CHAPTER IX

Previous

Combination of Musical Sounds—The smaller the Two Numbers which express the Ratio of their Rates of Vibration, the more perfect is the Harmony of Two Sounds—Notions of the Pythagoreans regarding Musical Consonance—Euler’s Theory of Consonance—Theory of Helmholtz—Dissonance due to Beats—Interference of Primary Tones and of Over-tones—Mechanism of Hearing—Schultze’s Bristles—The Otoliths—Corti’s Fibres—Graphic Representation of Consonance and Dissonance—Musical Chords—The Diatonic Scale—Optical Illustration of Musical Intervals—Lissajous’s Figures—Sympathetic Vibrations—Various Modes of illustrating the Composition of Vibrations

§ 1. The Facts of Musical Consonance

THE subject of this day’s lecture has two sides, a physical and an Æsthetical. We have to-day to study the question of musical consonance—to examine musical sounds in definite combination with each other, and to unfold the reason why some combinations are pleasant and others unpleasant to the ear.

Pythagoras made the first step toward the physical explanation of the musical intervals. This great philosopher stretched a string, and then divided it into three equal parts. At one of its points of division he fixed it firmly, thus converting it into two, one of which was twice the length of the other. He sounded the two sections of the string simultaneously, and found the note emitted by the short section to be the higher octave of that emitted by the long one. He then divided his string into two parts, bearing to each other the proportion of 2:3, and found that the notes were separated by an interval of a fifth. Thus, dividing his string at different points, Pythagoras found the so-called consonant intervals in music to correspond with certain lengths of his string; and he made the extremely important discovery that the simpler the ratio of the two parts into which the string was divided, the more perfect was the harmony of the two sounds. Pythagoras went no further than this, and it remained for the investigators of a subsequent age to show that the strings act in this way in virtue of the relation of their lengths to the number of their vibrations. Why simplicity should give pleasure remained long an enigma, the only pretence of a solution being that of Euler, which, briefly expressed, is, that the human soul takes a constitutional delight in simple calculations.

The double siren (Fig. 163) enables us to obtain a great variety of combinations of musical sounds. And this instrument possesses over all others the advantage that, by simply counting the number of orifices corresponding respectively to any two notes, we obtain immediately the ratio of their rates of vibration. Before proceeding to these combinations I will enter a little more fully into the action of the double siren than has been hitherto deemed necessary or desirable.

Fig. 163.
Fig. 163.

The instrument, as already stated, consists of two of Dove’s sirens, C' and C, connected by a common axis, the upper one being turned upside down. Each siren is provided with four series of apertures, numbering as follows:

Upper siren
Number of apertures
Lower siren
Number of apertures
1st Series 16 18
2d Series 15 12
3d Series 12 10
4th Series 9 8

The number 12, it will be observed, is common to both sirens. I open the two series of 12 orifices each, and urge air through the instrument; both sounds flow together in perfect unison; the unison being maintained, however the pitch may be exalted. We have, however, already learned (Chapter II.) that by turning the handle of the upper siren the orifices in its wind-chest C' are caused either to meet those of its rotating disk, or to retreat from them, the pitch of the upper siren being thereby raised or lowered. This change of pitch instantly announces itself by beats. The more rapidly the handle is turned, the more is the tone of the upper siren raised above or depressed below that of the lower one, and, as a consequence, the more rapid are the beats.

Now the rotation of the handle is so related to the rotation of the wind-chest C' that when the handle turns through half a right angle the wind-chest turns through one-sixth of a right angle, or through the one-twenty-fourth of its whole circumference. But in the case now before us, where the circle is perforated by 12 orifices, the rotation through one-twenty-fourth of its circumference causes the apertures of the upper wind-chest to be closed at the precise moments when those of the lower one are opened, and vice versa. It is plain, therefore, that the intervals between the puffs of the lower siren, which correspond to the rarefactions of its sonorous waves, are here filled by the puffs, or condensations, of the upper siren. In fact, the condensations of the one coincide with the rarefactions of the other, and the absolute extinction of the sounds of both sirens is the consequence.

I may seem to you to have exceeded the truth here; for when the handle is placed in the position which corresponds to absolute extinction, you still hear a distinct sound. And, when the handle is turned continuously, though alternate swellings and sinkings of the tone occur, the sinkings by no means amount to absolute silence. The reason is this: The sound of the siren is a highly composite one. By the suddenness and violence of its shocks, not only does it produce waves corresponding to the number of its orifices, but the aËrial disturbance breaks up into secondary waves, which associate themselves with the primary waves of the instrument, exactly as the harmonics of a string, or of an open organ-pipe, mix with their fundamental tone. When the siren sounds, therefore, it emits, besides the fundamental tone, its octave, its twelfth, its double octave, and so on. That is to say, it breaks the air up into vibrations which have twice, three times, four times, etc., the rapidity of the fundamental one. Now, by turning the upper siren through one-twenty-fourth of its circumference, we extinguish utterly the fundamental tone. But we do not extinguish its octave.75 Hence, when the handle is in the position which corresponds to the extinction of the fundamental tone, instead of silence we have the full first harmonic of the instrument.

Helmholtz has surrounded both his upper and his lower siren with circular brass boxes, B, B', each composed of two halves, which can be readily separated (one-half of each box is removed in the figure). These boxes exalt by their resonance the fundamental tone of the instrument, and enable us to follow its variations much more easily than if it were not thus reinforced. It requires a certain rapidity of rotation to reach the maximum resonance of the brass boxes; but when this speed is attained, the fundamental tone swells out with greatly augmented force, and, if the handle be then turned, the beats succeed each other with extraordinary power.

Still, as already stated, the pauses between the beats of the fundamental tone are not intervals of absolute silence, but are filled by the higher octave; and this renders caution necessary when the instrument is employed to determine rates of vibration. It is not without reason that I say so. Wishing to determine the rate of vibration of a small singing-flame, I once placed a siren at some distance from it, sounded the instrument, and after a little time observed the flame dancing in synchronism with audible beats. I took it for granted that unison was nearly attained, and, under this assumption, determined the rate of vibration. The number obtained was surprisingly low—indeed not more than half what it ought to be. What was the reason? Simply this: I was dealing, not with the fundamental tone of the siren, but with its higher octave. This octave and the flame produced beats by their coalescence; and hence the counter of the instrument, which recorded the rate, not of the octave, but of the fundamental, gave a number which was only half the true one. The fundamental tone was afterward raised to unison with the flame. On approaching unison beats were again heard, and the jumping of the flame proceeded with an energy greater than that observed in the case of the octave. The counter of the instrument then recorded the accurate rate of the flame’s vibration.

