Longitudinal Vibrations of a Wire—Relative Velocities of Sound in Brass and Iron—Longitudinal Vibrations of Rods fixed at One End—Of Rods free at Both Ends—Divisions and Overtones of Rods vibrating longitudinally—Examination of Vibrating Bars by Polarized Light—Determination of Velocity of Sound in Solids—Resonance—Vibrations of Stopped Pipes: their Divisions and Overtones—Relation of the Tones of Stopped Pipes to those of Open Pipes—Condition of Column of Air within a Sounding Organ-Pipe—Reeds and Reed-Pipes—The Voice—Overtones of the Vocal Chords—The Vowel Sounds—Kundt’s Experiments—New Methods of determining the Velocity of Sound § 1. Longitudinal Vibrations of Wires and Rods: Conversion of Longitudinal into Transverse VibrationsWE HAVE thus far occupied ourselves exclusively with transversal vibrations; that is to say, vibrations executed at right angles to the lengths of the strings, rods, plates, and bells subjected to examination. A string is also capable of vibrating in the direction of its length, but here the power which enables it to vibrate is not a tension applied externally, but the elastic force of its own molecules. Now this molecular elasticity is much greater than any that we can ordinarily develop by stretching the string, and the consequence is that the sounds produced by the longitudinal vibrations of a string are, as a general rule, much more acute than those produced by its transverse vibrations. These longitudinal vibrations may be excited by the oblique passage of a fiddle-bow; but they are more easily When the wire of our monochord is plucked aside, you hear the sound produced by its transverse vibrations. When resined leather is rubbed along the wire, a note much more piercing than the last is heard. This is due to the longitudinal vibrations of the wire. Behind the table is stretched a stout iron wire 23 feet long. One end of it is firmly attached to an immovable wooden tray, the other end is coiled round a pin fixed firmly into one of our benches. With a key this pin can be turned, and the wire stretched so as to facilitate the passage of the rubber. Clasping the wire with the resined leather, and passing the hand to and fro along it, a rich, loud musical sound is heard. Halving the wire at its centre, and rubbing one of its halves, the note heard is the octave of the last: the vibrations are twice as rapid. When the wire is clipped at one-third of its length and the shorter segment rubbed, the note is a fifth above the octave. Taking one-fourth of its length and rubbing as before, the note yielded is the double octave of that of the whole wire, being produced by four times the number of vibrations. Thus, in longitudinal as well as in transverse vibrations, the number of vibrations executed in a given time is inversely proportional to the length of the wire. And notice the surprising power of these sounds when the wire is rubbed vigorously. With a shorter length, the note is so acute, and at the same time so powerful, as to be hardly bearable. It is not the wire itself which produces this intense sound; it is the wooden tray at its § 2. Longitudinal Pulses in Iron and Brass: their Relative Velocities determinedCausing the wire to vibrate again longitudinally through its entire length, my assistant shall at the same time turn the key at the end, thus changing the tension. You notice no variation of the note. The longitudinal vibrations of the wire, unlike the transverse ones, are independent of the tension. Beside the iron wire is stretched a second, of brass, of the same length and thickness. I rub them both. Their tones are not the same; that of the iron wire is considerably the higher of the two. Why? Simply because the velocity of the sound-pulse is greater in iron than in brass. The pulses in this case pass to and fro from end to end of the wire. At one moment the wire pushes the tray at its end; at the next moment it pulls the tray, this pushing and pulling being due to the passage of the pulse to and fro along the whole wire. The time required for a pulse to run from one end to the other and back is that of a complete vibration. In that time the wire imparts one push and one pull to the wooden tray at its end; the wooden tray imparts one complete vibration to the air, and the air bends once in and once out the tympanic membrane. It is manifest that the rapidity of vibration, or, in other words, the pitch of the note, depends upon the velocity with which the sound-pulse is transmitted through the wire. And now the solution of a beautiful problem falls of itself into our hands. By shortening the brass wire we cause it to emit a note of the same pitch as that emitted by the other. You hear both notes now sounding in unison, and the reason is that the sound-pulse travels through these 23 feet of iron wire, and through these 15 feet 6 inches of brass wire, in the same time. These lengths are in the ratio of 11:17, and these two numbers express the relative velocities of sound in brass and iron. In fact, the former velocity is 11,000 feet, and the latter 17,000 feet a second. The same method is of course applicable to many other metals. Fig. 82. When a wire or string, vibrating longitudinally, emits its lowest note, there is no node whatever upon it; the pulse, as just stated, runs to and fro along the whole length. But, like a string vibrating transversely, it can also subdivide itself into ventral segments separated by nodes. By damping the centre of the wire we make that point a node. The pulses here run from both ends, meet in the centre, recoil from each other, and return to the ends, where they are reflected as before. The note produced is the octave of the fundamental note. The next higher note corresponds to the division of the wire into three vibrating segments, separated from each other by two nodes. The first of these three modes of vibration is shown in Fig. 82, a and b; the second at c and d; A rod or bar of wood or metal, with its two ends fixed, and vibrating longitudinally, divides itself in the same manner as the wire. The succession of tones is also the same in both cases. § 3. Longitudinal Vibrations of Rods fixed at One End: Musical Instruments formed on this PrincipleRods and bars with one end fixed are also capable of vibrating longitudinally. A smooth wooden or metal rod, for example, with one of its ends fixed in a vise, yields a musical note, when the resined fingers are passed along it. When such a note yields its lowest note, it simply elongates and shortens in quick alternation; there is, then, no node upon the rod. The pitch of the note is Fig. 83. inversely proportional to the length of the rod. This follows necessarily from the fact that the time of a complete vibration is the time required for the sonorous pulse to run twice to and fro over the rod. The first overtone of a rod, fixed at one end, corresponds to its division by a node at a point one-third of its length from its free end. Its second overtone corresponds to a division by two nodes, the highest of which is at a point one-fifth of the length of the rod from its The order of the tones of a rod fixed at one end and vibrating longitudinally is that of the odd numbers 1, 3, 5, 7, etc. It is easy to see that this must be the case. For the time of vibration of c or d is that of the segment above the dotted line: and the length of this segment being only one-third that of the whole rod, its vibrations must be three times as rapid. The time of vibration in e or f is also that of its highest segment, and as this segment is one-fifth of the length of the whole rod, its vibrations must be five times as rapid. Thus the order of the tones must be that of the odd numbers. Before you, Fig. 84, is a musical instrument, the sounds of which are due to the longitudinal vibrations of a number of deal rods of different lengths. Passing the resined fingers over the rods in succession, a series of notes of varying pitch is obtained. An expert per § 4. Vibrations of Rods free at Both EndsFig. 