CHAPTER II

Previous

Physical Distinction between Noise and Music—A Musical Tone Produced by Periodic, Noise Produced by Unperiodic, Impulses—Production of Musical Sounds by Taps—Production of Musical Sounds by Puffs—Definition of Pitch in Music—Vibrations of a Tuning-Fork; their Graphic Representation on Smoked Glass—Optical Expression of the Vibrations of a Tuning-Fork—Description of the Siren—Limits of the Ear; Highest and Deepest Tones—Rapidity of Vibration Determined by the Siren—Determination of the Lengths of Sonorous Waves—Wave-Lengths of the Voice in Man and Woman—Transmission of Musical Sounds through Liquids and Solids

IN OUR last chapter we considered the propagation through air of a sound of momentary duration. We have to-day to consider continuous sounds, and to make ourselves in the first place acquainted with the physical distinction between noise and music. As far as sensation goes, everybody knows the difference between these two things. But we have now to inquire into the causes of sensation, and to make ourselves acquainted with the condition of the external air which in one case resolves itself into music and in another into noise.

We have already learned that what is loudness in our sensations is outside of us nothing more than width of swing, or amplitude, of the vibrating air-particles. Every other real sonorous impression of which we are conscious has its correlative without, as a mere form or state of the atmosphere. Were our organs sharp enough to see the motions of the air through which an agreeable voice is passing, we might see stamped upon that air the conditions of motion on which the sweetness of the voice depends. In ordinary conversation, also, the physical precedes and arouses the psychical; the spoken language, which is to give us pleasure or pain, which is to rouse us to anger or soothe us to peace, existing for a time, between us and the speaker, as a purely mechanical condition of the intervening air.

Noise affects us as an irregular succession of shocks. We are conscious while listening to it of a jolting and jarring of the auditory nerve, while a musical sound flows smoothly and without asperity or irregularity. How is this smoothness secured? By rendering the impulses received by the tympanic membrane perfectly periodic. A periodic motion is one that repeats itself. The motion of a common pendulum, for example, is periodic, but its vibrations are far too sluggish to excite sonorous waves. To produce a musical tone we must have a body which vibrates with the unerring regularity of the pendulum, but which can impart much sharper and quicker shocks to the air.

Imagine the first of a series of pulses following each other at regular intervals, impinging upon the tympanic membrane. It is shaken by the shock; and a body once shaken cannot come instantaneously to rest. The human ear, indeed, is so constructed that the sonorous motion vanishes with extreme rapidity, but its disappearance is not instantaneous; and if the motion imparted to the auditory nerve by each individual pulse of our series continues until the arrival of its successor, the sound will not cease at all. The effect of every shock will be renewed before it vanishes, and the recurrent impulses will link themselves together to a continuous musical sound. The pulses, on the contrary, which produce noise, are of irregular strength and recurrence. The action of noise upon the ear has been well compared to that of a flickering light upon the eye, both being painful through the sudden and abrupt changes which they impose upon their respective nerves.

The only condition necessary to the production of a musical sound is that the pulses should succeed each other in the same interval of time. No matter what its origin may be, if this condition be fulfilled the sound becomes musical. If a watch, for example, could be caused to tick with sufficient rapidity—say one hundred times a second—the ticks would lose their individuality and blend to a musical tone. And if the strokes of a pigeon’s wings could be accomplished at the same rate, the progress of the bird through the air would be accompanied by music. In the humming-bird the necessary rapidity is attained; and when we pass on from birds to insects, where the vibrations are more rapid, we have a musical note as the ordinary accompaniment of the insects’ flight.24 The puffs of a locomotive at starting follow each other slowly at first, but they soon increase so rapidly as to be almost incapable of being counted. If this increase could continue up to fifty or sixty puffs a second, the approach of the engine would be heralded by an organ-peal of tremendous power.

§ 2. Musical Sounds produced by Taps

Galileo produced a musical sound by passing a knife over the edge of a piastre. The minute serration of the coin indicated the periodic character of the motion, which consisted of a succession of taps quick enough to produce sonorous continuity. Every schoolboy knows how to produce a note with his slate-pencil. I will not call it Fig. 15. Fig. 15. musical, because this term is usually associated with pleasure, and the sound of the pencil is not pleasant.

The production of a musical sound by taps is usually effected by causing the teeth of a rotating wheel to strike in quick succession against a card. This was first illustrated by the celebrated Robert Hooke,25 and nearer our own day by the eminent French experimenter Savart. We will confine ourselves to homelier modes of illustration. This gyroscope is an instrument consisting mainly of a heavy brass ring, d, Fig. 15, loading the circumference of a disk, through which and at right angles to its surface, passes a steel axis, delicately supported at its two ends. By coiling a string round the axis, and drawing it vigorously out, the ring is caused to spin rapidly; and along with it rotates a small-toothed wheel, w. On touching this wheel with the edge of a card c, a musical sound of exceeding shrillness is produced. I place my thumb for a moment against the ring; the rapidity of its rotation is thereby diminished, and this is instantly announced by a lowering of the pitch of the note. By checking the motion still more, the pitch is lowered still further. We are here made acquainted with the important fact that the pitch of a note depends upon the rapidity of its pulses.26 At the end of the experiment you hear the separate taps of the teeth against the card, their succession not being quick enough to produce that continuous flow of sound which is the essence of music. A screw with a milled head attached to a whirling table, and caused to rotate, produces by its taps against a card a note almost as clear and pure as that obtained from the toothed wheel of the gyroscope.