The tones first heard in the case of the siren are always overtones. These attain sonorous continuity sooner than the fundamental, flowing as smooth musical sounds while the fundamental tone is still in a state of intermittence. The siren is, however, so delicately constructed that a rate of rotation which raises the fundamental tone above its fellows is almost immediately attained. And if we seek, by making the blast feeble, to keep the speed of rotation low, it is at the expense of intensity. Hence the desirability, if we wish to examine the overtones, of devising some means by which a strong blast and slow rotation shall be possible.

Helmholtz caused a spring to press as a light brake against the disk of the siren. Thus raising by slow degrees the speed of rotation, he was able deliberately to notice the predominance of the overtones at the commencement, and the final triumph of the fundamental tone. He did not trust to the direct observation of pitch, but determined the tone by the number of beats corresponding to one revolution of the handle of the upper siren. Supposing 12 orifices to be opened above and 12 below, the motion of the handle through 45° produces interference, and extinguishes the fundamental tone. The coincidences of that tone occur at the end of every rotation of 90°. Hence, for the fundamental tone, there must be four beats for every complete rotation of the handle. Now Helmholtz, when he made the arrangement just described, found that the first beats numbered, not 4, but 12, for every revolution. They were, in fact, the beats, not of the fundamental tone, not even of the first overtone, but of the second overtone, whose rate of vibration is three times that of the fundamental. These beats continued as long as the number of air-shocks did not exceed 30 or 40 per second. When the shocks were between 40 and 80 per second, the beats fell from 12 to 8 for every revolution of the handle. Within this interval the first overtone, or the octave of the fundamental tone, was the most powerful, and made the beats its own. Not until the impulses exceeded 80 per second did the beats sink to 4 per revolution. In other words, not until the speed of rotation had passed this limit was the fundamental tone able to assert its superiority over its companions.

This premised, we will combine the tones in definite order, while the cultivated ears here present shall judge of their musical relationship. The flow of perfect unison when the two series of 12 orifices each are opened has been already heard. I now open a series of 8 holes in the upper and of 16 in the lower siren. The interval you judge at once to be an octave. If a series of 9 holes in the upper and of 18 holes in the lower siren be opened, the interval is still an octave. This proves that the interval is not disturbed by altering the absolute rates of vibration, so long as the ratio of the two rates remains the same. The same truth is more strikingly illustrated by commencing with a low speed of rotation, and urging the siren to its highest pitch; as long as the orifices are in the ratio of 1:2, we retain the constant interval of an octave. Opening a series of 10 holes in the upper and of 15 in the lower siren, the ratio is as 2:3, and every musician present knows that this is the interval of a fifth. Opening 12 holes in the upper and 18 in the lower siren does not change the interval. Opening two series of 9 and 12, or of 12 and 16, we obtain an interval of a fourth; the ratio in both these cases being as 3:4. In like manner two series of 8 and 10, or of 12 and 15, give us the interval of a major third; the ratio in this case being as 4:5. Finally, two series of 10 and 12, or of 15 and 18, yield the interval of a minor third, which corresponds to the ratio 5:6.

These experiments amply illustrate two things: First, that a musical interval is determined, not by the absolute number of vibrations of the two combining notes, but by the ratio of their vibrations. Secondly, and this is of the utmost significance, that the smaller the two numbers which express the ratio of the two rates of vibration, the more perfect is the consonance of the two sounds. The most perfect consonance is the unison 1:1; next comes the octave 1:2; after that the fifth 2:3; then the fourth 3:4; then the major third 4:5; and finally the minor third 5:6. We can also open two series numbering, respectively, 8 and 9 orifices: this interval corresponds to a tone in music. It is a dissonant combination. Two series which number respectively 15 and 16 orifices make the interval of a semi-tone: it is a very sharp and grating dissonance.

§ 2. The Theory of Musical Consonance. Pythagoras and Euler

Whence, then, does this arise? Why should the smaller ratio express the more perfect consonance? The ancients attempted to solve this question. The Pythagoreans found intellectual repose in the answer “All is number and harmony.” The numerical relations of the seven notes of the musical scale were also thought by them to express the distances of the planets from their central fire; hence the choral dance of the worlds, the “music of the spheres,” which, according to his followers, Pythagoras alone was privileged to hear. And might we not in passing contrast this glorious superstition with the grovelling delusion which has taken hold of the fantasy of our day? Were the character which superstition assumes in different ages an indication of man’s advance or retrogression, assuredly the nineteenth century would have no reason to plume itself, in comparison with the sixth B.C. A more earnest attempt to account for the more perfect consonance of the smaller ratios was made by the celebrated mathematician, Euler, and his explanation, if such it could be called, long silenced, if it did not satisfy, inquirers. Euler analyzes the cause of pleasure. We take delight in order; it is pleasant to us to observe means “co-operant to an end.” But then, the effort to discern order must not be so great as to weary us. If the relations to be disentangled are too complicated, though we may see the order, we cannot enjoy it. The simpler the terms in which the order expresses itself, the greater is our delight. Hence the superiority of the simpler ratios in music over the more complex ones. Consonance, then, according to Euler, was the satisfaction derived from the perception of order without weariness of mind.

But in this theory it was overlooked that Pythagoras himself, who first experimented on the musical intervals, knew nothing about rates of vibration. It was forgotten that the vast majority of those who take delight in music, and who have the sharpest ears for the detection of a dissonance, are in the condition of Pythagoras, knowing nothing whatever about rates or ratios. And it may also be added that the scientific man, who is fully informed upon these points, has his pleasure in no way enhanced by his knowledge. Euler’s explanation, therefore, does not satisfy the mind, and it was reserved for an eminent German investigator of our own day, after a profound analysis of the entire question, to assign the physical cause of consonance and dissonance—a cause which, when once clearly stated, is so simple and satisfactory as to excite surprise that it remained so long without a discoverer.