85. Rods with both ends free are also capable of vibrating longitudinally, and producing musical tones. The investigation of this subject will lead us to exceedingly important results. Clasping a long glass tube exactly at its centre, and passing a wetted cloth over one of its halves, a clear musical sound is the result. A solid glass rod of the same length would yield the same note. In this case the centre of the tube is a node, and the two halves elongate and shorten in quick alternation. M. KÖnig, of Paris, has provided us with an instrument which will illustrate this action. A rod of brass, a b, Fig. 85, is held at its centre by the clamp s, while an ivory ball, suspended by two strings from the points, m and n, of a wooden frame, is caused to rest against the end, b, of the brass rod. Drawing gently a bit of resined leather over the rod near a, it is thrown into longitudinal vibration. The centre, s, is a node; but the uneasiness of the § 5. Fracture of Glass Tube by Sonorous VibrationsWhen the wetted cloth is passed over the surface of a glass tube the film of liquid left behind by the cloth is seen forming narrow tremulous rings all along the rod. Now this shivering of the liquid is due to the shivering of the glass underneath it, and it is possible so to augment the intensity of the vibration that the glass shall actually go to pieces. Savart was the first to show this. Twice in this place I have repeated this experiment, sacrificing in each case a fine glass tube 6 feet long and 2 inches in diameter. Seizing the tube at its centre C, Fig. 86, I swept my hand vigorously to and fro along C D, until finally the half most distant from my hand was shivered into annular fragments. On examining these it was found that, narrow as they were, many of them were marked by circular cracks indicating a still more minute subdivision. In this case also the rapidity of vibration is inversely proportional to the length of the rod. A rod of half the length vibrates longitudinally with double the rapidity, a rod of one-third the length with treble the rapidity, and so on. The time of a complete vibration being that required by the pulse to travel to and fro over the rod, and that time being directly proportional to the length of the rod, the rapidity of vibration must, of necessity, be in the inverse proportion. Fig. 86. Fig. 87. This division of a rod by a single node at its centre corresponds to the deepest tone produced by its longitudinal vibration. But, as in all other cases hitherto examined, such rods can subdivide themselves further. Holding the long glass rod a e, Fig. 87, at a point b, midway between its centre and one of its ends, and rubbing its short section, a b, with a wet cloth, the point b becomes a node, a second node, d, being formed at the same distance from the opposite end of the rod. Thus we have the rod divided into three vibrating parts, consisting of one whole ventral segment, b d, and two half ones, a b and d e. The sound corresponding to this division of the rod is the octave of its fundamental note. You have now a means of checking me. For, if the second mode of division just described produces the octave of the fundamental note, and if a rod of half the length produces the same octave, then the whole rod held at a point one-fourth of its length from one of its ends ought to emit the same note as the half rod held Fig. 88. Fig. 88, a and b, c and d, e and f, shows the three first divisions of a rod free at both ends and vibrating longitudinally. The nodes, as before, are marked by transverse dots, the direction of the pulses being shown by arrows. The order of the tones is that of the numbers, 1, 3, 4, etc. § 6. Action of Sonorous Vibrations on Polarized LightWhen a tube or rod vibrating longitudinally yields its fundamental tone, its two ends are in a state of free vibration, the glass there suffering neither strain nor pressure. The case at the centre is exactly the reverse; here there is no vibration, but a quick alternation of tension and compression. When the sonorous pulses meet at the centre they squeeze the glass; when they recoil they strain it. Thus while at the ends we have the maximum of vibration, but no change of density, at the centre we have the maximum changes of density, but no vibration. We have now cleared the way for the introduction of a very beautiful experiment made many years ago by Biot, but never, to my knowledge, repeated on the scale here presented to you. The beam from our electric lamp, L, Fig. 89, being sent through a prism, B, of bi-refracting spar, a beam of polarized light is obtained. Fig. 89. I now introduce between the prisms B and n a rectangle, s s', of plate glass, 6 feet long, 2 inches wide, and one-third of an inch thick, which is to be thrown into longitudinal vibration. The beam from L passes through the glass at a point near its centre, which is held in a vise, c, so that when a wet cloth is passed over one of the halves, c s', of the strip, the centre will be a node. During its longitudinal vibration the glass near the centre is, as already explained, alternately strained and compressed; and this successive strain and pressure so changes the condition of the light as to enable it to pass through the second prism. The screen is The light of this disk appears to be continuous, but it is really intermittent, for it is only when the glass is under strain or pressure that the light can get through. In passing from strain to pressure, and from pressure to strain, the glass is for a moment in its natural state, which, if it continued, would leave the screen dark. But the impressions of brightness, due to the strains and pressures, remain far longer upon the retina than is necessary to abolish the intervals of darkness; hence the screen appears illuminated by a continuous light. When the glass rectangle is shifted so as to cause the beam of polarized light to pass through it close to its end, s, the longitudinal vibrations of the glass have no effect whatever upon the polarized beam. Thus, by means of this subtile investigator, we demonstrate that, while the centre of the glass, where the vibration is nil, is subjected to quick alternations of strain and pressure, the ends of the rectangle, where the vibration is a maximum, suffer neither. § 7. Vibrations of Rods of Wood: Determination of Relative Velocities in Different WoodsRods of wood and metal also yield musical tones when they vibrate longitudinally. Here, however, the rubber Modes of investigation, which could only be hinted at in our earlier lectures, are now falling naturally into our hands. When in the first lecture the velocity of sound in air was spoken of, many possible methods of determining this velocity must have occurred to your minds, because here we have miles of space to operate upon. Its velocity through wood or metal, where such distances are out of the question, is determined in the simple manner just indicated. From the notes which they emit when suitably prepared, we may infer with certainty the relative velocities of sound through different solid substances; and determining the ratio of the velocity in any one of them to its velocity in air, we are able to draw up a RESONANCE§ 8. Experiments with Resonant Jars. Analysis and ExplanationThe series of tuning-forks now before you have had their rates of vibration determined by the siren. One, you will remember, vibrates 256 times in a second, the length of its sonorous wave being 4 feet 4 inches. It is detached from its case, so that when struck against a pad you hardly hear it. When held