The production of a musical sound by taps may also be pleasantly illustrated in the following way: In this vise are fixed vertically two pieces of sheet-lead, with their horizontal edges a quarter of an inch apart. I lay a bar of brass across them, permitting it to rest upon the edges, and, tilting the bar a little, set it in oscillation like a see-saw. After a time, if left to itself, it comes to rest. But suppose the bar on touching the lead to be always tilted upward by a force issuing from the lead itself, it is plain that the vibrations would then be rendered permanent. Now such a force is brought into play when the bar is heated. On its then touching the lead the heat is communicated, a sudden jutting upward of the lead at the point of contact being the result. Hence an incessant tilting of the bar from side to side, so long as it continues sufficiently hot. Substituting for the brass bar the heated fire-shovel shown in Fig. 16, the same effect is produced.

In its descent upon the lead the bar taps it gently, the taps being so slow that you may readily count them. But a mass of metal differently shaped may be caused to vibrate more briskly, and the taps to succeed each other more rapidly. When such a heated rocker, Fig. 17, is placed upon a block of lead, the taps hasten to a loud rattle. When, with the point of a file, the rocker is pressed against the lead, the vibrations are rendered more rapid, and the taps link themselves together to a deep musical tone. A second rocker, which oscillates more quickly than the last, produces music without any other pressure than that due to its own weight. Pressing it, however, with the file, the pitch rises, until a note of singular force and purity fills the room. Relaxing the pressure, the pitch instantly falls; resuming the pressure, it again rises; and thus by the alternation of the pressure we obtain great variations of tone. Nor are such rockers essential. Allowing one face of the clean, square end of a heated poker to rest upon the block of lead, a rattle is heard; causing another face to rest upon the block, a clear musical note is obtained. The two faces have been bevelled differently by a file, so as to secure different rates of vibration.27 This curious effect was discovered by Schwartz and Trevelyan.

Fig. 17.
Fig. 17.

§ 3. Musical Sounds produced by Puffs

Prof. Robison was the first to produce a musical sound by a quick succession of puffs of air. His device was the first form of an instrument which will soon be introduced to you under the name of the siren. Robison describes his experiment in the following words: “A stop-cock was so constructed that it opened and shut the passage of a pipe 720 times in a second. The apparatus was fitted to the pipe of a conduit leading from the bellows to the wind-chest of an organ. The air was simply allowed to pass gently along this pipe by the opening of the cock. When this was repeated 720 times in a second, the sound g in alt was most smoothly uttered, equal in sweetness to a clear female voice. When the frequency was reduced to 360, the sound was that of a clear but rather a harsh man’s voice. The cock was now altered in such a manner that it never shut the hole entirely, but left about one-third of it open. When this was repeated 720 times in a second, the sound was uncommonly smooth and sweet. When reduced to 360, the sound was more mellow than any man’s voice of the same pitch.”

Fig. 18.
Fig. 18.

But the difficulty of obtaining the necessary speed renders another form of the experiment preferable. A disk of Bristol board, B, Fig. 18, twelve inches in diameter, is perforated at equal intervals along a circle near its circumference. The disk, being strengthened by a backing of tin, can be attached to a whirling table, and caused to rotate rapidly. The individual holes then disappear, blending themselves into a continuous shaded circle. Immediately over this circle is placed a bent tube, m, connected with a pair of acoustic bellows. The disk is now motionless, the lower end of the tube being immediately over one of the perforations of the disk. If, therefore, the bellows be worked, the wind will pass from m through the hole underneath. But if the disk be turned a little, an unperforated portion of the disk comes under the tube, the current of air being then intercepted. As the disk is slowly turned, successive perforations are brought under the tube, and whenever this occurs a puff of air gets through. On rendering the rotation rapid, the puffs succeed each other in very quick succession, producing pulses in the air which blend to a continuous musical note, audible to you all. Mark how the note varies. When the whirling table is turned rapidly the sound is shrill; when its motion is slackened the pitch immediately falls. If instead of a single glass tube there were two of them, as far apart as two of our orifices, so that whenever the one tube stood over an orifice, the other should stand over another, it is plain that if both tubes were blown through, we should, on turning the disk, get a puff through two holes at the same time. The intensity of the sound would be thereby augmented, but the pitch would remain unchanged. The two puffs issuing at the same instant would act in concert, and produce a greater effect than one upon the ear. And if instead of two tubes we had ten of them, or better still, if we had a tube for every orifice in the disk, the puffs from the entire series would all issue, and would be all cut off at the same time. These puffs would produce a note of far greater intensity than that obtained by the alternate escape and interruption of the air from a single tube. In the arrangement now before you, Fig. 19, there are nine tubes through which the air is urged—through nine apertures, therefore, puffs escape at once. On turning the whirling table, and alternately increasing and relaxing its speed, the sound rises and falls like the loud wail of a changing wind.