Various expressions employed in our previous lectures have already, in part, forestalled Helmholtz’s explanation of consonance and dissonance. Let me here repeat an experiment which will, almost of itself, force this explanation upon your attention. Before you are two jets of burning gas, which can be converted into singing-flames by inclosing them within two tubes (represented in Fig. 118). The tubes are of the same length, and the flames are now singing in unison. By means of a telescopic slider I lengthen slightly one of the tubes; you hear deliberate beats, which succeed each other so slowly that they can readily be counted. I augment still further the length of the tube. The beats are now more rapid than before: they can barely be counted. It is perfectly manifest that the shocks of which you are now sensible differ only in point of rapidity from the slow beats which you heard a moment ago. There is no breach of continuity here. We begin slowly, we gradually increase the rapidity, until finally the succession of the beats is so rapid as to produce that particular grating effect which every musician that hears it would call dissonance. Let us now reverse the process, and pass from these quick beats to slow ones. The same continuity of the phenomenon is noticed. By degrees the beats separate from each other more and more, until finally they are slow enough to be counted. Thus these singing-flames enable us to follow the beats with certainty, until they cease to be beats and are converted into dissonance.

This experiment proves conclusively that dissonance may be produced by a rapid succession of beats; and I imagine this cause of dissonance would have been pointed out earlier, had not men’s minds been thrown off the proper track by the theory of “resultant tones” enunciated by Thomas Young. Young imagined that, when they were quick enough, the beats ran together to form a resultant tone. He imagined the linking together of the beats to be precisely analogous to the linking together of simple musical impulses; and he was strengthened in this notion by the fact already adverted to, that the first difference-tone, that is to say, the loudest resultant tone, corresponded, as the beats do, to a rate of vibration equal to the difference of the rates of the two primaries. The fact, however, is that the effect of beats upon the ear is altogether different from that of the successive impulses of an ordinary musical tone.

§ 3. Sympathetic Vibrations

But to grasp, in all its fulness, the new theory of musical consonance some preliminary studies will be necessary. And here I would ask you to call to mind the experiments (in Chapter III.) by which the division of a string into its harmonic segments was illustrated. This was done by means of little paper riders, which were unhorsed, or not, according as they occupied a ventral segment or a node upon the string. Before you at present is the sonometer, employed in the experiments just referred to. Along it, instead of one, are stretched two strings, about three inches asunder. By means of a key these strings are brought into unison. And now I place a little paper rider upon the middle of one of them, and agitate the other. What occurs? The vibrations of the sounding string are communicated to the bridges on which it rests, and through the bridges to the other string. The individual impulses are very feeble, but, because the two strings are in unison, the impulses can so accumulate as finally to toss the rider off the untouched string.

Every experiment executed with the riders and a single string may be repeated with these two unisonant strings. Damping, for instance, one of the strings, at a point one-fourth of its length from one of its ends, and placing the red and blue riders formerly employed, not on the nodes and ventral segments of the damped string, but at points upon the second string exactly opposite to those nodes and segments, when the bow is passed across the shorter segment of the damped string, the five red riders on the adjacent string are unhorsed, while the four blue ones remain tranquilly in their places. By relaxing one of the strings, it is thrown out of unison with the other, and then all efforts to unhorse the riders are unavailing. That accumulation of impulses, which unison alone renders possible, cannot here take place, and the consequence is that, however great the agitation of the one string may be, it fails to produce any sensible effect upon the other.

The influence of synchronism may be illustrated in a still more striking manner, by means of two tuning-forks which sound the same note. Two such forks mounted on their resonant supports are placed upon the table. I draw the bow vigorously across one of them, permitting the other fork to remain untouched. On stopping the agitated fork, the sound is enfeebled, but by no means quenched. Through the air and through the wood the vibrations have been conveyed from fork to fork, and the untouched fork is the one you now hear. When, by means of a morsel of wax, a small coin is attached to one of the forks, its power of influencing the other ceases; the change in the rate of vibration, if not very small, so destroys the sympathy between the two forks as to render a response impossible. On removing the coin the untouched fork responds as before.

This communication of vibrations through wood and air may be obtained when the forks, mounted on their cases, stand several feet apart. But the vibrations may also be communicated through the air alone. Holding the resonant case of a vigorously vibrating fork in my hand, I bring one of its prongs near an unvibrating one, placing the prongs back to back, but allowing a space of air to exist between them. Light as is the vehicle, the accumulation of impulses, secured by the perfect unison of the two forks, enables the one to set the other in vibration. Extinguishing the sound of the agitated fork, that which a moment ago was silent continues sounding, having taken up the vibrations of its neighbor. Removing one of the forks from its resonant case, and striking it against a pad, it is thrown into strong vibration. Held free in the air, its sound is audible. But, on bringing it close to the silent mounted fork, out of the silence rises a full mellow sound, which is due, not to the fork originally agitated, but to its sympathetic neighbor.

Various other examples of the influence of synchronism, already brought forward, will occur to you here; and cases of the kind might be indefinitely multiplied. If two clocks, for example, with pendulums of the same period of vibration, be placed against the same wall, and if one of the clocks is set going and the other not, the ticks of the moving clock, transmitted through the wall, will act upon its neighbor. The quiescent pendulum, moved by a single tick, swings through an extremely minute arc; but it returns to the limit of its swing just in time to receive another impulse. By the continuance of this process, the impulses so add themselves together as finally to set the clock a-going. It is by this timing of impulses that a properly-pitched voice can cause a glass to ring, and that the sound of an organ can break a particular window-pane.

§ 4. Sympathetic Vibration in Relation to the Human Ear

If I dwell so fully upon this object, it is for the purpose of rendering intelligible the manner in which sonorous motion is communicated to the auditory nerve. In the organ of hearing, in man, we have first of all the external orifice of the ear, closed at the bottom by the circular tympanic membrane. Behind that membrane is the drum of the ear, this cavity being separated from the space between it and the brain by a bony partition, in which there are two orifices, the one round and the other oval. These orifices are also closed by fine membranes. Across the drum stretches a series of four little bones. The first, called the hammer, is attached to the tympanic membrane; the second, called the anvil, is connected by a joint with the hammer; a third little round bone connects the anvil with the stirrup-bone, the base of which is planted against the membrane of the oval orifice just referred to. This oval membrane is almost covered by the stirrup-bone, a narrow rim only of the membrane surrounding the bone being left uncovered. Behind the bony partition, and between it and the brain, we have the extraordinary organ called the labyrinth, filled with water, over the lining membrane of which are distributed the terminal fibres of the auditory nerve. When the tympanic membrane receives a shock, it is transmitted through the series of bones above referred to, being concentrated on the membrane against which the base of the stirrup-bone is fixed. The membrane transfers the shock to the water of the labyrinth, which, in its turn, transfers it to the nerves.