over this glass jar, A B, Fig. 90, 18 inches deep, you still fail to hear the sound of the fork. Preserving the fork in its position, I pour water with the least possible noise into the jar. The column of air underneath the fork shortens, the sound augments in intensity, and when the water has reached a certain level it bursts forth with extraordinary power. A greater quantity of water causes the sound to sink, and become finally inaudible, as at first. By pouring the water carefully out, a point is reached where the reinforcement of the sound again occurs. Experimenting thus, we learn that there is one particular length of the column of air which, when the fork is placed above it, produces a maximum augmentation of the sound. This reinforcement of the sound is named resonance. Operating in the same way with all the forks in succession, a column of air is found for each, which yields What is the physical meaning of this very wonderful effect? To solve this question we must revive our knowledge of the relation of the motion of the fork itself to the motion of the sonorous wave produced by the fork. Supposing a prong of this fork, which executes 256 vibrations in a second, to vibrate between the points a and b, Fig. 92, in its motion from a to b the fork generates half a sonorous wave, and Fig. 91. as the length of the whole wave emitted by this fork is 4 feet 4 inches, at the moment the prong reaches b the foremost point of the sonorous wave will be at C, 2 feet 2 inches distant from the fork. The motion of the wave, then, is vastly greater than that of the fork. In fact, the distance a b is, in this case, not more than one-twentieth of an inch, while the wave has passed over a distance of 26 inches. With forks of lower pitch the difference would be still greater. Fig. 92. Our next question is, what is the length of the column of air which resounds to this fork? By measurement with a two-foot rule it is found to be 13 inches. But the length of the wave emitted by the fork is 52 inches; hence the length of the column of air which resounds to the fork is equal to one-fourth of the length of the sound-wave produced by the fork. This rule is general, and might be illustrated by any other of the forks instead of this one. Let the prong, vibrating between the limits a and b, be placed over its resonant jar, A B, Fig. 93. In the time required by the prong to move from a to b, the condensation it produces runs down to the bottom of the jar, is there reflected, and, as the distance to the bottom and back is 26 inches, the reflected wave will reach the fork at the moment when it is on the point of returning from b to a. The rarefaction of the wave is produced by the retreat of the prong from b to a. This rarefaction will also run to the bottom of the jar and back, overtaking the prong just as it reaches the limit, a, of its excursion. It is plain from this analysis that When we substitute for the air in one of these jars a gas of different elasticity, we find the length of the resounding column to be different. The velocity of sound through coal-gas is to its velocity in air about as 8:5. Hence, to synchronize with our fork, a jar filled with coal-gas must be deeper than one filled with air. I turn this jar, 18 inches long, upside down, and hold close to its open mouth our agitated tuning-fork. It is scarcely audible. The jar, with air in it, is 5 inches too deep for this fork. Let coal-gas now enter the jar. As it ascends the note at a certain point swells out, proving that for the more elastic gas a depth of 18 inches is not too great. In fact, it is not great enough; for if too much gas be allowed to enter the jar the resonance is weakened. By suddenly turning the jar upright, still holding the fork close to its mouth, the gas escapes, and at the point of proper admixture of gas and air the note swells out again. § 9. Reinforcement of Bell by ResonanceThis fine, sonorous bell, Fig. 94, is thrown into intense vibration by the passage of a resined bow across its edge. You hear its sound, pure, but not very forcible. When, however, the open mouth of this large tube, which is closed at one end, is brought close to one of the vibrat Fig. 94. The second tube, open at both ends, is capable of being lengthened and shortened by a telescopic slider. When brought near the vibrating bell, the resonance is feeble. On lengthening the tube by drawing out the slider at a certain point, the tone swells out as before. If the tube be made longer, the resonance is again enfeebled. Note the fact, which shall be explained presently, that the open tube which gives the maximum resonance is exactly twice the length of the closed one. For these fine experiments we are indebted to Savart. § 10. Expenditure of Motion in ResonanceWith the India-rubber tube employed in our third chapter it was found necessary to time the impulses properly, so as to produce the various ventral segments. I could then feel that the muscular work performed, when the impulses were properly timed, was greater than Reflecting on what we have now learned, you would have little difficulty in solving the following beautiful problem: You are provided with a tuning-fork and a siren, and are required by means of these two instruments to determine the velocity of sound in air. To solve this problem you lack, if anything, the mere power of manipulation which practice imparts. You would first determine, by means of the siren, the number of vibrations executed by the tuning-fork in a second; you would then determine the length of the column of air which resounds to the fork. This length multiplied by 4 would give you, approximately, the wave-length of the fork, and the wave-length multiplied by the number of vibrations in a second would give you the velocity in a second. Without quitting your private room, therefore, you § 11. Resonators of HelmholtzFig. 94a Helmholtz has availed himself of the principle of resonance in analyzing composite sounds. He employs little hollow spheres, called resonators, one of which is shown in Fig. 94a. The small projection b, which has an orifice, is placed in the ear, while the sound-waves enter the hollow sphere through the wide aperture at a. Reinforced by the resonance of such a cavity, and rendered thereby more powerful than its companions, a particular note of a composite clang may be in a measure isolated and studied alone. ORGAN-PIPES§ 12. Principles of Resonance applied to Organ-PipesThus disciplined we are prepared to consider the subject of organ-pipes, which is one of great importance. Before me on the table are two resonant jars, and in my right hand and my left are held two tuning-forks. I agitate both, and hold them over this jar. One of them only is heard. Held over the other jar, the other fork alone is heard. Each jar selects that fork whose periods of vibration synchronize with its own. And instead of two forks suppose several of them to be held over the jar; from the confused assemblage of pulses thus gener When I blow across the open mouth of the jar, or, better still, for the jar is too wide for this experiment, when I blow across the open end of a glass tube, t u, Fig. 95, of the same length as the jar, a fluttering of the air is thereby produced, an assemblage of pulses at the open mouth of the tube being generated. And what is the consequence? The tube selects that pulse of the flutter which is in synchronism with itself, and raises it to a musical sound. The sound, you perceive, is precisely that obtained when the proper tuning-fork is placed over the tube. The column of air within the tube has, in this case, virtually created its own tuning-fork; for by the reaction of its pulses upon the sheet of air issuing from the lips it has compelled that sheet to vibrate in synchronism with itself, and