter waves. At 11.30 A.M. the mastery of the siren over the gun was pronounced; at 12.30 the gun slightly surpassed the siren; at 1, 2, and 2.30 P.M. the gun also asserted its mastery. This preference for the longer waves was continued on October 18th. On October 20th the day began in favor of the gun, then both became equal, and finally the siren gained the mastery; but the day had become stormy, and a storm is always unfavorable to the momentary gun-sound. The same remark applies to the experiments of October 21st. At 11 A.M., distance 6-1/2 miles, when the siren made itself heard through the noises of wind, sea, and paddles, the gun was fired; but, though listened for with all attention, no sound was heard. Half an hour later the result was the same. On October 24th five observers saw the flash of the gun at a distance of 5 miles, but heard nothing; all of them at this distance heard the siren distinctly; a second experiment on the same day yielded the same result. On the 27th also the siren was triumphant; and on three distinct occasions on the 29th its mastery over the gun was very decided. Such experiments yield new conceptions as to the § 9. Concluding RemarksA few additional remarks and suggestions will fitly wind up this chapter. It has been proved that in some states of the weather the howitzer firing a 3-lb. charge commands a larger range than the whistles, trumpets, or siren. This was the case, for example, on the particular day, October 17th, when the ranges of all the sounds reached their maximum. On many other days, however, the inferiority of the gun to the siren was demonstrated in the clearest manner. The gun-puffs were seen with the utmost distinctness at the Foreland, but no sound was heard, the note of the siren at the same time reaching us with distinct and considerable power. The disadvantages of the gun are these: a. The duration of the sound is so short that, unless the observer is prepared beforehand, the sound, through lack of attention rather than through its own powerlessness, is liable to be unheard. b. Its liability to be quenched by a local sound is so great that it is sometimes obliterated by a puff of wind taking possession of the ears at the time of its arrival. This point was alluded to by Arago, in his report on the celebrated experiments of 1822. By such a puff a mo c. Its liability to be quenched or deflected by an opposing wind, so as to be practically useless at a very short distance to windward, is very remarkable. A case has been cited in which the gun failed to be heard against a violent wind at a distance of 550 yards from the place of firing, the sound of the siren at the same time reaching us with great intensity. Still, notwithstanding these drawbacks, I think the gun is entitled to rank as a first-class signal. I have had occasion myself to observe its extreme utility at Holyhead and the Kish light-vessel near Kingstown. The commanders of the Holyhead boats, moreover, are unanimous in their commendation of the gun. An important addition in its favor is the fact that in a fog the flash or glare often comes to the aid of the sound. On this point, the evidence is quite conclusive. There may be cases in which the combination of the gun with one of the other signals may be desirable. Where it is wished to confer an unmistakable individuality on a fog-signal station, such a combination might with advantage be resorted to. If the gun be retained as one form of fog-signal (and I should be sorry at present to recommend its total abolition), it ought to be of the most suitable description. Our experiments prove the sound of the gun to be dependent on its shape; but we do not know that we have employed the best shape. This suggests the desirability of constructing a gun with special reference to the production of sound. An absolutely uniform superiority on all days cannot be conceded to any one of the instruments subjected to examination; still, our observations have been so numerous and long-continued as to enable us to come to the sure conclusion, that, on the whole, the steam-siren is the most powerful fog-signal which has hitherto been tried in England. It is specially powerful when local noises, such as those of wind, rigging, breaking waves, shore-surf, and the rattle of pebbles, have to be overcome. Its density, quality, pitch, and penetration, render it dominant over such noises after all other signal-sounds have succumbed. I have not, therefore, hesitated to recommend the introduction of the siren as a coast-signal. It will be desirable in each case to confer upon the instrument a power of rotation, so as to enable the person in charge of it to point its trumpet against the wind or in any other required direction. This arrangement was made at the South Foreland, and it presents no mechanical difficulty. It is also desirable to mount the siren, so as to permit of the depression of its trumpet fifteen or twenty degrees below the horizon. In selecting the position at which a fog-signal is to be mounted, the possible influence of a sound-shadow, and the possible extinction of the sound by the interference of the direct waves with waves reflected from the shore, must form the subject of the gravest consideration. Preliminary trials may, in most cases, be necessary before fixing on the precise point at which the instrument is to be placed. The siren which has been long known to scientific men is worked with air; and it would be worth while No fog-signal hitherto tried is able to fulfil the condition laid down in a very able letter already referred to, namely, “that all fog-signals should be distinctly audible for at least 4 miles, under every circumstance.” Circumstances may exist to prevent the most powerful sound from being heard at half this distance. What may with certainty be affirmed is, that in almost all cases the siren may certainly be relied on at a distance of 2 miles; in the great majority of cases it may be relied upon at a distance of 3 miles, and in the majority of cases to a distance greater than 3 miles. Happily the experiments thus far made are perfectly concurrent in indicating that at the particular time when fog-signals are needed, the air holding the fog in suspension is in a highly-homogeneous condition; hence it is in the highest degree probable that in the case of fog we may rely upon the signals being effective at far greater distances than those just mentioned. I am cautious not to inspire the mariner with a confidence which may prove delusive. When he hears a fog-signal he ought, as a general rule (at all events until extended experience justifies the contrary), to assume the source of sound to be not more than 2 or 3 miles distant, and to heave his lead or to take other necessary precautions. If he errs at all in his estimate of distance, it ought to be on the side of safety. With the instruments now at our disposal wisely established along