Fig. 19.
Fig. 19.

§ 4. Musical Sounds produced by a Tuning-fork

Various other means may be employed to throw the air into a state of periodic motion. A stretched string pulled aside and suddenly liberated imparts vibrations to the air which succeed each other in perfectly regular intervals. A tuning-fork does the same. When a bow is drawn across the prongs of this tuning-fork, Fig. 20, the resin of the bow enables the hairs to grip the prong, which is thus pulled aside. But the resistance of the prong soon becomes too strong, and it starts suddenly back; it is, however, immediately laid hold of again by the bow, to start back once more as soon as its resistance becomes great enough. This rhythmic process, continually repeated during the passage of the bow, finally throws the fork into a state of intense vibration, and the result is a musical note. A person close at hand could see the fork vibrating; a deaf person bringing his hand sufficiently near would feel the shivering of the air. Or causing its vibrating prong to touch a card, taps against the card link themselves, as in the case of the gyroscope, to a musical sound, the fork coming rapidly to rest. What we call silence expresses this absence of motion.

Fig. 20.
Fig. 20.

When the tuning-fork is first excited the sound issues from it with maximum loudness, becoming gradually feebler as the fork continues to vibrate. A person close to the fork can notice at the same time that the amplitude, or space through which the prongs oscillate, becomes gradually less and less. But the most expert ear in this assembly can detect no change in the pitch of the note. The lowering of the intensity of a note does not therefore imply the lowering of its pitch. In fact, though the amplitude changes, the rate of vibration remains the same. Pitch and intensity must therefore be held distinctly apart; the latter depends solely upon the amplitude, the former solely upon the rapidity of vibration.

This tuning-fork may be caused to write the story of its own motion. Attached to the side of one of its prongs, F, Fig. 21, is a thin strip of sheet-copper which tapers to a point. When the tuning-fork is excited it vibrates, and the strip of metal accompanies it in its vibration. The point of the strip being brought gently down upon a piece of smoked glass, it moves to and fro over the smoked surface, leaving a clear line behind. As long as the hand is kept motionless, the point merely passes to and fro over the same line; but it is plain that we have only to draw the fork along the glass to produce a sinuous line, Fig. 21.

Fig. 21.
Fig. 21.

When this process is repeated without exciting the fork afresh, the depth of the indentations diminishes. The sinuous line approximates more and more to a straight one. This is the visual expression of decreasing amplitude. When the sinuosities entirely disappear, the amplitude has become zero, and the sound, which depends upon the amplitude, ceases altogether.

Fig. 22.
Fig. 22.

To M. Lissajous we are indebted for a very beautiful method of giving optical expression to the vibrations of a tuning-fork. Attached to one of the prongs of a very large fork is a small metallic mirror, F, Fig. 22, the other prong being loaded with a piece of metal to establish equilibrium. Permitting a slender beam of intense light to fall upon the mirror, the beam is thrown back by reflection. In my hands is held a small looking-glass, which receives the reflected beam, and from which it is again reflected to the screen, forming a small luminous disk upon the white surface. The disk is perfectly motionless, but the moment the fork is set in vibration the reflected beam is tilted rapidly up and down, the disk describing a band of light three feet long. The length of the band depends on the amplitude of the vibration, and you see it gradually shorten as the motion of the fork is expended. It remains, however, a straight line as long as the glass is held in a fixed position. But on suddenly turning the glass so as to make the beam travel from left to right over the screen, you observe the straight line instantly resolved into a beautiful luminous ripple m n. A luminous impression once made upon the retina lingers there for the tenth of a second; if then the time required to transfer the elongated image from side to side of the screen be less than the tenth of a second, the wavy line of light will occupy for a moment the whole width of the screen. Instead of permitting the beam from the lamp to issue through a single aperture, it may be caused to issue through two apertures, about half an inch asunder, thus projecting two disks of light, one above the other, upon the screen. When the fork is excited and the mirror turned, we have a brilliant double sinuous line running over the dark surface, Fig. 23. turning the diaphragm so as to place the two disks beside each other, on exciting the fork and moving the mirror we obtain a beautiful interlacing of the two sinuous lines, Fig. 24.

Fig. 23.
Fig. 23.
Fig. 24.
Fig. 24.