The transmission, however, is not direct. At a certain place within the labyrinth exceedingly fine elastic bristles, terminating in sharp points, grow up between the terminal nerve-fibres. These bristles, discovered by Max Schultze, are eminently calculated to sympathize with such vibrations of the water as correspond to their proper periods. Thrown thus into vibration, the bristles stir the nerve-fibres which lie between their roots. At another place in the labyrinth we have little crystalline particles called otolites—the HÖrsteine of the Germans—imbedded among the nervous filaments, which, when they vibrate, exert an intermittent pressure upon the adjacent nerve-fibres. The otolites probably serve a different purpose from that of the bristles of Schultze. They are fitted, by their weight, to accept and prolong the vibrations of evanescent sounds, which might otherwise escape attention, while the bristles of Schultze, because of their extreme lightness, would instantly yield up an evanescent motion. They are, on the other hand, eminently fitted for the transmission of continuous vibrations.

Finally, there is in the labyrinth an organ, discovered by the Marchese Corti, which is to all appearance a musical instrument, with its chords so stretched as to accept vibrations of different periods, and transmit them to the nerve-filaments which traverse the organ. Within the ears of men, and without their knowledge or contrivance, this lute of 3,000 strings76 has existed for ages, accepting the music of the outer world and rendering it fit for reception by the brain. Each musical tremor which falls upon this organ selects from the stretched fibres the one appropriate to its own pitch, and throws it into unisonant vibration. And thus, no matter how complicated the motion of the external air may be, these microscopic strings can analyze it and reveal the constituents of which it is composed. Surely, inability to feel the stupendous wonder of what is here revealed would imply incompleteness of mind; and surely those who practically ignore, or fear them, must be ignorant of the ennobling influence which such discoveries may be made to exercise upon both the emotions and the understanding of man.

§ 5. Consonant Intervals in Relation to the Human Ear

This view of the use of Corti’s fibres is theoretical; but it comes to us commended by every appearance of truth. It will enable us to tie together many things, whose relations it would be otherwise difficult to discern. When a musical note is sounded its corresponding Corti’s fibre resounds, being moved, as a string is moved by a second unisonant string. And when two sounds coalesce to produce beats, the intermittent motion is transferred to the proper fibre within the ear. But here it is to be noted that, for the same fibre to be affected simultaneously by two different sounds, it must not be far removed in pitch from either of them. Call to mind our repetition of Melde’s experiments (in Chapter III.). You then had frequent occasion to notice that, even before perfect synchronism had been established between the string and the tuning-fork to which it was attached, the string began to respond to the fork. But you also noticed how rapidly the vibrating amplitude of the string increased, as it came close to perfect synchronism with the vibrating fork. On approaching unison the string would open out, say to an amplitude of an inch; and then a slight tightening or slackening, as the case might be, would bring it up to unison, and cause it to open out suddenly to an amplitude of six inches.

So also in reference to the experiment made a moment ago with the sonometer; you noticed that the unhorsing of the paper riders was preceded by a fluttering of the bits of paper; showing that the sympathetic response of the second string had begun, though feebly, prior to perfect synchronism. Instead of two strings, conceive three strings, all nearly of the same pitch, to be stretched upon the sonometer; and suppose the vibrating period of the middle string to lie midway between the periods of its two neighbors, being a little higher than the one and a little lower than the other. Each of the side strings, sounded singly, would cause the middle string to respond. Sounding the two side strings together they would produce beats; the corresponding intermittence would be propagated to the central string, which would beat in synchronism with the beats of its neighbors. In this way we make plain to our minds how a Corti’s fibre may, to some extent, take up the vibrations of a note, nearly, but not exactly, in unison with its own; and that when two notes close to the pitch of the fibre act upon it together, their beats are responded to by an intermittent motion on the part of the fibre. This power of sympathetic vibration would fall rapidly on both sides of the perfect unison, so that on increasing the interval between the two notes, a time would soon arrive when the same fibre would refuse to be acted on simultaneously by both. Here the condition of the organ, necessary for the perception of audible beats, would cease.

In the middle region of the pianoforte, with the interval of a semitone, the beats are sharp and distinct, falling indeed upon the ear as a grating dissonance. Extending the interval to a whole tone, the beats become more rapid, but less distinct. With the interval of a minor third between the two notes, the beats in the middle region of the scale cease to be sensible. But this smoothening of the sound is not wholly due to the augmented rapidity of the beats. It is due in part to the fact, for which the foregoing considerations have prepared us, that the two notes here sounded are too far removed from that of the intermediate Corti’s fibre to affect it powerfully. By ascending to the higher regions of the scale we can produce, with a narrower interval than the minor third, the same, or even a greater, number of beats, which are sharply distinguishable because of the closeness of their component notes. In the very highest regions of the scale, however, the beats, when they become very rapid, cease to appeal as roughness to the ear.

Hence both the rapidity of the beats, and the width of the interval, enter into the question of consonance. Helmholtz judges that in the middle and higher regions of the musical scale, when the beats reach 33 per second, the dissonance reaches its maximum. Both slower and quicker beats have a less grating or dissonant effect. When the beats are very slow, they may be of advantage to the music; and, when they reach 132 per second, their roughness is no longer discernible.

Thanks to Helmholtz, whose views I have here sought to express in the briefest possible language, we are now in a condition to grapple with the question of musical intervals, and to give the reason why some are consonant and some dissonant to the ear. Circumstanced as we are upon earth, all our feelings and emotions, from the lowest sensation to the highest Æsthetic consciousness, have a mechanical cause: though it may be forever denied to us to take the step from cause to effect; or to understand why the agitations of nervous matter can awaken the delights which music imparts. Take, then, the case of a violin. The fundamental tone of every string of this instrument is demonstrably accompanied by a crowd of overtones; so that, when two violins are sounded, we have not only to take into account the consonance or dissonance of the fundamental tones, but also those of the higher tones of both. Supposing two strings sounded whose fundamental tones, and all of whose partial tones, coincide, we have then absolute unison; and this we actually have when the ratio of vibration is 1:1. So also when the ratio of vibration is accurately 1:2, each overtone of the fundamental finds itself in absolute coincidence with either the fundamental tone or some higher tone of the octave. There is no room for beats or dissonance. When we examine the interval of a fifth, with a ratio of 2:3, we find the coincidence of the partial tones of the two so perfect as almost, though not wholly, to exclude every trace of dissonance. Passing on to the other intervals, we find the coincidence of the partial tones less perfect, as the numbers expressing the ratio of the vibrations become more large. Thus, the dissonance of intervals whose rates of vibration can only be expressed by large numbers, is not to be ascribed to any mystic quality of the numbers themselves, but to the fact that the fundamental tones which require such numbers are inexorably accompanied by partial tones whose coalescence produces beats, these producing the grating effect known as dissonance.

