Singing Flames—Influence of the Tube surrounding the Flame—Influence of Size of Flame—Harmonic Notes of Flames—Effect of Unisonant Notes on Singing Flames—-Action of Sound on Naked Flames—Experiments with Fish-Tail and Bat’s-Wing Burners—Experiments on Tall Flames—Extraordinary Delicacy of Flames as Acoustic Reagents—The Vowel-Flame—Action of Conversational Tones upon Flames—Action of Musical Sounds on Smoke-Jets—Constitution of Water-Jets—Plateau’s Theory of the Resolution of a Liquid Vein into Drops—Action of Musical Sounds on Water-Jets—A Liquid Vein may compete in Point of Delicacy with the Ear § 1. Rhythm of Friction: Musical Flow of a Liquid through a Small ApertureFRICTION is always rhythmic. When a resined bow is passed across a string, the tension of the string secures the perfect rhythm of the friction. When the wetted finger is moved round the edge of a glass, the breaking up of the friction into rhythmic pulses expresses itself in music. Savart’s beautiful experiments on the flow of liquids through small orifices bear immediately upon this question. We have here the means of verifying his results. The tube A B, Fig. 113, is filled with water, its extremity, B, being closed by a plate of brass, which is pierced by a circular orifice of a diameter equal to the thickness of the plate. Removing a little peg which stops the orifice, the water issues from it, and as it sinks in the tube a musical note of great sweetness issues from the liquid column. This note is due to the Fig. 113. Where gases are concerned, friction is of the same intermittent character. A rifle-bullet sings in its passage through the air; while to the rubbing of the wind against the boles and branches of the trees are to be ascribed the “waterfall tones” of an agitated pine-wood. Pass a steadily-burning candle rapidly through the air; an indented band of light, declaring intermittence, is often the consequence, while the almost musical sound which accompanies the appearance of this band is the audible expression of the rhythm. On the other hand, if you blow gently against a candle-flame, the fluttering noise announces a rhythmic action. We have already learned what can be done when a pipe is associated with such a flutter; we have learned that the pipe selects a special pulse from the flutter, and raises it by resonance to a musical sound. In a similar manner the noise of a flame may be turned to account. The § 2. Musical FlamesNor is it necessary to produce this flutter by any extraneous means. When a gas-flame is simply inclosed within a tube, the passage of the air over it is usually sufficient to produce the necessary rhythmic action, so as to cause the flame to burst spontaneously into song. This flame-music may be rendered exceedingly intense. Over a flame issuing from a ring burner with twenty-eight orifices, I place a tin tube 5 feet long and 2-1/2 inches in diameter. The flame flutters at first, but it soon chastens its impulses into perfect periodicity, and a deep and clear musical tone is the result. By lowering the gas the note now sounded is caused to cease, but, after a momentary interval of silence, another note, which is the octave of the last, is yielded by the flame. The first note was the fundamental note of the surrounding tube; this second note is its first harmonic. Here, as in the case of open organ-pipes, we have the aËrial column dividing itself into vibrating segments, separated from each other by nodes. Fig. 114. A still more striking effect is obtained with this larger tube, a b, Fig. 114, 15 feet long and 4 inches wide, Let us now pass on to shorter tubes and smaller flames. Placing tubes of different lengths over eight small flames, each of them starts into song, and you notice that as the tubes lengthen the tones deepen. The lengths of these tubes are so chosen that they yield in succession the eight notes of the gamut. Round some of them you observe a paper slider, s, Fig. 115, by which the tube can be lengthened or shortened. If while the flame is sounding the slider be raised, the pitch instantly falls; if lowered, the pitch rises. These experiments prove the flame The fixed stars, especially those near the horizon, shine with an unsteady light, sometimes changing color as they twinkle. I have often watched at night, upon the plateaux of the Alps, the alternate flash of ruby and emerald in the lower and larger stars. If you place a piece of looking-glass so that you can see in it the image of such a star, on tilting the glass quickly to and Fig. 116. fro, the line of light obtained will not be continuous, but will form a string of colored beads of extreme beauty. The same effect is obtained when an opera-glass is pointed to the star and shaken. This experiment shows that in the act of twinkling the light of the star is quenched at intervals; the dark spaces between the bright beads corresponding to the periods of extinction. Now, our singing flame is a twinkling flame. When it begins to sing you observe a certain quivering motion which may be analyzed with a looking-glass, or an opera-glass, as in the case of the star. § 3. Experimental Analysis of Musical FlameFig. 