§ 5. The Waves of Sound

How are we to picture to ourselves the condition of the air through which this musical sound is passing? Imagine one of the prongs of the vibrating fork swiftly advancing; it compresses the air immediately in front of it, and when it retreats it leaves a partial vacuum behind, the process being repeated by every subsequent advance and retreat. The whole function of the tuning-fork is to carve the air into these condensations and rarefactions, and they, as they are formed, propagate themselves in succession through the air. A condensation with its associated rarefaction constitutes, as already stated, a sonorous wave. In water the length of a wave is measured from crest to crest; while, in the case of sound, the wave-length is the distance between two successive condensations. The condensation of the sound-wave corresponds to the crest, while the rarefaction of the sound-wave corresponds to the sinus, or depression, of the water-wave. Let the dark spaces, a, b, c, d, Fig. 25, represent the condensations, and the light ones, a', b', c', d', the rarefactions of the waves issuing from the fork a b: the wave-length would then be measured from a to b, from b to c, or from c to d.

Fig. 25.
Fig. 25.

§ 6. Definition of Pitch: Determination of Rates of Vibration

When two notes from two distinct sources are of the same pitch, their rates of vibration are the same. If, for example, a string yield the same note as a tuning-fork, it is because they vibrate with the same rapidity; and if a fork yield the same note as the pipe of an organ or the tongue of a concertina, it is because the vibrations of the fork in the one case are executed in precisely the same time as the vibrations of the column of air, or of the tongue, in the other. The same holds good for the human voice. If a string and a voice yield the same note, it is because the vocal chords of the singer vibrate in the same time as the string vibrates. Is there any way of determining the actual number of vibrations corresponding to a musical note? Can we infer from the pitch of a string, of an organ-pipe, of a tuning-fork, or of the human voice, the number of waves which it sends forth in a second? This very beautiful problem is capable of the most complete solution.

§ 7. The Siren: Analysis of the Instrument

By the rotation of a perforated pasteboard disk, it has been proved to you that a musical sound is produced by a quick succession of puffs. Had we any means of registering the number of revolutions accomplished by that disk in a minute, we should have in it a means of determining the number of puffs per minute due to a note of any determinate pitch. The disk, however, is but a cheap substitute for a far more perfect apparatus, which requires no whirling table, and which registers its own rotations with the most perfect accuracy.

I will take the instrument asunder, so that you may see its various parts. A brass tube, t, Fig. 26, leads into a round box, C, closed at the top by a brass plate a b. This plate is perforated with four series of holes, placed along four concentric circles. The innermost series contains 8, the next 10, the next 12, and the outermost 16 orifices. When we blow into the tube t, the air escapes through the orifices, and the problem now before us is to convert these continuous currents into discontinuous puffs. This is accomplished by means of a brass disk d e, also perforated with 8, 10, 12, and 16 holes, at the same distances from the centre and with the same intervals between them as those in the top of the box C. Through the centre of the disk passes a steel axis, the two ends of which are smoothly bevelled off to points at p and p'. My object now is to cause this perforated disk to rotate over the perforated top a b of the box C. You will understand how this is done by observing how the instrument is put together.

Fig. 26.
Fig. 26.
Fig. 27.
Fig. 27.

In the centre of a b, Fig. 26, is a depression x sunk in steel, smoothly polished and intended to receive the end p' of the axis. I place the end p' in this depression, and, holding the axis upright, bring down upon its upper end p a steel cap, finely polished within, which holds the axis at the top, the pressure both at top and bottom being so gentle, and the polish of the touching surfaces so perfect, that the disk can rotate with an exceedingly small amount of friction. At c, Fig. 27, is the cap which fits on to the upper end of the axis p p'. In this figure the disk d e is shown covering the top of the cylinder C. You may neglect for the present the wheel-work of the figure. Turning the disk d e slowly round, its perforations may be caused to coincide or not coincide with those of the cylinder underneath. As the disk turns, its orifices come alternately over the perforations of the cylinder and over the spaces between the perforations. Hence it is plain that if air were urged into C, and if the disk could be caused to rotate at the same time, we should accomplish our object, and carve into puffs the streams of air. In this beautiful instrument the disk is caused to rotate by the very air currents which it renders intermittent. This is done by the simple device of causing the perforations to pass obliquely through the top of the cylinder C, and also obliquely, but oppositely inclined, through the rotating disk d e. The air is thus caused to issue from C, not vertically, but in side currents, which impinge against the disk and drive it round. In this way, by its passage through the siren, the air is molded into sonorous waves.