made it thus act the part of the tuning-fork. Fig. 95. Selecting for each of the other tuning-forks a resonant tube, in every case, on blowing across the open end of the tube, a tone is produced identical in pitch with that obtained through resonance. When different tubes are compared, the rate of vibration is found to be inversely proportional to the length of the tube. These three tubes are 24, 12, and 6 inches long, respectively. I blow gently across the 24-inch tube, and bring out its fundamental note; similarly treated, the 12-inch tube yields the octave of the note of the 24-inch. In like manner the 6-inch tube yields the octave of the 12-inch. It is plain that this must be the case; for, § 13. Vibrations of Stopped Pipes: Modes of Division: OvertonesBut that the current of air should be thus able to accommodate itself to the requirements of the tube, it must enjoy a certain amount of flexibility. A little reflection will show you that the power of the reflected pulse over the current must depend to some extent on the force of the current. A stronger current, like a more powerfully stretched string, requires a great force to deflect it, and when deflected vibrates more quickly. Accordingly, to obtain the fundamental note of this 24-inch tube, we must blow very gently across its open end; a rich, full, and forcible musical tone is then produced. With a little stronger blast the sound approaches a mere rustle; blowing stronger still, a tone is obtained of much higher pitch than the fundamental one. This is the first overtone of the tube, to produce which the column of air within it has divided itself into two vibrating parts, with a node between them. With a still stronger blast a still higher note is obtained. The tube is now divided into three vibrating parts, separated from each other by two nodes. Once more I blow with sudden strength; a higher note than any before obtained is the consequence. In Fig. 96 are represented the divisions of the column Fig. 96. We have now to inquire into the relation of these successive notes to each other. The space from node to node has been called all through “a ventral segment”; hence the space between the middle of a ventral segment and a node is a semi-ventral segment. You will readily bear in mind the law that the number of vibrations is directly proportional to the number of semi-ventral segments into which the column of air within the tube is divided. Thus, when the fundamental note is sounded, we have but a single semi-ventral segment, as at a and b. The bottom here is a node, and the open end of the tube, It is evident that this must be the law of succession. For the time of vibration in c or d is that of a stopped tube of the length x y; but this length is one-third of the length of the whole tube, consequently its vibrations must be three times as rapid. The time of vibration in e or f is that of a stopped tube of the length x' y', and inasmuch as this length is one-fifth that of the whole tube, its vibrations must be five times as rapid. We thus obtain the succession 1, 3, 5; if we pushed matters further we should obtain the continuation of the series of odd numbers. And here it is once more in your power to subject my statements to an experimental test. Here are two tubes, one of which is three times the length of the other. I sound the fundamental note of the longest tube, and then the next note above the fundamental. The vibrations of these two notes are stated to be in the ratio of 1:3. This latter note, therefore, ought to be of precisely the same pitch as the fundamental note of the shorter of the two tubes. When both tubes are sounded their notes are identical. It is only necessary to place a series of such tubes of different lengths thus together to form that ancient instrument, Pan’s pipes, p p', Fig. 97 (page 223), with which we are so well acquainted. The successive divisions, and the relation of the overtones of a rod fixed at one end (described in page 205), are plainly identical with those of a column of air in a tube stopped at one end, which we have been here considering. § 14. Vibrations of Open Pipes: Modes of Division: OvertonesFrom tubes closed at one end, and which, for the sake of brevity, may be called stopped tubes, we now pass to tubes open at both ends, which we shall call open tubes. Comparing, in the first instance, a stopped tube with an open one of the same length, we find the note of the latter an octave higher than that of the former. This result is general. To make an open tube yield the same note as a closed one, it must be twice the length of the latter. And, since the length of a closed tube sounding its fundamental note is one-fourth of the length of its sonorous wave, the length of an open tube is one-half that of the sonorous wave that it produces. It is not easy to obtain a sustained musical note by blowing across the end of an open glass tube; but a mere puff of breath across the end reveals the pitch to the disciplined ear. In each case it is that of a closed tube half the length of the open one. Fig. 98. Fig. 99. There are various ways of agitating the air at the ends of pipes and tubes, so as to throw the air-columns within them into vibration. In organ-pipes this is done by blowing a thin sheet of air against a sharp edge. Instead of a fluttering sheet of air, a tuning-fork whose rate of vibration synchronizes with that of the organ-pipe may be The heavy vibrating mass of the tuning-fork is practically uninfluenced by the motion of the air within the pipe. But this is not the case when air itself is the vibrating body. Here, as before explained, the pipe creates, as it were, its own tuning-fork, by compelling Fig. 101. The condition of the air within an open organ-pipe, when its fundamental note is sounded, is that of a rod free at both ends, held at its centre, and caused to vibrate longitudinally. The two ends are places of vibration, the centre is a node. Is there any way of feeling the vibrating air-column so as to determine its nodes and its places of vibration? The late excellent William Hopkins has taught us the following mode of solving this problem: Over a little hoop is stretched a thin membrane, forming a little tambourine. The front of this organ-pipe, P P', Fig. 101, is of glass, through which you can see the position of any body within it. By means of a string, the little tambourine, m, can be raised or lowered at pleasure through the entire length of the pipe. When held above the upper end of the pipe, you hear the loud buzzing of the membrane. When lowered into the pipe, it continues to buzz for a time; the sound becoming gradually feebler, and finally ceasing totally. It is now in the middle of the pipe, where it cannot vibrate, because the air around it is at rest. On lowering it still further, the buzzing sound instantly recommences, and continues down to the bottom of the pipe. Thus, as the membrane is raised and lowered in quick succession, during every descent and ascent, we have two periods of Fig. 102. What is the condition of the air at this node? Again, that of the middle of a rod, free at both ends, and yielding the fundamental note of its longitudinal vibration. The pulses reflected from both ends of the rod, or of the column of air, meet in the middle, and produce compression; they then retreat and produce rarefaction. Thus, while there is no vibration in the centre of an organ-pipe, the air there undergoes the greatest changes of density. At the two ends of the pipe, on the other hand, the air-particles merely swing up and down without sensible compression or rarefaction. If the sounding pipe were pierced at the centre, and the orifice stopped by a membrane, the air, when condensed, would press the membrane outward, and, when rarefied, the external air