117. With a larger, brighter, and less rapidly-vibrating flame, you may all see this intermittent action. Over this gas-flame, f, Fig. 117, is placed a glass tube, A B, 6 feet long and 2 inches in diameter. The back of the tube is blackened, so as to prevent the light of the flame from falling directly upon the screen, which it is now desirable to have as dark as possible. In front of the tube is placed a concave mirror, M, which forms upon the § 4. Rate of Vibration of Flame: Toepler’s ExperimentWhen a small vibrating coal-gas flame is carefully examined by the rotating mirror, the beaded line is a series of yellow-tipped flames, each resting upon a base of the richest blue. In some cases I have been unable to observe any union of one flame with another; the spaces between the flames being absolutely dark to the eye. But if dark, the flame must have been totally extinguished at intervals, a residue of heat, however, remaining sufficient to reignite the gas. This is at least possible, for gas may be ignited by non-luminous air. A flash of light, though instantaneous, makes an impression upon the retina which endures for the tenth of a second or more. A flying rifle-bullet, illuminated by a single flash of lightning, would seem to stand still in the air for the tenth of a second. A black disk with radial white strips, when rapidly rotated, causes the white and black to blend to an impure gray; while a spark of electricity, or a flash of lightning, reduces the disk to apparent stillness, the white radial strips being for a time plainly seen. Now, the singing flame is a flashing flame, and M. Toepler has shown that by causing a striped disk to rotate at the proper speed in the presence of such a flame it is brought to apparent stillness, the white stripes being rendered plainly visible. The experiment is both easy and interesting. § 5. Harmonic Sounds of FlameA singing flame yields so freely to the pulses falling upon it that it is almost wholly governed by the sur These sounding flames, though probably never before raised to the intensity in which they have been exhibited § 6. Action of Extraneous Sounds on Flame: Experiments of Schaffgotsch and TyndallAfter these experiments, the first novel acoustic observation on flames was made in Berlin by the late Count Schaffgotsch, who showed that when an ordinary gas-flame was surmounted by a short tube, a strong falsetto voice pitched to the note of the tube, or to its higher In the spring of 1857, this experiment came to my notice. No directions were given in the short account of the observation published in “Poggendorff’s Annalen”; but, in endeavoring to ascertain the conditions of success, a number of singular effects forced themselves upon my attention. Meanwhile, Count Schaffgotsch also followed up the subject. To a great extent we travelled over the same ground, neither of us knowing how the other was engaged; but, so far as the experiments then executed are common to us both, to Count Schaffgotsch belongs the priority. Let me here repeat his first observation. Within this tube, 11 inches long, burns a small gas-flame, bright and silent. The note of the tube has been ascertained, and now, standing at some distance from the flame, I sound that note; the flame quivers. To obtain the extinction of the flame it is necessary to employ a burner with a very narrow aperture, from which the gas issues under considerable pressure. On gently sounding the note of the tube surrounding such a flame, it quivers; but on throwing more power into the voice the flame is extinguished. The cause of the quivering of the flame will be best revealed by an experiment with the siren. As the note of the siren approaches that of the flame you hear beats, and at the same time you observe a dancing of the flame synchronous with the beats. The jumps succeed each other more slowly as unison is approached. They cease when the unison is perfect, and they begin again as soon That the jumping of the flame proceeds in exact accordance with the beats is well shown by a tuning-fork, which yields the same note as the flame. Loading such a fork with a bit of wax, so as to throw it slightly out of unison, and bringing it, when agitated, near the tube in which the flame is singing, the beats and the leaps of the flame occur at the same intervals. When the fork is placed over a resonant jar, all of you can hear the beats, and see at the same time the dancing of the flame. By changing the load upon the tuning-fork, or by slightly altering the size of the flame, the rate at which the beats succeed each other may be altered; but in all cases the jumps address the eye at the moments when the beats address the ear. While executing these experiments I noticed that, on raising my voice to the proper pitch, a flame which had been burning silently in its tube began to sing. The same observation had, without my knowledge, been made a short time previously by Count Schaffgotsch. A tube, 12 inches long, is placed over this flame, which occupies a position about an inch and a half from the lower end of the tube. When the proper note is sounded the flame trembles, but it does not sing. When the tube is lowered until the flame is three inches from its end, the song is spontaneous. Between these two positions there is a third, at which, if the flame be placed, it will burn Even when the back is turned toward the