§ 6. Graphic Representation of Consonance and Dissonance

Helmholtz has attempted to represent this result graphically, and from his work I copy, with some modification, the next two diagrams. He assumes, as already stated, the maximum dissonance to correspond to 33 beats per second; and he seeks to express different degrees of dissonance by lines of different lengths. The horizontal line c' c, Fig. 164, represents a range of the musical scale in which c is our middle C, with 528 vibrations, and c' the lower octave of c. The distance from any point of this line to the curve above it represents the dissonance corresponding to that point. The pitch here is supposed to ascend continuously, and not by jumps. Supposing, for example, two performers on the violin to start with the same note c', and that, while one of them continues to sound that note, the other gradually and continuously shortens his string, thus gradually raising its pitch up to the octave c. The effect upon the ear would be represented by the irregular curved line in Fig. 164. Soon after the unison, which is represented by contact at c', is departed from, the curve suddenly rises, showing the dissonance here to be the sharpest of all. At c', the curve approaches the straight line c' c, and this point corresponds to the major third. At f' the approach, is still nearer, and this point corresponds to the fourth. At g' the curve almost touches the straight line, indicating that at this point, which corresponds to the fifth, the dissonance almost vanishes. At a' we have the major sixth; while at c, where the one note is an octave above the other, the dissonance entirely vanishes. The e s' and the a s', of this diagram are the German names of a third and a flat sixth.

Fig. 164.
Fig. 164.

Maintaining the same fundamental note c', and passing through the octave above c, the various degrees of consonance and dissonance are those shown in Fig. 165. That is to say, beginning with the octave c'-c, and gradually elevating the pitch of one of the strings till it reaches c', the octave of c, the curved line represents the effect upon the ear. We see, from both these curves, that dissonance is the general rule, and that only at certain definite points does the dissonance vanish, or become so decidedly enfeebled as not to destroy the harmony. These points correspond to the places where the numbers expressing the ratio of the two rates of vibration are small whole numbers. It must be remembered that these curves are constructed on the supposition that the beats are the cause of the dissonance; and the agreement between calculation and experience sufficiently demonstrates the truth of the assumption.77

Fig. 165.
Fig. 165.

You have thus accompanied me to the verge of the Physical portion of the science of Acoustics, and through the Æsthetic portion I have not the knowledge of music necessary to lead you. I will only add that, in comparing three or more sounds together, that is to say, in choosing them for chords, we are guided by the principles just mentioned. We choose sounds which are in harmony with the fundamental sound and with each other. In choosing a series of sounds for combination two by two, the simplicity alone of the ratios would lead us to fix on those expressed by the numbers 1, 5/4, 4/3, 3/2, 5/3, 2; these being the simplest ratios that we can have within an octave. But, when the notes represented by these ratios are sounded in succession, it is found that the intervals between 1 and 5/4, and between 5/3 and 2, are wider than the others, and require the interpolation of a note in each case. The notes chosen are such as form chords, not with the fundamental tone, but with the note 3/2 regarded as a fundamental tone. The ratios of these two notes with the fundamental are 9/8 and 15/8. Interpolating these, we have the eight notes of the natural or diatonic scale, expressed by the following names and ratios:

Names C. D. E. F. G. A. B. C'.
Intervals 1st. 2d. 3d. 4th. 5th. 6th. 7th. 8th.
Rates of vibration 1, 9/8, 5/4, 4/3, 3/2, 5/3, 15/8, 2.

Multiplying these ratios by 24, to avoid fractions, we obtain the following series of whole numbers, which express the relative rates of vibration of the notes of the diatonic scale:

24, 27, 30, 32, 36, 40, 45, 48.

The meaning of the terms third, fourth, fifth, etc., which we have so often applied to the musical intervals, is now apparent; the term has reference to the position of the note in the scale.

§ 7. Composition of Vibrations

In our second lecture I referred to, and in part illustrated, a method devised by M. Lissajous for studying musical vibrations. By means of a beam of light reflected from a mirror attached to a tuning-fork, the fork was made to write the story of its own motion. In our last lecture the same method was employed to illustrate optically the phenomenon of beats. I now propose to apply it to the study of the composition of the vibrations which constitute the principal intervals of the diatonic scale. We must, however, prepare ourselves for the thorough comprehension of this subject by a brief preliminary examination of the vibrations of a common pendulum.

Such a pendulum hangs before you. It consists of a wire carefully fastened to a plate of iron at the roof of the house, and bearing a copper ball weighing 10 lbs. I draw the pendulum aside and let it go; it oscillates to and fro almost in the same plane.

I say “almost,” because it is practically impossible to suspend a pendulum without some little departure from perfect symmetry around its point of attachment. In consequence of this, the weight deviates sooner or later from a straight line, and describes an oval more or less elongated. Some years ago this circumstance presented a serious difficulty to those who wished to repeat M. Foucault’s celebrated experiment, demonstrating the rotation of the earth.

Nevertheless, in the case now before us, the pendulum is so carefully suspended that its deviation from a straight line is not at first perceptible. Let us suppose the amplitude of its oscillation to be represented by the dotted line a b, Fig. 166. The point d, midway between a and b, is the pendulum’s point of rest. When drawn aside from this point to b, and let go, it will return to d, and in virtue of its momentum will pass on to a. There it comes momentarily to rest, and returns through d to b. And thus it will continue to oscillate until its motion is expended.

The pendulum having first reached the limit of its swing at b, let us suppose a push in a direction perpendicular to a b imparted to it; that is to say, in the direction b c. Supposing the time required by the pendulum to swing from b to a to be one second,78 then the time required to swing from b to d will be half a second. Fig. 166. Fig. 166. Suppose, further, the force applied at b to be such as would carry the bob, if free to move in that direction alone, to c in half a second, and that the distance b c is equal to b d, the question then occurs, where will the bob really find itself at the end of half a second? It Fig. 167. Fig. 167. is perfectly manifest that both forces are satisfied by the pendulum reaching the point e, exactly opposite the centre d, in half a second. To reach this point, it can be shown that it must describe the circular arc b e, and it will pursue its way along the continuation of the same arc, to a, and then pass round to b. Thus, by the rectangular impulse the rectilinear oscillation is converted into a rotation, the pendulum describing a circle, as shown in Fig. 167.