would press the membrane inward. The membrane would therefore vibrate in unison with the column of air. The organ-pipe, Fig. 102, is so arranged that a small jet of gas, b, can be lighted opposite the centre of the pipe, and there acted upon by the Blowing into the pipe so as to sound its fundamental note, the three flames are agitated, but the central one is most so. Lowering the flames so as to render them very small, and blowing again, the central flame, b, is extinguished, while the others remain lighted. The experiment may be performed half a dozen times in succession; the sounding of the fundamental note always quenches the middle flame. By blowing more sharply into the pipe, it is caused to yield its first overtone. The middle node no longer exists. The centre of the pipe is now a place of maximum vibration, while two nodes are formed midway between the centre and the two ends. But if this be the case, and if the flame opposite the node be always blown out, then, when the first overtone of this pipe is sounded, the two flames a and c ought to be extinguished, while the central flame remains lighted. This is the case. When the first harmonic is sounded the two nodal flames are infallibly extinguished, while the flame b in the middle of the ventral segment is not sensibly disturbed. There is no theoretic limit to the subdivision of an organ-pipe, either stopped or open. In stopped pipes we In open pipes, as in stopped ones, the number of vibrations executed in the unit of time is inversely proportional to the length of the pipe. This follows from the fact, already dwelt upon so often, that the time of a In Fig. 103, a and b (at the bottom) represent the division of an open pipe corresponding to its fundamental tone; c and d represent the division corresponding to its first, e and f the division corresponding to its second overtone, the dots marking the nodes. The distance m n is one-half, o p is one-fourth, and s t is one-sixth of the whole length of the pipe. But the pitch of a is that of a stopped pipe equal in length to m n; the pitch of c is that of a stopped pipe of the length o p; while the pitch of e is that of a stopped pipe of the length s t. Hence, as these lengths are in the ratio of 1/2:1/4:1/6, or as 1:1/2:1/3, the rates of vibration must be as the reciprocals of these, or as 3:2:1. From the mere inspection, therefore, of the respective modes of vibration, we can draw the inference that the succession of tones of an open pipe must correspond to the series of natural numbers. The pipe a, Fig. 103, has been purposely drawn twice the length of a, Fig. 93 (p. 215). It is perfectly manifest that to complete a vibration the pulse has to pass over the same distance in both pipes, and hence that the pitch of the two pipes must be the same. The open pipe, a n, consists virtually of two stopped ones, with the central nodal surface at m as their common base. This shows the relation of a stopped pipe to an open one to be that which experiment establishes. § 15. Velocity of Sound in Gases, Liquids, and Solids determined by Musical VibrationsWe have already learned that the relative velocities of sound in different solid bodies may be determined from We had also in our first lecture a table of the velocities of sound in other gases than air. I am persuaded that you could tell me, after due reflection, how this table was constructed. It would only be necessary to find a series of organ-pipes which, when filled with the different gases, yield the same note; the lengths of these pipes would give the relative velocities of sound through the gases. Thus we should find the length of a pipe filled with hydrogen to be four times that of a pipe filled But we had also a table of velocities through various liquids. How was it constructed? By forcing the liquids through properly constructed organ-pipes, and comparing their musical tones. Thus, in water it requires a pipe a little better than four feet long to produce the note of an air-pipe one foot long; and this proves the velocity of sound in water to be somewhat more than four times its velocity in air. My object here is to give you a clear notion of the way in which scientific knowledge enables us to cope with these apparently insurmountable problems. It is not necessary to go into the niceties of these measurements. You will, however, readily comprehend that all the experiments with gases might be made with the same organ-pipe, the velocity of sound in each respective gas being immediately deduced from the pitch of its note. With a pipe of constant length the pitch, or, in other words, the number of vibrations, would be directly proportional to the velocity. Thus, comparing oxygen with hydrogen, we should find the note of the latter to be the double octave of that of the former, whence we should infer the velocity of sound in hydrogen to be four times its velocity in oxygen. The same remark applies to experiments with liquids. Here also the same pipe may be employed throughout, the velocities being inferred from the notes produced by the respective liquids. In fact, the length of an open pipe being, as already explained, one-half the length of its sonorous wave, it is only necessary to determine, by means of the siren, the So likewise the length of a solid rod free at both ends, and sounding its fundamental note, is half that of the sonorous wave in the substance of the solid. Hence we have only to determine the rate of vibration of such a rod, and multiply it by twice the length of the rod, to obtain the velocity of sound in the substance of the rod. You can hardly fail to be impressed by the power which physical science has given us over these problems; nor will you refuse your admiration to that famous old investigator, Chladni, who taught us how to master them experimentally. REEDS AND REED-PIPESThe construction of the siren and our experiments with that instrument are, no doubt, fresh in your recollection. Its musical sounds are produced by the cutting up into puffs of a series of air-currents. The same purpose is effected by a vibrating reed, as employed in the accor Fig. 104. Reeds, if associated with organ-pipes, sometimes command, and are sometimes commanded by, the vibrations of the column of air. When they are stiff they rule the column; when they are flexible the column rules them. In the former case, to derive any advantage from the air-column, its length ought to be so regulated that either its fundamental tone or one of its overtones shall correspond to the rate of vibration of the reed. The metal reed commonly employed in organ-pipes is shown in Fig. 104, A and b, both in perspective and in section. It consists of a long and flexible strip of metal, V V, placed in a rectangular orifice, through which the current of air enters the pipe. The manner in which the reed and pipe are associated is shown in Fig. 105. The front, b c, of the space containing the flexible tongue is of glass, so that you may see the tongue within it. A conical pipe, Flexible wooden reeds, which can accommodate themselves to the requirements of the pipes above them, are also employed in organ-pipes. Perhaps the simplest illus Fig. 106. The clarinet is a reed-pipe. It has a single broad tongue, with which a long, cylindrical tube is associated. The reed-end of the instrument is grasped by the lips, and by their pressure the slit between the reed and its frame is narrowed to the required extent. The overtones of a clarinet are different from those of a flute. A flute is an open pipe, a clarinet a stopped one, the end at which the reed is placed answering to the closed end of the pipe. The tones of a flute follow the order of the natural numbers 1, 2, 3, 4, etc., or of the even numbers 2, 4, 6, 8, etc.; while the tones of a clarinet follow the order