Another moment will make you acquainted with the recording portion of the instrument. At the upper part of the steel axis p p', Fig. 27, is a screw s, working into a pair of toothed wheels (seen when the back of the instrument is turned toward you). As the disk and its axis turn, these wheels rotate. In front you simply Fig. 28. Fig. 28. see two graduated dials, Fig. 28, each furnished with an index like the hand of a clock. These indexes record the number of revolutions executed by the disk in any given time. By pushing the button a or b the wheel-work is thrown into or out of action, thus starting or suspending, in a moment, the process of recording. Finally, by the pins m, n, o, p, Fig. 27, any series of orifices in the top of the cylinder C can be opened or closed at pleasure. By pressing m, one series is opened; by pressing n, another. By pressing two keys, two series of orifices are opened; by pressing three keys, three series; and by pressing all the keys, puffs are caused to issue from the four series simultaneously. The perfect instrument is now before you, and your knowledge of it is complete.

This instrument received the name of siren from its inventor, Cagniard de la Tour. The one now before you is the siren as greatly improved by Dove. The pasteboard siren, whose performance you have already heard, was devised by Seebeck, who gave the instrument various interesting forms, and executed with it many important experiments. Let us now make the siren sing. By pressing the key m, the outer series of apertures in the cylinder C is opened, and by working the bellows, the air is caused to impinge against the disk. It begins to rotate, and you hear a succession of puffs which follow each other so slowly that they may be counted. But as the motion augments, the puffs succeed each other with increasing rapidity, and at length you hear a deep musical note. As the velocity of rotation increases the note rises in pitch; it is now very clear and full, and as the air is urged more vigorously, it becomes so shrill as to be painful. Here we have a further illustration of the dependence of pitch on rapidity of vibration. I touch the side of the disk and lower its speed; the pitch falls instantly. Continuing the pressure the tone continues to sink, ending in the discontinuous puffs with which it began.

Were the blast sufficiently powerful and the siren sufficiently free from friction, it might be urged to higher and higher notes, until finally its sound would become inaudible to human ears. This, however, would not prove the absence of vibratory motion in the air; but would rather show that our auditory apparatus is incompetent to take up and translate into sound vibrations whose rapidity exceeds a certain limit. The ear, as we shall immediately learn, is in this respect similar to the eye.

By means of this siren we can determine with extreme accuracy the rapidity of vibration of any sonorous body. It may be a vibrating string, an organ-pipe, a reed, or the human voice. Operating delicately, we might even determine from the hum of an insect the number of times it flaps its wings in a second. I will illustrate the subject by determining in your presence a tuning-fork’s rapidity of vibration. From the acoustic bellows I urge the air through the siren, and, at the same time, draw my bow across the fork. Both now sound together, the tuning-fork yielding at present the highest note. But the pitch of the siren gradually rises, and at length you hear the “beats” so well known to musicians, which indicate that the two notes are not wide apart in pitch. These beats become slower and slower; now they entirely vanish, both notes blending as it were to a single stream of sound.

All this time the clockwork of the siren has remained out of action. As the second-hand of a watch crosses the number 60, the clockwork is set going by pushing the button a. We will allow the disk to continue its rotation for a minute, the tuning-fork being excited from time to time to assure you that the unison is preserved. The second-hand again approaches 60; as it passes that number the clockwork is stopped by pushing the button b; and then, recorded on the dials, we have the exact number of revolutions performed by the disk. The number is 1,440. But the series of holes open during the experiment numbers 16; for every revolution, therefore, we had 16 puffs of air, or 16 waves of sound. Multiplying 1,440 by 16, we obtain 23,040 as the number of vibrations executed by the tuning-fork in a minute. Dividing this by 60, we find the number of vibrations executed in a second to be 384.

§ 8. Determination of Wave-lengths: Time of Vibration

Having determined the rapidity of vibration, the length of the corresponding sonorous wave is found with the utmost facility. Imagine a tuning-fork vibrating in free air. At the end of a second from the time it commenced its vibrations the foremost wave would have reached a distance of 1,090 feet in air of the freezing temperature. In the air of a room which has a temperature of about 15° C., it would reach a distance of 1,120 in a second. In this distance, therefore, are embraced 384 sonorous waves. Dividing 1,120 by 384, we find the length of each wave to be nearly 3 feet. Determining in this way the rates of vibration of the four tuning-forks now before you, we find them to be 256, 320, 384, and 512; these numbers corresponding to wave-lengths of 4 feet 4 inches, 3 feet 6 inches, 2 feet 11 inches, and 2 feet 2 inches respectively. The waves generated by a man’s voice in common conversation are from 8 to 12 feet, those of a woman’s voice are from 2 to 4 feet in length. Hence a woman’s ordinary pitch in the lower sounds of conversation is more than an octave above a man’s; in the higher sounds it is two octaves.

And here it is important to note that by the term vibrations is meant complete ones; and by the term sonorous wave is meant a condensation and its associated rarefaction. By a vibration an excursion to and fro of the vibrating body is to be understood. Every wave generated by such a vibration bends the tympanic membrane once in and once out. These are the definitions of a vibration and of a sonorous wave employed in England and Germany. In France, however, a vibration consists of an excursion of the vibrating body in one direction, whether to or fro. The French vibrations, therefore, are only the halves of ours, and we therefore call them semi-vibrations. In all cases throughout these chapters, when the word vibration is employed without qualification, it refers to complete vibrations.