flame the sonorous pulses run round the body, reach the tube, and call forth the song. A pitch-pipe, or any other instrument which yields a note of the proper height, produces the same effect. Mounting a series of tubes, capable of emitting all the notes of the gamut, over suitable flames, with an instrument sufficiently powerful, and from a distance of 20 or 30 yards, a musician, by running over the scale, might call forth all the notes in succession, the whole series of flames finally joining in the song. When a silent flame, capable of being excited in the manner here described, is looked at in a moving mirror, One singing flame may be caused to effect the musical ignition of another. Before you are two small flames, f' and f, Fig. 118 (p. 273), the tube over f' being 10-1/2 inches, that over f 12 inches long. The shorter tube is clasped by a paper slider, s. The flame f' is now singing, but the flame f, in the longer tube, is silent. I raise the paper slider which surrounds f', so as to lengthen the tube, and on approaching the pitch of the tube surrounding f, that flame sings. The experiment may be varied by making f the singing flame and f' the silent one at starting. Raising the telescopic slider, a point is soon attained where the flame f' commences its song. In this way one flame may excite another through considerable distances. It is also possible to silence the singing flame by the proper management of the voice. SENSITIVE NAKED FLAMES§ 7. Discovery of Sensitive Flames by Le ConteWe have hitherto dealt with flames surrounded by resonant tubes; and none of these flames, if naked, would respond in any way to such noise or music as could be here applied. Still it is possible to make naked flames thus sympathetic. This action of musical sounds upon naked flames was first observed by Prof. Le Conte at a musical party in the United States. His observation is thus described: “Soon after the music commenced, I observed that the flame exhibited pulsations which were The significant remark, that the jumping of the flame was not observed until it was near flaring, suggests the
But by proper precautions even a candle-flame may be rendered sensitive. Urging from a small blow-pipe a narrow stream of air through such a flame, an incipient flutter is produced. The flame then jumps visibly to the sound of a whistle, or to a chirrup. The experiment may be so arranged that, when the whistle sounds, the flame shall be either restored almost to its pristine brightness, or that the small amount of light it still possesses shall disappear. The blow-pipe flame of our laboratory is totally unaffected by the sound of the whistle as long as no air is urged through it. By properly tempering the force of the blast, a flame is obtained of the shape shown in Fig. 119. On sounding the whistle the erect portion of the flame § 8. Experiments on Fish-tail and Bat’s-wing FlamesWe now pass on to a thin sheet of flame, issuing from a common fish-tail burner, Fig. 121. You might sing to this flame, varying the pitch of your voice; no shiver of the flame would be visible. You might employ pitch-pipes, tuning-forks, bells, and trumpets, with a like absence of all effect. A barely perceptible motion of the interior of the flame may be noticed when a shrill whistle is blown close to it. But by turning the cock more fully on, the flame is brought to the verge of flaring. And now, when the whistle is blown, the flame thrusts suddenly out seven quivering tongues, Fig. 122. The moment the sound ceases, the tongues disappear, and the flame becomes quiescent.
Passing from a fish-tail to a bat’s-wing burner, we obtain a broad, steady flame, Fig. 123. It is quite insen When a distant anvil is struck with a hammer, the flame instantly responds by thrusting forth its tongues.
An essential condition to entire success in these experiments disclosed itself in the following manner: I was operating on two fish-tail flames, one of which jumped to a whistle while the other did not. The gas of the non-sensitive flame was turned off, additional pressure being thereby thrown upon the other flame. It flared, and its cock was turned so as to lower the flame; but it now proved non-sensitive, however close it might be brought to the point of flaring. The narrow orifice of the half-turned cock interfered with the action of the sound. When the gas was turned fully on, the flame In this way the observation of Dr. Le Conte is easily and strikingly illustrated; in our subsequent, and far more delicate, experiments the precaution just referred to is still more essential. § 9. Experiments on Flames from Circular AperturesA long flame may be shortened and a short one lengthened, according to circumstances, by sonorous vibrations. The flame shown in Fig. 125 is long, straight, and smoky; that in Fig. 126 is short, forked, and brilliant. On sounding the whistle, the long flame becomes short, forked, and brilliant, as in Fig. 127; while the forked flame becomes long and smoky, as in Fig. 128. As regards, therefore, their response to the sound of the whistle, one of these flames is the complement of the other. In Fig. 129 is represented another smoky flame which, when the whistle sounds, breaks up into the form shown in Fig. 130. When a brilliant sensitive flame illuminates an otherwise dark room, in which a suitable bell is caused to strike, a series of periodic quenchings of the light by the sound occurs. Every stroke of the bell is accompanied by a momentary darkening of the room. The foregoing experiments illustrate the lengthening