of the odd numbers 1, 3, 5, 7, etc. The inter § 16. The VoiceThe most perfect of reed instruments is the organ of voice. The vocal organ in man is placed at the top of the trachea or wind-pipe, the head of which is adjusted for the attachment of certain elastic bands which almost close the aperture. When the air is forced from the lungs through the slit which separates these vocal chords, they are thrown into vibration; by varying their tension, the rate of vibration is varied, and the sound changed in Fig. 107. The vocal chords may be illuminated and viewed in a mirror, placed suitably at the back of the mouth. Varied experiments of this kind have been executed by Sig. Garcia. Fig. 108. The celebrated comparative anatomist, John MÜller, imitated the action of the vocal chords by means of bands of India-rubber. He closed the open end of a glass tube by two strips of this substance, leaving a slit between them. On urging air through the slit, the bands were thrown into vibration, and a musical tone produced. Helmholtz recommends the form shown in Fig. 108, where the tube, instead of ending in a section at right angles to its axis, terminates in two oblique sections, over which the bands of India-rubber are drawn. The easiest mode of obtaining sounds from reeds of this character is to roll round the end of a glass tube a strip of thin India-rubber, leaving about an inch of the substance projecting beyond the end of the tube. Taking two opposite portions of the projecting rubber in the fingers, and stretching it, a slit is formed, the blowing through which produces a musical sound, which varies in pitch, as the sides of the slit vary in tension. § 17. Vowel SoundsThe formation of the vowel sounds of the human voice excited long ago philosophic inquiry. We can distinguish one vowel sound from another, while assign Mounted on the acoustic bellows, without any pipe associated with it, when air is urged through its orifice, a free reed speaks in this forcible manner. When upon the frame of the reed a pyramidal pipe is fixed, you notice a change in the sound; and by pushing my flat hand over the open end of the pipe, the similarity between the sound produced and that of the human voice is unmistakable. Holding the palm of the hand over the end of the pipe so as to close it altogether, and then raising the hand twice in quick succession, the word “mamma” is heard as plainly as if it were uttered by an infant. For this pyramidal tube I now substitute a shorter one, and with it make the same experiment. The “mamma” now heard is exactly such as would be uttered by a child with a stopped nose. Thus, by associating with a vibrating reed a suitable pipe, we can impart to the sound the qualities of the human voice. In the organ of voice, the reed is formed by the vocal chords, and associated with this reed is the resonant cavity of the mouth, which can so alter its shape as to resound, at will, either to the fundamental tone of the vocal chords or to any of their overtones. With the aid of the mouth, therefore, we can mix together the fundamental tone and the overtones of the voice in different proportions. Different vowel sounds are due to different admixtures of this kind. Striking one of this series of tuning-forks, and placing it before my mouth, I adjust the size of that cavity until it resounds forcibly to the fork. Then, without altering in the least the shape or size of my mouth, I urge air through the glottis. The vowel sound “U” (oo in hoop) is produced, and no other. I strike another fork, and, placing it in front of the mouth, adjust the cavity to resonance. Then removing the fork and urging air through the glottis, the vowel sound “O,” and it only, is heard. I strike a third fork, adjust my mouth to it, and then urge air through the larynx; the vowel sound ah! and no other, is heard. In all these cases the vocal chords have been in the same constant condition. They have generated throughout the same fundamental tone and the same overtones, the changes of sound which you have heard being due solely to the fact that different tones in the different cases were reinforced by the resonance of the mouth. Donders first proved that the mouth resounded differently for the different vowels. In the formation of the different vowel sounds the resonant cavity of the mouth undergoes, according to Helmholtz, the following changes: For the production of the sound “U” (oo in hoop), The vowel “O” requires a somewhat wider opening of the mouth. The overtones which lie in the neighborhood of the middle b of the soprano come out strongly in the case of this vowel. When “Ah” is sounded, the mouth assumes the shape of a funnel, widening outward. It is thus tuned to a note an octave higher than in the case of the vowel “O.” Hence, in sounding “Ah,” those overtones are most strengthened which lie near the higher b of the soprano. As the mouth is in this case wide open, all the other overtones are also heard, though feebly. In sounding “A” and “E,” the hinder part of the mouth is deepened, while the front of the tongue rises against the gums and forms a tube; this yields a higher resonance-tone, rising gradually from “A” to “E,” while the hinder hollow space yields a lower resonance-tone, which is deepest when “E” is sounded. These examples sufficiently illustrate the subject of vowel sounds. We may blend in various ways the elementary tints of the solar spectrum, producing innumerable composite colors by their admixture. Out of violet and red we produce purple, and out of yellow and blue we produce white. Thus also may elementary sounds be blended so as to produce all possible varieties of clang-tint. After having resolved the human voice into its § 18. Kundt’s Experiments: New Modes of determining Velocity of SoundUnwilling to interrupt the continuity of our reasonings and experiments on the sound of organ-pipes, and their relations to the vibrations of solid rods, I have reserved for the conclusion of this discourse some reflections and experiments which, in strictness, belong to an earlier portion of the chapter. You have already heard the tones, and made yourselves acquainted with the various modes of division of a glass tube, free at both ends, when thrown into longitudinal vibration. When it sounds its fundamental tone, you know that the two halves of such a tube lengthen and shorten in quick alternation. If the tube were stopped at its ends, the closed extremities would throw the air within the tube into a state of vibration; and if the velocity of sound in air were equal to its velocity in glass, the air of the tube would vibrate in synchronism with the tube itself. But the velocity of sound in air is far less than its velocity in glass, and hence, if the column of air is to synchronize with the vibrations of the tube, it can only do so by dividing itself into vibrating segments of a suitable length. In an investigation of great interest, recently published in “Poggendorff’s Annalen,” M. Kundt, of Berlin, has taught us how these segments may be rendered visible. Into this six-foot tube is introduced the light powder of lycopodium, being shaken all over the interior surface. A small quantity of the powder clings to that surface. Stopping Fig. 109. You will have little difficulty in seeing that we perform here, with air, substantially the same experiment as that of M. Melde with a vibrating string. When the string was too long to vibrate as a whole, it met the requirements of the tuning-fork to which it was attached by dividing into ventral segments. Now, in all cases, the length from a node to its next neighbor is half that of the sonorous wave: how many such half-waves then have we in our tube in the present instance? Sixteen (the figure shows only four of them). But the length of our glass tube