If the force applied at b be sufficient to urge the weight in half a second through a greater distance than b c, the pendulum will describe an ellipse, with the lines a b for its smaller axis; if, on the contrary, the force applied at b urge the pendulum in half a second through a distance less than b c, the weight will describe an ellipse, with the line a b for its greater axis.

Let us now inquire what occurs when the rectangular impulse is applied at the moment the ball is passing through its position of rest at d.

Supposing the pendulum to be moving from a to b, Fig. 168, and that at d a shock is imparted to it sufficient of itself to carry it in half a second to c; it is here manifest that the resultant motion will be along the straight line d g lying between b d and d c. The pendulum will return along this line to d, and pass on to h. In this case, therefore, the pendulum will describe a straight line, g h, oblique to its original direction of oscillation.

Supposing the direction of motion at the moment the push is applied to be from b to a, instead of from a to b, it is manifest that the resultant here will also be a straight line oblique to the primitive direction of oscillation; but its obliquity will be that shown in Fig. 169.

Fig. 168.
Fig. 168.
Fig. 169.
Fig. 169.

When the impulse is imparted to the pendulum neither at the centre nor at the limit of its swing, but at some point between both, we obtain neither a circle nor a straight line, but something between both. We have, in fact, a more or less elongated ellipse with its axis oblique to a b, the original direction of vibration. If, for example, the impulse be imparted at d', Fig. 170, while the pendulum is moving toward b, the position of the ellipse will be that shown in Fig. 170; but if the push at d' be given when the motion is toward a, then the position of the ellipse will be that represented in Fig. 171.

Fig. 170.
Fig. 170.
Fig. 171.
Fig. 171.

By the method of M. Lissajous we can combine the rectangular vibrations of two tuning-forks, a subject which I now wish to illustrate before you. In front of an electric lamp, L, Fig. 172, is placed a large tuning-fork, T', fixed in a stand horizontally, and provided with a mirror, on which a narrow beam of light, L T', is permitted to fall. The beam is thrown back, by reflection. In the path of the reflected beam is placed a second upright tuning-fork, T, also furnished with a mirror. By the horizontal fork, when it vibrates, the beam is tilted laterally; by the vertical fork, vertically. At the present moment both forks are motionless, the beam of light being reflected from the mirror of the horizontal to that of the vertical fork, and from the latter to the screen, on which it prints a brilliant disk. I now agitate the upright fork, leaving the other motionless. The disk is drawn out into a fine luminous band, 3 feet long. On sounding the second fork, the straight band is instantly transformed into a white ring o p, Fig. 172, 36 inches in diameter. What have we done here? Exactly what we did in our first experiment with the pendulum. We have caused a beam of light to vibrate simultaneously in two directions, and have accidentally hit upon the phase when one fork has just reached the limit of its swing and come momentarily to rest, while the beam is receiving the maximum impulse from the other fork.

That the circle was obtained is, as stated, a mere accident; but it was a fortunate accident, as it enables us to see the exact similarity between the motion of the beam and that of the pendulum. I stop both forks, and, agitating them afresh, obtain an ellipse with its axis oblique. After a few trials we obtain the straight line, indicating that both the forks then pass simultaneously through their positions of equilibrium. In this way, by combining the vibrations of the two forks, we reproduce all the figures obtained with the pendulum.

When the vibrations of the two forks are, in all respects, absolutely alike, whatever the figure may be which is first traced upon the screen, it remains unchanged in form, diminishing only in size as the motion is expended. But the slightest difference in the rates of vibration destroys this fixity of the image. I endeavored before the lecture to reader the unison between these two forks as perfect as possible, and hence you have observed very little alteration in the shape of the figure. But by moving a small weight along the prong of either fork, or by attaching to either of them a bit of wax, the unison is impaired. The figure then obtained by the combination of both passes slowly from a straight line into an oblique ellipse, thence into a circle; after which it narrows again to an ellipse with an opposed obliquity, it then passes again into a straight line, the direction of which is at right angles to the first direction. Finally, it passes, in the reverse order, through the same series of figures to the straight line with which we began. The interval between two successive identical figures is the time in which one of the forks succeeds in executing one complete vibration more than the other. Loading the fork still more heavily, we have more rapid changes; the straight line, ellipse, and circle being passed through in quick succession. At times the luminous curve exhibits a stereoscopic depth, which renders it difficult to believe that we are not looking at a solid ring of white-hot metal.

Fig. 173.
Fig. 173.

By causing the mirror of the fork, T, to rotate through a small arc, the steady circle first obtained is drawn out into a luminous scroll stretching right across the screen, Fig. 173. The same experiment made with the changing figure, obtained by throwing the forks out of unison, gives us a scroll of irregular amplitude, Fig. 174.79

Fig. 174.
Fig. 174.

We have next to combine the vibrations of two forks, one of which oscillates with twice the rapidity of the other; in other words, to determine the figure corresponding to the combination of a note and its octave. Fig. 175. Fig. 175. To prepare ourselves for the mechanics of the problem, we must resort once more to our pendulum; for it also can be caused to oscillate in one direction twice as rapidly as in another. By a complicated mechanical arrangement this might be done in a very perfect manner, but at present simplicity is preferable to completeness. The wire of our pendulum is therefore permitted to descend from its point of suspension, A, Fig. 175, midway between two horizontal glass rods, a b, a' b', supported firmly at their ends, and about an inch asunder. The rods cross the wire at a height of 7 feet above the bob of the pendulum. The whole length of the pendulum being 28 feet, the glass rods intercept one-fourth of this length. On drawing the pendulum aside in the direction of the rods, a b, a' b', and letting it go, it oscillates freely between them. I bring it to rest and draw it aside in a direction perpendicular to the last; a length of 7 feet only can now oscillate, and by the laws of oscillation a pendulum 7 feet long vibrates with twice the rapidity of a pendulum 28 feet long.

I wish to show you the figure described by the combination of these two rates of vibration. Attached to the copper ball, p, is a camel’s-hair pencil, intended to rub lightly upon a glass plate placed on black paper and over which is strewed white sand. Allowing the pendulum to oscillate as a whole, the sand is rubbed away along a straight line which represents the amplitude of the vibration. Let a b, Fig. 176, represent this line, which, as before, we will assume to be described in one second. When the pendulum is at the limit, b, of its swing, let a rectangular impulse be imparted to it sufficient to carry it to c in one-fourth of a second. If this were the only impulse acting on the pendulum, the bob would reach c and return to b in half a second. But under the actual circumstances it is also urged toward d, which point, through the vibration of the whole pendulum, it ought also to reach in half a second. Both vibrations, therefore, require that the bob shall reach d at the same moment; and to do this it will have to describe the curve b c' d. Again, in the time required by the long pendulum to pass from d to a, the short pendulum will pass to and fro over the half of its excursion; both vibrations must therefore reach a at the same moment, and to accomplish this the pendulum describes the lower curve between d and a. It is manifest that these two curves will repeat themselves at the opposite sides of a b, the combination of both vibrations producing finally a figure of 8, which you now see fairly drawn upon the sand before you.