A flame of admirable steadiness and brilliancy now burns before you. It issues from a single circular orifice in a common iron nipple. This burner, which requires great pressure to make its flame flare, has been specially chosen for the purpose of enabling you to observe, with distinctness, the gradual change from apathy to sensitiveness. The flame, now 4 inches high, is quite indifferent Diminishing the pressure a little, the flame is again 20 inches long, but it is on the point of roaring and shortening. Like the singing flames which were started by the voice, it stands on the brink of a precipice. The proper note pushes it over. It shortens when the whistle sounds, exactly as it did when the pressure is in excess. The action reminds one of the story of the Swiss muleteers, who are said to tie up their bells at certain places lest the tinkle should bring an avalanche down. The snow must be very delicately poised before this could occur. It probably never did occur, but our flame illustrates the principle. We bring it to the verge of falling, and the sonorous pulses precipitate what was already imminent. This is the simple philosophy of all these sensitive flames. When the flame flares, the gas in the orifice of the burner is in a state of vibration; conversely, when the gas in the orifice is thrown into vibration, the flame, if sufficiently near the flaring point, will flare. Thus the sonorous vibrations, by acting on the gas in the passage of the burner, become equivalent to an augmentation of pressure in the holder. In fact, we have here revealed to us the physical cause of flaring through excess of § 10. Seat of SensitivenessThat the external vibrations act upon the gas in the orifice of the burner, and not first upon the burner itself, the tube leading to it, or the flame above it, is thus proved. A glass funnel R, Fig. 131, is attached to a tube 3 feet long and half an inch in diameter. A sensitive flame b is placed at the open end T of the tube, while a small high-pitched reed is placed in the funnel at R. When the sound is converged upon the root of the flame, as in Fig. 131, the action is violent; when converged on a point half an inch above the burner, as in Fig. 132, or at half an inch below the burner, as in Fig. 133, there is no action. The glass tube may be dispensed with and the funnel alone employed, if care be taken to screen off § 11. Influence of Pitch
All sounds are not equally effective on the flame; waves of special periods are required to produce the maximum effect. The effectual periods are those which synchronize with the waves produced by the friction of the gas itself against the sides of its orifice. With some of these flames a low deep whistle is more effective than a shrill one. With others the exciting tremors must be very rapid, and the sound consequently shrill. Not one of these four tuning-forks, which vibrate 256 times, 320 times, 384 times, and 512 times respectively in a second, has any effect upon the flame from our iron nipple. But, besides their fundamental tones, these forks, as you know, can be caused to yield a series of overtones of very high pitch. The vibrations of this series are 1,600, 2,000, To the tap of a hammer upon a board the flame responds; but to the tap of the same hammer upon an anvil the response is much more brisk and animated. The reason is, that the clang of the anvil is rich in the higher tones to which the flame is most sensitive. The powerful tone obtained when our inverted bell is reinforced by its resonant tube has no power over this flame. But when a halfpenny is brought into contact with the vibrating surface the flame instantly shortens, flutters, and roars. I send an assistant with a smaller bell, worked by clockwork, to the most distant part of the gallery. He there detaches the hammer; the strokes follow each other in rhythmic succession, and at every stroke the flame falls from a height of 20 to a height of 8 inches, roaring as it falls. Figs. 134, 135. The rapidity with which sound is propagated through air is well illustrated by these experiments. There is no sensible interval between the stroke of the bell and the ducking of the flame. When the sound acting on the flame is of very short duration a curious and instructive effect is observed. The sides of the flame half-way down, and lower, are seen suddenly fringed by luminous tongues, the central § 12. The Vowel-flameA flame of astonishing sensitiveness now burns before you. It issues from the single orifice of a steatite burner, and reaches a height of 24 inches. The slightest tap on a distant anvil reduces its height to 7 inches. When a bunch of keys is shaken the flame is violently agitated, and emits a loud roar. The dropping of a sixpence into a hand already containing coin, at a distance of 20 yards, knocks the flame down. It is not possible to walk across the floor without agitating the flame. The creaking of boots sets it in violent commotion. The crumpling, or tearing of