vibrating thus longitudinally is also half that of the sonorous wave in glass. Hence, in the case before us, with the same rate of vibration, the length of the semi-wave in glass is sixteen times the length of the semi-wave in air. In other words, the velocity of sound in glass is sixteen times its velocity in air. Thus, by a single sweep of the wet rubber, we solve a most important problem. But, as M. Kundt has shown, we From the known velocity of sound in air, coupled with the length of one of these dust segments, we can immediately deduce the number of vibrations executed in a second by the tube itself. Clasping a glass tube at its centre and drawing my wetted cloth over one of its halves, I elicit this shrill note. The length of every dust segment, now within the tube, is 3 inches. Hence the length of the aËrial sonorous wave corresponding to this note is 6 inches. But the velocity of sound in air of our present temperature is 1,120 feet per second; a distance which would embrace 2,240 of our sonorous waves. This number, therefore, expresses the number of vibrations per second executed by the glass tube now before us. Instead of damping the centre of the tube, and making it a nodal point, we may employ any other of its subdivisions. Laying hold of it, for example, at a point midway between its centre and one of its ends, and rubbing it properly, it divides into three vibrating parts, separated by two nodes. We know that in this division the note elicited is the octave of that heard when a single node is formed at the middle of the tube; for the vibrations are twice as rapid. If therefore we divide the tube, having air within it, by two nodes instead of one, the number of ventral segments revealed by the lycopodium dust will be thirty-two instead of sixteen. The same remark applies, of course, to all other gases. Filling a series of four tubes with air, carbonic acid, coal-gas, and hydrogen, and then rubbing each so as to produce two nodes, M. Kundt found the number of dust segments formed within the tube in the respective cases to be as follows:
Calling the velocity in air unity, the following fractions express the ratio of this velocity to those in the other gases:
Referring to a table introduced in our first chapter, we learn that Dulong by a totally different mode of experiment found the velocity in carbonic acid to be 0.86, and in hydrogen 3·8 times the velocity in air. The results of Dulong were deduced from the sounds of organ-pipes filled with the various gases; but here, by a process of the utmost simplicity, we arrive at a close approximation to his results. Dusting the interior surfaces of our tubes, filling them with the proper gases, and sealing their ends, they may be preserved for an indefinite time. By properly shaking one of them at any moment, its inner surface becomes thinly coated with the dust; and afterward a single stroke of the wet cloth produces the division from But here you must perceive that the method of experiment is capable of great extension. Instead of the glass tube, A a, we may employ a rod of any other solid substance—of wood or metal, for example, and thus determine the relative velocity of sound in the solid and in air. In the place of the glass tube, for example, a rod of brass of equal length may be employed. Rubbing its external half by a resined cloth, it divides the column a b into the number of ventral segments proper to the metal’s rate of vibrations. In this way M. Kundt operated with brass, steel, glass, and copper, and his results prove the method to be capable of great accuracy. Calling, as before, the velocity of sound in air unity, the following numbers expressive of the ratio of the velocity of sound in brass to its velocity in air were obtained in three different series of experiments:
The coincidence is here extraordinary. To illustrate the possible accuracy of the method, the length of the individual dust segments was measured. In a series of twenty-seven experiments, this length was found to vary between 43 and 44 millimÈtres (each millimÈtre 1/25th of an inch), never rising so high as the latter and never falling so low as the former. The length of the metal rod, compared with that of one of the segments capable of this accurate measurement, gives us at once the velocity of sound in the metal, as compared with its velocity in air. Three distinct experiments, performed in the same
Here the coincidence is quite as perfect as in the case of brass. In glass, by this new mode of experiment, the velocity was found to be 15·25. Finally, in copper the velocity was found to be 11·96. These results agree extremely well with those obtained by other methods. Wertheim, for example, found the velocity of sound in steel wire to be 15·108; M. Kundt finds it to be 15·34: Wertheim also found the velocity in copper to be 11·17; M. Kundt finds it to be 11·96. The differences are not greater than might be produced by differences in the materials employed by the two experimenters. The length of the aËrial column may or may not be an exact multiple of the wave-length, corresponding to the rod’s rate of vibration. If not, the dust segments usually take the form shown in Fig. 111. But if, by § 19. Explanation of a DifficultyAnd here a difficulty presents itself. The stopped end b of the tube Fig. 110 is, of course, a place of no vibration, where in all cases a nodal dust-heap is formed; but, whenever the column of air was an exact multiple of the wave-length, M. Kundt always found a dust-heap close to the end a of the vibrating rod also. Thus the point from which all the vibration emanated seemed itself to be a place of no vibration. Fig. 112. This difficulty was pointed out by M. Kundt, but he did not attempt its solution. We are now in a condition to explain it. In Lecture III. it was remarked that in strictness a node is not a place of no vibration; that it is a place of minimum vibration; and that, by the addition of the minute pulses which the node permits, vibrations of vast amplitude may be produced. The ends of M. Kundt’s tube are such points of minimum motion, the lengths of the vibrating segments being such that, by the coalescence of direct and reflected pulses, the air at a distance of half a ventral segment from the end of the tube vibrates much more vigorously than that at the end of the tube itself. This addition of impulses is more An experiment of Helmholtz’s is here capable of instructive application. Upon the string of the sonometer described in our third lecture I place the iron stem of this tuning-fork, which executes 512 complete vibrations in a second. At present you hear no augmentation of the sound of the fork; the string remains quiescent. But on moving the fork along the string, at the number 33, a loud, swelling note issues from the string. At this particular tension the length 33 exactly synchronizes with the vibrations of the fork. By the intermediation of the string, therefore, the fork is enabled to transfer its motion to the sonometer, and through it to the air. The sound continues as long as the fork vibrates, but the least movement to the right or to the left from this point causes a sudden fall of the sound. Tightening the string, the note disappears; for it requires a greater length of this more highly tensioned string to respond to the fork. But, on moving the fork further away, at the number 36 the note again bursts forth. Tightening still more, 40 is found to be the point of maximum power. When the string is slackened, it must, of course, be shortened in order to make it respond to the fork. Moving the fork now toward the end of the string, at the number 25 the note is found as before. Again, shifting the fork to 35, nothing is heard; but, by the cau In these experiments, though the fork was the source of all