During the time required by each of those sonorous waves to pass entirely over a particle of air, that particle accomplishes one complete vibration. It is at one moment pushed forward into the condensation, while at the next moment it is urged back into the rarefaction. The time required by the particle to execute a complete oscillation is, therefore, that required by the sonorous wave to move through a distance equal to its own length. Supposing the length of the wave to be eight feet, and the velocity of sound in air of our present temperature to be 1,120 feet a second, the wave in question will pass over its own length of air in, 1/140th of a second: this is the time required by every air-particle that it passes to complete an oscillation.

In air of a definite density and elasticity a certain length of wave always corresponds to the same pitch. But supposing the density or elasticity not to be uniform; supposing, for example, the sonorous waves from one of our tuning-forks to pass from cold to hot air: an instant augmentation of the wave-length would occur, without any change of pitch, for we should have no change in the rapidity with which the waves would reach the ear. Conversely with the same length of wave the pitch would be higher in hot air than in cold, for the succession of the waves would be quicker. In an atmosphere of hydrogen, waves of a certain length would produce a note nearly two octaves higher than waves of the same length in air; for, in consequence of the greater rapidity of propagation, the number of impulses received in a given time in the one case would be nearly four times the number received in the other.

§ 9. Definition of an Octave

Opening the innermost and outermost series of the orifices of our siren, and sounding both of them, either together or in succession, the musical ears present at once detect the relationship of the two sounds. They notice immediately that the sound which issues from the circle of sixteen orifices is the octave of that which issues from the circle of eight. But for every wave sent forth by the latter, two waves are sent forth by the former. In this way we prove that the physical meaning of the term “octave” is, that it is a note produced by double the number of vibrations of its fundamental. By multiplying the vibrations of the octave by two, we obtain its octave, and by a continued multiplication of this kind we obtain a series of numbers answering to a series of octaves. Starting, for example, from a fundamental note of 100 vibrations, we should find, by this continual multiplication, that a note five octaves above it would be produced by 3,200 vibrations. Thus:

100 Fundamental note.
2
——
200 1st octave.
2
——
400 2d octave.
2
——
800 3d octave.
2
——
1600 4th octave.
2
——
3200 5th octave.

This result is more readily obtained by multiplying the vibrations of the fundamental note by the fifth power of two. In a subsequent chapter we shall return to this question of musical intervals. For our present purpose it is only necessary to define an octave.

§ 10. Limits of the Ear; and of Musical Sounds

The ear’s range of hearing is limited in both directions. Savart fixed the lower limit at eight complete vibrations a second; and to cause these slowly recurring vibrations to link themselves together he was obliged to employ shocks of great power. By means of a toothed wheel and an associated counter, he fixed the upper limit of hearing at 24,000 vibrations a second. Helmholtz has recently fixed the lower limit at 16 vibrations, and the higher at 38,000 vibrations, a second. By employing very small tuning-forks, the late M. Depretz showed that a sound corresponding to 38,000 vibrations a second is audible.28 Starting from the note 16, and multiplying continually by 2, or more compendiously raising 2 to the 11th power, and multiplying this by 16, we should find that at 11 octaves above the fundamental note the number of vibrations would be 32,768. Taking, therefore, the limit assigned by Helmholtz, the entire range of the human ear embraces about eleven octaves. But all the notes comprised within these limits cannot be employed in music. The practical range of musical sounds is comprised between 40 and 4,000 vibrations a second, which amounts, in round numbers, to seven octaves.29

The limits of hearing are different in different persons. While endeavoring to estimate the pitch of certain sharp sounds, Dr. Wollaston remarked in a friend a total insensibility to the sound of a small organ-pipe, which, in respect to acuteness, was far within the ordinary limits of hearing. The sense of hearing of this person terminated at a note four octaves above the middle E of the pianoforte. The squeak of the bat, the sound of a cricket, even the chirrup of the common house-sparrow, are unheard by some people who for lower sounds possess a sensitive ear. A difference of a single note is sometimes sufficient to produce the change from sound to silence. “The suddenness of the transition,” writes Wollaston, “from perfect hearing to total want of perception, occasions a degree of surprise which renders an experiment of this kind with a series of small pipes among several persons rather amusing. It is curious to observe the change of feeling manifested by various individuals of the party, in succession, as the sounds approach and pass the limits of their hearing. Those who enjoy a temporary triumph are often compelled, in their turn, to acknowledge to how short a distance their little superiority extends.” “Nothing can be more surprising,” writes Sir John Herschel, “than to see two persons, neither of them deaf, the one complaining of the penetrating shrillness of a sound, while the other maintains there is no sound at all. Thus, while one person mentioned by Dr. Wollaston could but just hear a note four octaves above the middle E of the pianoforte, others have a distinct perception of sounds full two octaves higher. The chirrup of the sparrow is about the former limit; the cry of the bat about an octave above it; and that of some insects probably another octave.” In “The Glaciers of the Alps” I have referred to a case of short auditory range, noticed by myself in crossing the Wengern Alps in company with a friend. The grass at each side of the path swarmed with insects, which to me rent the air with their shrill chirruping. My friend heard nothing of this, the insect-music lying beyond his limit of audition.