paper, or the rustle of a silk dress, does the same. It is startled by the patter of a rain-drop. I hold a watch near the flame: nobody hears its ticks; but you all see their effect upon the flame. At every tick it falls and roars. The winding up of the watch also produces tumult. The twitter of a distant sparrow shakes the flame; the note of a cricket would do the same. A chirrup from a distance of 30 yards causes it to fall and roar. I repeat a passage from Spenser: “Her ivory forehead full of bounty brave, Like a broad table did itself dispread; For love his lofty triumphs to engrave, And write the battles of his great godhead. All truth and goodness might therein be read, For there their dwelling was, and when she spake, Sweet words, like dropping honey she did shed; And through the pearls and rubies softly brake A silver sound, which heavenly music seemed to make.” Fig. 136. The flame selects from the sounds those to which it can respond. It notices some by the slightest nod, to others it bows more distinctly, to some its obeisance is very profound, while to many sounds it turns an entirely deaf ear. In Fig. 136, this wonderful flame is represented. On chirruping to it, or on shaking a bunch of keys within a few yards of it, it falls to the size shown in Fig. 137, the whole length, a b, of the flame being suddenly abolished. The light at the same time is practically destroyed, a pale and almost non-luminous residue of it alone remaining. These figures are taken from photographs of the flame. Fig. 137. To distinguish it from the others I have called this the “vowel-flame,” because the different vowel-sounds affect it differently. A loud and sonorous U does not move the flame; on changing the sound to O, the flame quivers; when E is sounded, the flame is strongly affected. I utter the words boot, boat, and beat, in succession. To the first there is no response; to the second, the flame starts; by the third, is thrown into greater commotion; the sound Ah! is still more powerful. Fig. 138. This flame is peculiarly sensitive to the utterance of the letter S. A hiss contains the elements that most forcibly affect the flame. The gas issues from its burner with a hiss, and an external sound of this character is therefore exceedingly effective. From a metal box containing compressed air I allow a puff to escape; the flame instantly ducks down not by any transfer of air from the box to the flame, for the distance between both utterly excludes this idea—it is the sound that affects the flame. From the most distant part of the gallery my assistant permits the compressed air to issue in puffs from the box; at every puff the flame suddenly falls. The hiss of the issuing air at the one orifice precipitates the tumult of the flame at the other. When a musical-box is placed on the table, and permitted to play, the flame behaves like a sentient and motor creature—bowing slightly to some tones, and courtesying deeply to others. § 13. Mr. Philip Harry’s Sensitive FlameMr. Philip Barry has discovered a new and very effective form of sensitive flame, which he thus describes in a letter to myself: “It is the most sensitive of all the flames that I am acquainted with, though from its smaller size it is not so striking as your vowel-flame. It possesses the advantage that the ordinary pressure in the gas-mains is quite sufficient to produce it. The method of producing it consists in igniting the gas (ordinary coal-gas) not at the burner but some inches above it, by interposing between the burner and the flame a piece of wire-gauze.” I give a sketch of the arrangement adopted in Fig. 138. The space between the burner and gauze was 2 inches. The gauze was about 7 inches square, resting on the ring of a retort-stand. It had 32 meshes to the lineal inch. The burner was Sugg’s steatite pinhole burner, the same as used for the vowel-flame. The flame is a slender cone about four inches high, the upper portion giving a bright-yellow light, the base being a non-luminous blue flame. At the least noise this flame roars, sinking down to the surface of the gauze, becoming at the same time invisible. It is very active in its responses, and, being rather a noisy flame, its sympathy is apparent to the ear as well as the eye. “To the vowel-sounds it does not appear to answer so discriminately as the vowel-flame. It is extremely sensitive to A, very slightly to E, more so to I, entirely non-sensitive to O, but slightly sensitive to U. “It dances in the most perfect manner to a small § 14. Sensitive Smoke-jetsIt is not to the flame, as such, that we owe the extraordinary phenomena which have been just described. Effects substantially the same are obtained when a jet of unignited gas, of carbonic acid, hydrogen, or even air itself, issues from an orifice under proper pressure. None of these gases, however, can be seen in its passage through air, and, therefore, we must associate with them some substance which, while sharing their motions, will reveal them to the eye. The method employed from time to time in this place of rendering aËrial vortices visible is well known to many of you. By tapping a membrane which closes the mouth of a large funnel filled with smoke, we obtain beautiful smoke-rings, which reveal the motion of the air. By