our coasts, I venture to think that the saving of property in ten years will be an exceedingly In a report written for the Trinity House on the subject of fog-signals, my excellent predecessor, Prof. Faraday, expresses the opinion that a false promise to the mariner would be worse than no promise at all. Casting our eyes back upon the observations here recorded, we find the sound-range on clear, calm days varying from 2-1/2 miles to 16-1/2 miles. It must be evident that an instruction founded on the latter observation would be fraught with peril in weather corresponding to the former. Not the maximum but the minimum sound-range should be impressed upon the mariner. Want of attention to this point may be followed by disastrous consequences. This remark is not made without cause. I have before me a “Notice to Mariners” regarding a fog-whistle recently mounted at Cape Race, which is reputed to have a range of 20 miles in calm weather, 30 miles with the wind, and in stormy weather or against the wind 7 to 10 miles. Now, considering the distance reached by sound in our observations, I should be willing to concede the possibility, in a more homogeneous atmosphere than ours, of a sound-range on some calm days of 20 miles, and on some light windy days of 30 miles, to a powerful whistle; but I entertain a strong belief that the stating of these distances, or of the distance 7 to 10 miles against a storm, without any qualification, is calculated to inspire the mariner with false confidence. I would venture to affirm that at Cape Race calm days might be found in which the range of the sound will be less than one-fourth Thus ends, for the present at all events, an inquiry which I trust will prove of some importance, scientific as well as practical. In conducting it I have had to congratulate myself on the unfailing aid and co-operation of the Elder Brethren of the Trinity House. Captain Drew, Captain Close, Captain Were, Captain Atkins, and the Deputy Master, have all from time to time taken part in the inquiry. To the eminent arctic navigator, Admiral Collinson, who showed throughout unflagging and, I would add, philosophic interest in the investigation, I am indebted for most important practical aid. He was almost always at my side, comparing opinions with me, placing the steamer in the required positions, and making with consummate skill and promptness the necessary sextant observations. I am also deeply sensible of the important services rendered by Mr. Douglass, the able and indefatigable engineer, by Mr. Ayres, the assistant engineer, and by Mr. Price Edwards, the private secretary of the Deputy Master of the Trinity House. The officers and gunners at the South Foreland also merit my best thanks, as also Mr. Holmes and Mr. Laidlaw, who had charge of the trumpets, whistles, and siren. In the subsequent experimental treatment of the sub
SUMMARY OF CHAPTER VIIThe paper of Dr. Derham, published in the “Philosophical Transactions” for 1708, has been hitherto the almost exclusive source of our knowledge of the causes which affect the transmission of sound through the atmosphere. Derham found that fog obstructed sound, that rain and hail obstructed sound, but that above all things falling snow, or a coating of fresh snow upon the ground, tended to check the propagation of sound through the atmosphere. With a view to the protection of life and property at sea in the years 1873 and 1874, this subject received an exhaustive examination, observational and experimental. The investigation was conducted at the expense of the Government and under the auspices of the Elder Brethren of the Trinity House. The most conflicting results were at first obtained. On the 19th of May, 1873, the sound range was 3-1/3 miles; on the 20th it was 5-1/2 miles; on the 2d of June, 6 miles; on the 3d, more than 9 miles; on the 10th, 9 miles; on the 25th, 6 miles; on the 26th, 9-1/4 miles; on the 1st of July, 12-3/4 miles; on the 2d, 4 miles; while on the 3d, These discrepancies were proved to be due to a state of the air which bears the same relation to sound that cloudiness does to light. By streams of air differently heated, or saturated in different degrees with aqueous vapors, the atmosphere is rendered flocculent to sound. Acoustic clouds, in fact, are incessantly floating or flying through the air. They have nothing whatever to do with ordinary clouds, fogs, or haze. The most transparent atmosphere may be filled with them; converting days of extraordinary optical transparency into days of equally extraordinary acoustic opacity. The connection hitherto supposed to exist between a clear atmosphere and the transmission of sound is therefore dissolved. The intercepted sound is wasted by repeated reflections in the acoustic cloud, as light is wasted by repeated reflections in an ordinary cloud. And as from the ordinary cloud the light reflected reaches the eye, so from the perfectly invisible acoustic cloud the reflected sound reaches the ear. AËrial echoes of extraordinary intensity and of long duration are thus produced. They occur, contrary to the opinion hitherto entertained, in the clearest air. It is to the wafting of such acoustic clouds through the atmosphere that the fluctuations in the sounds of our public clocks and of church-bells are due. The existence of these aËrial echoes has been proved both by observation and experiment. They may arise either from air-currents differently heated, or from air-currents differently saturated with vapor. Rain has no sensible power to obstruct sound. Hail has no sensible power to obstruct sound. Snow has no sensible power to obstruct sound. Fog has no sensible power to obstruct sound. The air associated with fog is, as a general rule, highly homogeneous and favorable to the transmission of sound. The notions hitherto entertained regarding the action of fog are untenable. Experiments on artificial showers of rain, hail, and snow, and on artificial fogs of extraordinary density, confirm the results of observation. As long as the air forms a continuous medium the amount of sound scattered by small bodies suspended in it is astonishingly small. This is illustrated by the ease with which sound traverses layers of calico, cambric, silk, flannel, baize, and felt. It freely passes through all these substances in thicknesses sufficient to intercept the light of the sun. Through six layers of thin silk, for example, it passes with little obstruction; it finds its way through a layer of close felt half an inch thick, and it is not wholly intercepted by 200 layers of cotton-net. The atmosphere exercises a selective choice upon the waves of sound which varies from day to day, and even from hour to hour. It is sometimes favorable to the transmission of the longer, and at other times favorable to the transmission of the shorter, sonorous waves. The recognized action of the wind has been confirmed by this investigation. |