§ 11. Drum of the Ear. The Eustachian Tube

Behind the tympanic membrane exists a cavity—the drum of the ear—in part crossed by a series of bones, and in part occupied by air. This cavity communicates with the mouth by means of a duct called the Eustachian tube. This tube is generally closed, the air-space behind the tympanic membrane being thus shut off from the external air. If, under these circumstances, the external air becomes denser, it will press the tympanic membrane inward. If, on the other hand, the air outside becomes rarer, while the Eustachian tube remains closed, the membrane will be pressed outward. Pain is felt in both cases, and partial deafness is experienced. I once crossed the Stelvio Pass by night in company with a friend who complained of acute pain in the ears. On swallowing his saliva the pain instantly disappeared. By the act of swallowing, the Eustachian tube is opened, and thus equilibrium is established between the external and internal pressure.

It is possible to quench the sense of hearing of low sounds by stopping the nose and mouth, and trying to expand the chest, as in the act of inspiration. This effort partially exhausts the space behind the tympanic membrane, which is then thrown into a state of tension by the pressure of the outward air. A similar deafness to low sounds is produced when the nose and mouth are stopped, and a strong effort is made to expire. In this case air is forced through the Eustachian tube into the drum of the ear, the tympanic membrane being distended by the pressure of the internal air. The experiment may be made in a railway carriage, when the low rumble will vanish or be greatly enfeebled, while the sharper sounds are heard with undiminished intensity. Dr. Wollaston was expert in closing the Eustachian tube, and leaving the space behind the tympanic membrane occupied by either compressed or rarefied air. He was thus able to cause his deafness to continue for any required time without effort on his part, always, however, abolishing it by the act of swallowing. A sudden concussion may produce deafness by forcing air either into or out of the drum of the ear, and this may account for a fact noticed by myself in one of my Alpine rambles. In the summer of 1858, jumping from a cliff on to what was supposed to be a deep snowdrift, I came into rude collision with a rock which the snow barely covered. The sound of the wind, the rush of the glacier-torrents, and all the other noises which a sunny day awakes upon the mountains, instantly ceased. I could hardly hear the sound of my guide’s voice. This deafness continued for half an hour; at the end of which time the blowing of the nose opened, I suppose, the Eustachian tube, and restored, with the quickness of magic, the innumerable murmurs which filled the air around me.

Light, like sound, is excited by pulses or waves; and lights of different colors, like sounds of different pitch, are excited by different rates of vibration. But in its width of perception the ear exceedingly transcends the eye; for while the former ranges over eleven octaves, but little more than a single octave is possible to the latter. The quickest vibrations which strike the eye, as light, have only about twice the rapidity of the slowest;30 whereas the quickest vibrations which strike the ear, as a musical sound, have more than two thousand times the rapidity of the slowest.

§ 12. Helmholtz’s Double Siren

Prof. Dove, as we have seen, extended the utility of the siren of Cagniard de la Tour, by providing it with four series of orifices instead of one. By doubling all its parts, Helmholtz has recently added vastly to the power of the instrument. The double siren, as it is called, is now before you, Fig. 29 (next page). It is composed of two of Dove’s sirens, C and C', one turned upside down. You will recognize in the lower siren the instrument with which you are already acquainted. The disks of the two sirens have a common axis, so that when one disk rotates the other rotates with it. As in the former case, the number of revolutions is recorded by clockwork (omitted in the figure). When air is urged through the tube t' the upper siren alone sounds; when urged through t, the lower one only sounds; when it is urged simultaneously through t' and t, both the sirens sound. With this instrument, therefore, we are able to introduce much more varied combinations than with the former one. Helmholtz has also contrived a means by which not only the disk of the upper siren, but the box C' above the disk, can be caused to rotate. This is effected by a toothed wheel and pinion, turned by a handle. Underneath the handle is a dial with an index, the use of which will be subsequently illustrated.

Fig. 29.
Fig. 29.