associating smoke with our gas-jets, in the present instance, we can also trace their course, and, when this is done, the unignited gas proves as sensitive as the flames. The smoke-jets jump, shorten, split into forks, or lengthen into columns, when the proper notes are sounded. Underneath this gas-holder are placed two small basins, the one containing hydrochloric acid, and the other ammonia. Fumes of sal-ammoniac are thus copiously formed, and mingle with the gas contained in the holder. We may, as already stated, operate with coal-gas, carbonic acid, air, or hydrogen; each of them yields good effects. From our excellent steatite burner now issues a thin column of smoke. On sounding the whistle, which was so effective with the flames, it is found Fig. 139. The amount of shrinkage exhibited by some of these smoke-columns, in proportion to their length, is far greater than that of the flames. A tap on the table causes a smoke-jet eighteen inches high to shorten to a bushy bouquet, with a stem not more than an inch in height. The smoke-column, moreover, responds to the voice. A cough knocks it down; and it dances to the tune of a musical-box. Some notes cause the mere top of the smoke-column to gather itself up into a bunch; at other notes the bunch is formed midway down; while notes of more suitable pitch cause the column to contract itself to a cumulus not much more than an inch above the end of the burner. Various forms of the dancing smoke-jet are shown in Fig. 139. As the music con In a perfectly still atmosphere these slender smoke-columns rise sometimes to a height of nearly two feet, apparently vanishing into air at the summit. When this is the case, our most sensitive flames fall far behind them in delicacy; and though less striking than the flames, the smoke-wreaths are often more graceful. Not only special words, but every word, and even every syllable, of the foregoing stanza from Spenser, tumbles a really sensitive smoke-jet into confusion. To produce such effects, a perfectly tranquil atmosphere is necessary. Flame-experiments, in fact, are possible in an atmosphere where smoke-jets are utterly unmanageable. § 15. Constitution of Liquid Veins: Sensitive Water-jetsWe have thus far confined our attention to jets of ignited and unignited coal-gas—of carbonic acid, hydrogen, and air. We will now turn to jets of water. And here a series of experiments, remarkable for their beauty, has long existed, which claim relationship to those just described. These are the experiments of Felix Savart on liquid veins. If the bottom of a vessel containing water be pierced by a circular orifice, the descending liquid vein will exhibit two parts unmistakably distinct. The part of the vein nearest the orifice is steady and limpid, Could the appearance of the vein illuminated by a single flash be rendered permanent, it would be that represented in Fig. 141. And here we find revealed the cause of those swellings and contractions which the disturbed portion of the vein exhibits. The drops, as they descend, are continually changing their forms. When first detached from the end of the limpid portion of the vein, the drop is a spheroid with its longest axis vertical. But a liquid cannot retain this shape, if abandoned to the forces of its own molecules. The spheroid seeks to become a sphere—the longer diameter, therefore, shortens; but, like a pendulum which seeks to return to its position of rest, the contraction of the vertical diameter goes too far, and the drop becomes a flattened spheroid. Now, the contractions of the jet are formed at those places where the longest axis of the drop is vertical, while the swellings appear where the longest axis is horizontal. It will be noticed that between every two of the larger drops is a third one of much smaller dimensions. According to Savart, their appearance is invariable. I wish to make the constitution of a liquid vein evident to you by a simple but beautiful experiment. The condensing lens has been removed from our electric lamp, the light being permitted to pass through a vertical slit This breaking-up of a liquid vein into drops has been a subject of frequent experiment and much discussion. Savart traced the pulsations to the orifice, but he did not think that they were produced by friction. They are powerfully influenced by sonorous vibrations. In the midst of a large city it is hardly possible to obtain the requisite tranquillity for the full development of the continuous, portion of the vein; still, Savart was so far able to withdraw his vein from the influence of such irregular vibrations that its limpid portion became elongated to the extent shown in Fig. 142. It will be understood that Fig. 141 represents a vein exposed to the irregular vibrations of the city of Paris, while Fig. 142 represents one produced under precisely the same conditions, but withdrawn from those vibrations. The drops into which the vein finally resolves itself are incipient even in its limpid portion, announcing themselves there as annular protuberances, which become more and more pronounced, until finally they separate. Their birthplace is near the orifice itself, and under even mod I have also recently gone carefully, not merely by reading, but by experiment, over Plateau’s