The same figure is obtained if the rectangular impulse be imparted when the pendulum is passing its position of rest, d.

Fig. 176.
Fig. 176.
Fig. 177.
Fig. 177.
Fig. 178.
Fig. 178.

I have here supposed the time occupied by the pendulum in describing the line a b to be one second. Let us suppose three-fourths of the second exhausted, and the pendulum at d', Fig. 177, in its excursion toward b; let the rectangular impulse then be imparted to it, sufficient to carry it to c in one-fourth of a second. Now the long pendulum requires that it should move from d' to b in one-fourth of a second; both impulses are therefore satisfied by the pendulum taking up the position c' at the end of a quarter of a second. To reach this position it must describe the curve d' c'. It will manifestly return along the same curve, and at the end of another quarter of a second find itself again at d'. From d' to d the long pendulum requires a quarter of a second. But at the end of this time the short pendulum must be at the lower limit of its swing: both requirements are satisfied by the pendulum being at e. We thus obtain one arm, c' e, of a curve, which repeats itself to the left of e; so that the entire curve, due to the combination of the two vibrations, is that represented in Fig. 165. This figure is a parabola, whereas the figure of 8 before obtained is a lemniscata.

We have here supposed that, at the moment when the rectangular impulse was applied, the motion of the pendulum was toward b: if it were toward a we should obtain the inverted parabola, as shown in Fig. 178.

Supposing, finally, the impulse to be applied, not when the pendulum is passing through its position of equilibrium, nor when it is passing a point corresponding to three-fourths or one-fourth of the time of its excursion, but at some other point in the line, a b, between its end and centre. Under these circumstances we should have neither the parabola nor the perfectly symmetrical figure of 8, but a distorted 8.

And now we are prepared to witness with profit the combined vibration of our two tuning-forks, one of which sounds the octave of the other. Permitting the vertical fork, T, Fig. 172, to remain undisturbed in front of the lamp, we can oppose to it a horizontal fork, which vibrates with twice the rapidity. The first passage of the bow across the two forks reveals the exact similarity of this combination, and that of our pendulum. A very perfect figure of 8 is described upon the screen. Before the lecture the vibrations of these two forks were fixed as nearly as possible to the ratio of 1:2, and the steadiness of the figure indicates the perfection of the tuning. Stopping both forks, and again agitating them, we have the distorted 8 upon the screen. A few trials enable me to bring out the parabola. In all these cases the figure remains fixed upon the screen. But if a morsel of wax be attached to one of the forks, the figure is steady no longer, but passes from the perfect 8 into the distorted one, thence into the parabola, from which it afterward opens out to an 8 once more. By augmenting the discord, we can render those changes as rapid as we please.

When the 8 is steady on the screen, a rotation of the mirror of the fork, T, produces the scroll shown in Fig. 179.

Fig. 179.
Fig. 179.

Our next combination will be that of two forks vibrating in the ratio of 2:3. Observe the admirable steadiness of the figure produced by the compounding of these two rates of vibration. On attaching a four-penny-piece with wax to one of the forks the steadiness ceases, and we have an apparent rocking to and fro of the luminous figure. Passing on to intervals of 3:4, 4:5, and 5:6, the figures become more intricate as we proceed. The last combination, 5:6, is so entangled that to see the figure plainly a very narrow band of light must be employed. The distance existing between the forks and the screen also helps us to unravel the complication.

Fig. 180.
Fig. 180.

And here it is worth noting that, when the figure is fully developed, the loops along the vertical and horizontal edges express the ratio of the combined vibrations. In the octave, for example, we have two loops in one direction, and one in another; in the fifth, two loops in one direction, and three in another. When the combination is as 1:3, the luminous loops are also as 1:3. The changes which some of these figures undergo, when the tuning is not perfect, are extremely remarkable. In the case of 1:3, for example, it is difficult at times not to believe that you are looking at a solid link of white-hot metal. The figure exhibits a depth, apparently incompatible with its being traced upon a plane surface.

Fig. 181.
Fig. 181.

Fig. 180 (page 445) is a diagram of these beautiful figures, including combinations from 1:1 to 5:6. In each case, the characteristic phases of the vibration are shown; and through all of these each figure passes when the interval between the two forks is not pure. I also add here, Fig. 181, two phases of the combination 8:9.

Fig. 182. 1:2.
Fig. 182. 1:2.
Fig. 183. 2:3.
Fig. 183. 2:3.

To these illustrations of rectangular vibrations I add two others, Figs. 182 and 183, from a very beautiful series obtained by Mr. Herbert Airy with a compound pendulum. The experiments are described in “Nature” for August 17 and September 7, 1871. As their loops indicate, the figures are those of an octave and a twelfth.

Fig. 184. 2:3
Fig. 184. 2:3
Fig. 185. 3:4
Fig. 185. 3:4

But the most instructive apparatus for the compounding of rectangular vibrations is that of Mr. Tisley. Figs. 184 and 185 are copies of figures obtained by him through the joint action of two distinct pendulums; the rates of vibration corresponding to these particular figures being 2:3 and 3:4 respectively. The pen which traces the figures is moved simultaneously by two rods attached to the pendulums above their places of suspension. These two rods lie in the two planes of vibration, being at right angles to the pendulums, and to each other. At their place of intersection is the pen. By means of a ball and socket, of a special kind, the rods are enabled to move with a minimum of friction in all directions, while the rates of vibration are altered, in a moment, by the shifting of movable weights. The figures are drawn either with ink on paper, or, when projection on a screen is desired, by a sharp point on smoked glass. When the pendulums, having gone through the entire figure, return to their starting-point, they have lost a little in amplitude. The second excursion will, therefore, be smaller than the first, and the third smaller than the second. Hence the series of fine lines, inclosing gradually-diminishing areas, shown in these exquisite figures.80 Mr. Tisley’s apparatus reflects the highest credit upon its able constructor.

Fig. 186.
Fig. 186.