the motion, the point on which it rested was a nodal point. It constituted the comparatively fixed extremity of the wire, whose vibrations synchronized with those of the fork. The case is exactly analogous to that of the hand holding the India-rubber tube, and to the tuning-fork in the experiments of M. Melde. It is also an effect precisely the same in kind as that observed by M. Kundt, where the part of the column of air in contact with the end of his vibrating rod proved to be a node instead of the middle of a ventral segment. ADDENDUM REGARDING RESONANCEThe resonance of caves and of rocky inclosures is well known. Bunsen notices the thunder-like sound produced when one of the steam jets of Iceland breaks out near the mouth of a cavern. Most travellers in Switzerland have noticed the deafening sound produced by the fall of the Reuss at the Devil’s Bridge. The sound heard when a hollow shell is placed close to the ear is a case of resonance. Children think they hear in it the sound SUMMARY OF CHAPTER VWhen a stretched wire is suitably rubbed, in the direction of its length, it is thrown into longitudinal vibrations: the wire can either vibrate as a whole or divide itself into vibrating segments separated from each other by nodes. The tones of such a wire follow the order of the numbers 1, 2, 3, 4, etc. The transverse vibrations of a rod fixed at both ends do not follow the same order as the transverse vibrations A rod fixed at one end vibrates longitudinally as a whole, or it divides into two, three, four, etc., vibrating parts, separated from each other by nodes. The order of the tones of such a rod is that of the odd numbers 1, 3, 5, 7, etc. A rod free at both ends can also vibrate longitudinally. Its lowest note corresponds to a division of the rod into two vibrating parts by a node at its centre. The overtones of such a rod correspond to its division into three, four, five, etc., vibrating parts, separated from each other by two, three, four, etc., nodes. The order of the tones of such a rod is that of the numbers 1, 2, 3, 4, 5, etc. We may also express the order by saying that while the tones of a rod fixed at both ends follow the order of the odd numbers 1, 3, 5, 7, etc., the tones of a rod free at both ends follow the order of the even numbers 2, 4, 6, 8, etc. At the points of maximum vibration the rod suffers no change of density; at the nodes, on the contrary, the changes of density reach a maximum. This may be proved by the action of the rod upon polarized light. Columns of air of definite length resound to tuning-forks of definite rates of vibration. The length of a tube filled with air, and closed at one This resonance is due to the synchronism which exists between the vibrating period of the fork and that of the column of air. By blowing across the mouth of a tube closed at one end, we produce a flutter of the air, and some pulse of this flutter may be raised by the resonance of the tube to a musical sound. The sound is the same as that obtained when a tuning-fork, whose rate of vibration is that of the tube, is placed over the mouth of the tube. When a tube closed at one end—a stopped organ-pipe, for example—sounds its lowest note, the column of air within it is undivided by a node. The overtones of such a column correspond to its division into parts, like those of a rod fixed at one end and vibrating longitudinally. The order of its tones is that of the odd numbers 1, 3, 5, 7, etc. That this must be the order follows from the manner in which the column is divided. In organ-pipes the air is agitated by causing it to issue from a narrow slit, and to strike upon a cutting edge. Some pulse of the flutter thus produced is raised by the resonance of the pipe to a musical sound. When, instead of the aËrial flutter, a tuning-fork of the proper rate of vibration is placed at the embouchure of an organ-pipe, the pipe speaks in response to the fork. In practice, the organ-pipe virtually creates its own tuning-fork, by compelling the sheet of air at its embouchure to vibrate in periods synchronous with its own. An open organ-pipe yields a note an octave higher than that of a closed pipe of the same length. This When, for example, a stopped organ-pipe sounds its deepest note, the column of air, as already explained, is undivided. When an open pipe sounds its deepest note, the column is divided by a node at its centre. The open pipe in this case virtually consists of two stopped pipes with a common base. Hence it is plain that the fundamental note of an open pipe must be the same as that of a stopped pipe of half its length. The length of a stopped pipe is one-fourth that of the sonorous wave which it produces, while the length of an open pipe is one-half that of its sonorous wave. The order of the tones of an open pipe is that of the even numbers 2, 4, 6, 8, etc., or of the natural numbers 1, 2, 3, 4, etc. In both stopped and open pipes the number of vibrations executed in a given time is inversely proportional to the length of the pipe. The places of maximum vibration in organ-pipes are places of minimum changes of density; while at the places of minimum vibration the changes of density reach a maximum. The velocities of sound in gases, liquids, and solids may be inferred from the tones which equal lengths of them produce; or they may be inferred from the lengths of these substances which yield equal tones. Reeds, or vibrating tongues, are often associated with vibrating columns of air. They consist of flexible laminÆ, which vibrate to and fro in a rectangular orifice, thus rendering intermittent the air-current passing through the orifice. The action of the reed is the same as that of the siren. The flexible wooden reeds sometimes associated with organ-pipes are compelled to vibrate in unison with the column of air in the pipe; other reeds are too stiff to be thus controlled by the vibrating air. In this latter case the column of air is taken of such a length that its vibrations synchronize with those of the reed. By associating suitable pipes with reeds we impart to their tones the qualities of the human voice. The vocal organ in man is a reed instrument, the vibrating reed in this case being elastic bands placed at the top of the trachea, and capable of various degrees of tension. The rate of vibration of these vocal chords is practically uninfluenced by the resonance of the mouth; but the mouth, by changing its shape, can be caused to resound to the fundamental tone, or to any of the overtones of the vocal chords. By the strengthening of particular tones through the resonance of the mouth, the clang-tint of the voice is altered. The different vowel-sounds are produced by different admixtures of the fundamental tone and the overtones of the vocal chords. When the solid substance of a tube stopped at one, or at both ends, is caused to vibrate longitudinally, the air within it is also thrown into vibration. By covering the interior surface of the tube with a light powder, the manner in which the aËrial column divides itself may be rendered apparent. From the division of the column the velocity of sound in the substance Other gases may be employed instead of air, and the velocity of sound in these gases, compared with its velocity in the substance of the tube, may be determined. The end of a rod vibrating longitudinally may be caused to agitate a column of air contained in a tube, compelling the air to divide itself into ventral segments. These segments may be rendered visible by light powders, and from them the velocity of sound in the substance of the vibrating rod, compared with its velocity in air, may be inferred. In this way the relative velocities of sound in all solid substances capable of being formed into rods, and of vibrating longitudinally, may be determined. |