account of the resolution of a liquid vein into drops. In his researches on the figures of equilibrium of bodies withdrawn from the action of gravity, he finds that a liquid cylinder is stable as long as its length does not exceed three times its diameter; or, more accurately, as long as the ratio between them does not exceed that of the diameter of a circle to its circumference, or 3.1416. If this be a little exceeded the cylinder begins to narrow at some point or other of its length; nips itself together, breaks, and forms immediately two spheres. If the ratio of the length of the cylinder to its diameter greatly exceed 3.1416, then, instead of breaking up into two spheres, it breaks up into several. A liquid cylinder may be obtained by introducing olive-oil into a mixture of alcohol and water, of the Now, Plateau contends that the play of the molecular forces in a liquid cylinder is not suspended by its motion of translation. The first portion of a vein of water quitting an orifice is a cylinder, to which the laws which he has established regarding motionless cylinders apply. The moment the descending vein exceeds the proper length it begins to pinch itself so as to form drops; but urged forward as it is by the pressure above it, and by its own gravity, in the time required for the rounding of the drop it reaches a certain distance from the orifice. At this distance, the pressure remaining constant, and the vein being withdrawn from external disturbance, rupture invariably occurs. And the rupture is accompanied by the phenomenon which has just been called significant. Between every two succeeding large drops a small spherule is formed, as shown in Fig. 141. Permitting a vein of oil to fall from an orifice, not In a small paper published more than twenty years ago I drew attention to the fact that when a descending vein intersects a liquid surface above the point of rupture, if the pressure be not too great, it enters the liquid silently; but when the surface intersects the vein below the point of rupture a rattle is immediately heard, and bubbles are copiously produced. In the former case, not only is there no violent dashing aside of the liquid, but round the base of the vein, and in opposition to its motion, the liquid collects in a heap, by its surface tension or capillary attraction. This experiment can be combined with two other observations of Savart’s, in a beautiful and instructive manner. In addition to the shortening of the continuous portion by sound, Savart found that, when he permitted his membrane to intersect the vein at one of its protuberances, the sound was louder than when the intersection occurred at the contracted portion. I permitted a vein to descend, under scarcely any pressure, from a tube three-quarters of an inch in diameter, and to enter silently a basin of water placed nearly 20 inches below the orifice. On sounding vigorously a Removing the basin, placing an iron tray in its place, and exciting the fork, the vein, which at first struck silently upon the tray, commenced a rattle which rose and sank with the dying out of the sound, according as the swellings or contractions of the jet impinged upon the surface. This is a simple and beautiful experiment. Savart also caused his vein to issue horizontally and at various inclinations to the horizon, and found that, in certain cases, sonorous vibrations were competent to cause a jet to divide into two or three branches. In these experiments the liquid was permitted to issue through an orifice in a thin plate. Instead of this, however, we will resort to our favorite steatite burner; for with water also it asserts the same mastery over its fellows that it exhibited with flames and smoke-jets. It will, moreover, reveal to us some entirely novel results. By means of an India-rubber tube the burner is connected with the water-pipes of the Institution, and, by pointing it obliquely upward, we obtain a fine parabolic jet (Fig. 143). At a certain distance from the orifice, the vein resolves itself into beautiful spherules, whose motions are not rapid A pitch-pipe, or an organ-pipe yielding the note of this tuning-fork, also powerfully controls the vein. The voice does the same. On pitching it to a note of moderate intensity, it causes the wandering drops to gather themselves together. At a distance of twenty yards, the voice is, to all appearance, as powerful in curbing the vein, and causing its drops to close up, as it is when close to the issuing jet. The effect of “beats” upon the vein is also beautiful and instructive. They may be produced either by organ-pipes or by tuning-forks. When two forks vibrate, the one 512 times and the other 508 times in a second, you will learn in our next lecture that they produce four beats in a second. When the forks are sounded the beats are heard, and the liquid vein is seen to gather up its pearls, and scatter them in synchronism with the beats. The sensitiveness of this vein is astounding; it rivals that of the ear itself. Placing the two tuning-forks on a distant table, and permitting the beats to die gradually out, the vein continues its rhythm almost as long as hearing is possible. A more sensitive vein might actually prove superior to the ear—a very surprising result, considering