Sir Charles Wheatstone devised, many years ago, a small and very efficient apparatus for the compounding of rectangular vibrations. A drawing, Fig. 186, and a description of this beautiful little instrument, for both of which I am indebted to its eminent inventor, may find a place here: a is a steel rod polished at its upper end so as to reflect a point of light; this rod moves in a ball-and-socket joint at b, so that it may assume any position. Its lower end is connected with two arms c and d, placed at right angles to each other, the other ends of which are respectively attached to the circumferences of the two circular disks e and f. The axis of the disk e carries at its opposite end another large disk g, which gives motion to the small disk h, placed on the axis which carries the disk f; and, according as this small disk h is placed nearer to or further from the centre of the disk g, it communicates a different relative motion to the disk f. The nut and screw i enable the disk h to be placed in any position between the centre, and circumference of the larger disk g; and by means of the fork j the disk f is caused to revolve, whatever may be the position of the disk h. By this arrangement, while the wheel k is turned regularly, the rod a is moved backward and forward by the disk e in one direction, and by the disk f, with any relative oscillatory motion, in the rectangular direction. The end of the rod is thus made to describe and to exhibit optically all the beautiful acoustical figures produced by the composition of vibrations of different periods in directions rectangular to each other. A lever l, bearing against the nut i, indicates, on a scale m, the numerical ratio of the two vibrations.81

I close these remarks on the combination of rectangular vibrations with a brief reference to an apparatus constructed by Mr. A. E. Donkin, of Exeter College, Oxford, and described in the “Proceedings of the Royal Society,” vol. xxii., p. 196. In its construction great mechanical knowledge is associated with consummate skill. I saw the apparatus as a wooden model, before it quitted the hands of its inventor, and was charmed with its performance. It is now constructed by Messrs. Tisley and Spiller.

SUMMARY OF CHAPTER IX

By the division of a string Pythagoras determined the consonant intervals in music, proving that, the simpler the ratio of the two parts into which the string was divided, the more perfect is the harmony of the sounds emitted by the two parts of the string. Subsequent investigators showed that the strings act thus because of the relation of their lengths to their rates of vibration.

With the double siren this law of consonance is readily illustrated. Here the most perfect harmony is the unison, where the vibrations are in the ratio of 1:1. Next comes the octave, where the vibrations are in the ratio of 1:2. Afterward follow in succession the fifth, with a ratio of 2:3; the fourth, with a ratio of 3:4; the major third, with a ratio of 4:5; and the minor third, with a ratio of 5:6. The interval of a tone, represented by the ratio 8:9, is dissonant, while that of a semitone, with a ratio of 15:16, is a harsh and grating dissonance.

The musical interval is independent of the absolute number of the vibrations of the two notes, depending only on the ratio of the two rates of vibration.

The Pythagoreans referred the pleasing effect of the consonant intervals to number and harmony, and connected them with “the music of the spheres.” Euler explained the consonant intervals by reference to the constitution of the mind, which, he affirmed, took pleasure in simple calculations. The mind was fond of order, but of such order as involved no weariness in its contemplation. This pleasure was afforded by the simpler ratios in the case of music.

The researches of Helmholtz prove the rapid succession of beats to be the real cause of dissonance in music.

By means of two singing-flames, the pitch of one of them being changeable by the telescopic lengthening of its tube, beats of any degree of slowness or rapidity may be produced. Commencing with beats slow enough to be counted, and gradually increasing their rapidity, we reach, without breach of continuity, downright dissonance.

But, to grasp this theory in all its completeness, we must refer to the constitution of the human ear. We have first the tympanic membrane, which is the anterior boundary of the drum of the ear. Across the drum stretches a series of little bones, called respectively the hammer, the anvil, and the stirrup-bone; the latter abutting against a second membrane, which forms part of the posterior boundary of the drum. Beyond this membrane is the labyrinth filled with water, and having its lining membrane covered with the filaments of the auditory nerve.

Every shock received by the tympanic membrane is transmitted through the series of bones to the opposite membrane; thence to the water of the labyrinth, and thence to the auditory nerve.

The transmission is not direct. The vibrations are in the first place taken up by certain bodies, which can swing sympathetically with them. These bodies are of three kinds: the otolites, which are little crystalline particles; the bristles of Max Schultze; and the fibres of Corti’s organ. This latter is to all intents and purposes a stringed instrument, of extraordinary complexity and perfection, placed within the ear.

As regards our present subject, the strings of Corti’s organ probably play an especially important part. That one string should respond, in some measure, to another, it is not necessary that the unison should be perfect; a certain degree of response occurs in the immediate neighborhood of unison.

Hence each of two strings, not far removed from each other in pitch, can cause a third string, of intermediate pitch, to respond sympathetically. And if the two strings be sounded together, the beats which they produce are propagated to the intermediate string.

So, as regards Corti’s organ, when single sounds of various pitches, or rather when vibrations of various rapidities, fall upon its strings, the vibrations are responded to by the particular string whose period coincides with theirs. And when two sounds, close to each other in pitch, produce beats, the intermediate Corti’s fibre is acted on by both, and responds to the beats.

In the middle and upper portions of the musical scale the beats are most grating and harsh when they succeed each other at the rate of 33 per second. When they occur at the rate of 132 per second, they cease to be sensible.

The perfect consonance of certain musical intervals is due to the absence of beats. The imperfect consonance of other intervals is due to their existence. And here the overtones play a part of the utmost importance. For, though the primaries may sound together without any perceptible roughness, the overtones may be so related to each other as to produce harsh and grating beats. A strict analysis of the subject proves that intervals which require large numbers to express them are invariably accompanied by overtones which produce beats; while in intervals expressed by small numbers the beats are practically absent.

The graphic representation of the consonances and dissonances of the musical scale, by Helmholtz, furnishes a striking proof of this explanation.

The optical illustration of the musical intervals has been effected in a very beautiful manner by Lissajous. Corresponding to each interval is a definite figure, produced by the combination of its vibrations.

The compounding of vibrations has, of late years, been beautifully illustrated by apparatus constructed by Sir C. Wheatstone, Mr. Herbert Airy, and Mr. A. E. Donkin; and by the beautiful pendulum apparatus of Mr. Tisley, of the firm of Tisley and Spiller.

The pressure which, on a former occasion, prevented me from adding a “summary” to this chapter, was also the cause of hastiness, and partial inaccuracy, in its sketch of the theory of Helmholtz. That the sketch needed emendation I have long known, but I did not think it worth while to anticipate the correction here made; as the chapter, imperfect as it was, had been published, without comment, in Germany, by Helmholtz himself.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page