the marvellous delicacy of this organ. By introducing a Leyden-jar into the circuit of a powerful induction-coil, a series of dense and dazzling flashes of light, each of momentary duration, is obtained. Every such flash in a darkened room renders the drops distinct, In these experiments the whole vein gathers itself into a single arched band when the proper note is sounded; but, by varying the conditions, it may be caused to divide into two or more such bands, as shown in Fig. 145. Drawings, however, are ineffectual here; for the wonder of these experiments depends mainly on the sudden transition of the vein from one state to the other. In the motion dwells the surprise, and this no drawing can render. SUMMARY OF CHAPTER VIWhen a gas-flame is placed in a tube, the air in passing over the flame is thrown into vibration, musical sounds being the consequence. Making allowance for the high temperature of the column of air associated with the flame, the pitch of the note is that of an open organ-pipe of the length of the tube surrounding the flame. The vibrations of the flame, while the sound continues, consist of a series of periodic extinctions, total or partial, between every two of which the flame partially recovers its brightness. The periodicity of the phenomenon may be demonstrated by means of a concave mirror which forms an image of the vibrating flame upon a screen. When the image is sharply defined, the rotation of the mirror reduces the single image to a series of separate images of the flame. The dark spaces between the images correspond to the extinctions of the flame, while the images themselves correspond to its periods of recovery. Besides the fundamental note of the associated tube, the flame can also be caused to excite the higher overtones of the tube. The successive divisions of the column of air are those of an open organ-pipe when its harmonic tones are sounded. On sounding a note nearly in unison with a tube containing a silent flame, the flame jumps; and if the position of the flame in the tube be rightly chosen, the extraneous sound will cause the flame to sing. While the flame is singing, a note nearly in unison with its own produces beats, and the flame is seen to jump in synchronism with the beats. The jumping is also observed when the position of the flame within its tube is not such as to enable it to sing. NAKED FLAMESWhen the pressure of the gas which feeds a naked flame is augmented, the flame, up to a certain point, increases in size. But if the pressure be too great, the flame roars or flares. The roaring or flaring of the flame is caused by the state of vibration into which the gas is thrown in the orifice of the burner, when the pressure which urges it through the orifice is excessive. If the vibrations in the orifice of the burner be super-induced by an extraneous sound, the flame will flare under a pressure less than that which, of itself, would produce flaring. The gas under excessive pressure has vibrations of a definite period impressed upon it as it passes through the burner. To operate with a maximum effect upon the flame the external sound must contain vibrations synchronous with those of the issuing gas. When such a sound is chosen, and when the flame is brought sufficiently near its flaring-point, it furnishes an acoustic reagent of unexampled delicacy. At a distance of 30 yards, for example, the chirrup of a house-sparrow would be competent to throw the flame into commotion. It is not to the flame, as such, that we are to ascribe these effects. Effects substantially similar are produced when we employ jets of unignited coal-gas, carbonic acid, hydrogen, or air. These jets may be rendered visible by smoke, and the smoke jets show a sensitiveness to sonorous vibrations even greater than that of the flames. When a brilliant sensitive flame illuminates an otherwise dark room, in which a suitable bell is caused to strike, a series of periodic quenchings of the light by the sound occurs. Every stroke of the bell is accompanied by a momentary darkening of the room. A jet of water descending from a circular orifice is composed of two distinct portions, the one pellucid and If these drops be received upon a membrane, a musical sound is produced. When an extraneous sound of this particular pitch is produced in the neighborhood of the vein, the continuous portion is seen to shorten. The continuous portion of the vein presents a series of swellings and contractions, in the former of which the drops are flattened, and in the latter elongated. The sound produced by the flattened drops on striking the membrane is louder than that produced by the elongated ones. Above its point of rupture a vein of water may be caused to enter water silently; but on sounding a suitable note, the rattle of bubbles is immediately heard; the discontinuous part of the vein rises above the surface, and as the sound dies out the successive swellings and contractions produce alternations of the quantity and sound of the bubbles. In veins propelled obliquely, the scattered water-drops may be called together by a suitable sound, so as to form an apparently continuous liquid arch. Liquid veins may be analyzed by the electric spark, or by a succession of flashes illuminating the veins. |