Let us direct our attention for the present to the upper siren. By means of an India-rubber tube, the orifice t' is connected with an acoustic bellows, and air is urged into C'. Its disk turns round, and we obtain with it all the results already obtained with Dove’s siren. The pitch of the note is uniform. Turning the handle above, so as to cause the orifices of the cylinder C' to meet those of the disk, the two sets of apertures pass each other more rapidly than when the cylinder stood still. An instant rise of pitch is the result. By reversing the motion, the orifices are caused to pass each other more slowly than when C' is motionless, and in this case you notice an instant fall of pitch when the handle is turned. Thus, by imparting in quick alternation a right-handed and left-handed motion to the handle, we obtain successive rises and falls of pitch. An extremely instructive effect of this kind may be observed at any railway station on the passage of a rapid train. During its approach the sonorous waves emitted by the whistle are virtually shortened, a greater number of them being crowded into the ear in a given time. During its retreat we have a virtual lengthening of the sonorous waves. The consequence is, that, when approaching, the whistle sounds a higher note, and when retreating it sounds a lower note, than if the train were still. A fall of pitch, therefore, is perceived as the train passes the station.31 This is the basis of Doppler’s theory of the colored stars. He supposes that all stars are white, but that some of them are rapidly retreating from us, thereby lengthening their luminiferous waves and becoming red. Others are rapidly approaching us, thereby shortening their waves, and becoming green or blue. The ingenuity of this theory is extreme, but its correctness is more than doubtful.

§ 13. Transmission of Musical Sounds by Liquids and Solids

We have thus far occupied ourselves with the transmission of musical sounds through air. They are also transmitted by liquids and solids. When a tuning-fork screwed into a little wooden foot vibrates, nobody, except the persons closest to it, hears its sound. On dipping the foot into a glass of water a musical sound is audible: the vibrations having been transmitted through the water to the air. The tube M N, Fig. 30, three feet long, is set upright upon a wooden tray A B. The tube ends in a funnel at the top, and is now filled with water to the brim. The fork F is thrown into vibration, and on dipping its foot into the funnel at the top of the tube, a musical sound swells out. I must so far forestall matters as to remark that in this experiment the tray is the real sounding body. It has been thrown into vibration by the fork, but the vibrations have been conveyed to the tray by the water. Through the same medium vibrations Fig. 30. Fig. 30. are communicated to the auditory nerve, the terminal filaments of which are immersed in a liquid: substituting mercury for water, a similar result is obtained.

The siren has received its name from its capacity to sing under water. A vessel now in front of the table is half filled with water, in which a siren is wholly immersed. When a cock is turned, the water from the pipes which supply the house forces itself through the instrument. Its disk is now rotating, and a sound of rapidly augmenting pitch issues from the vessel. The pitch rises thus rapidly because the heavy and powerfully pressed water soon drives the disk up to its maximum speed of rotation. When the supply is lessened, the motion relaxes and the pitch falls. Thus, by alternately opening and closing the cock, the song of the siren is caused to rise and fall in a wild and melancholy manner. You would not consider such a sound likely to woo mariners to their doom.

The transmission of musical sounds through solid bodies is also capable of easy and agreeable illustration. Before you is a wooden rod, thirty feet long, passing from the table through a window in the ceiling, into the open air above. The lower end of the rod rests upon a wooden tray, to which the musical vibrations of a body applied to the upper end of the rod are to be transferred. An assistant is above, with a tuning-fork in his hand. He strikes the fork against a pad; it vibrates, but you hear nothing. He now applies the stem of the fork to the end of the rod, and instantly the wooden tray upon the table is rendered musical. The pitch of the sound, moreover, is exactly that of the tuning-fork; the wood has been passive as regards pitch, transmitting the precise vibrations imparted to it without any alteration. With another fork a note of another pitch is obtained. Thus fifty forks might be employed instead of two, and 300 feet of wood instead of 30; the rod would transmit the precise vibrations imparted to it, and no other.

We are now prepared to appreciate an extremely beautiful experiment, for which we are indebted to Sir Charles Wheatstone. In a room underneath this, and separated from it by two floors, is a piano. Through the two floors passes a tin tube 2-1/2 inches in diameter, and along the axis of this tube passes a rod of deal, the end of which emerges from the floor in front of the lecture-table. The rod is clasped by India-rubber bands, which entirely close the tin tube. The lower end of the rod rests upon the sound-board of the piano, its upper end being exposed before you. An artist is at this moment engaged at the instrument, but you hear no sound. When, however, a violin is placed upon the end of the rod, the instrument becomes instantly musical, not, however, with the vibrations of its own strings, but with those of the piano. When the violin is removed, the sound ceases; putting in its place a guitar, the music revives. For the violin and guitar we may substitute a plain wooden tray, which is also rendered musical. Here, finally, is a harp, against the sound-board of which the end of the deal rod is caused to press; every note of the piano is reproduced before you. On lifting the harp so as to break the connection with the piano, the sound vanishes; but the moment the sound-board is caused to press upon the rod the music is restored. The sound of the piano so far resembles that of the harp that it is hard to resist the impression that the music you hear is that of the latter instrument. An uneducated person might well believe that witchcraft or “spiritualism” is concerned in the production of this music.

What a curious transference of action is here presented to the mind! At the command of the musician’s will, the fingers strike the keys; the hammers strike the strings, by which the rude mechanical shock is converted into tremors. The vibrations are communicated to the sound-board of the piano. Upon that board rests the end of the deal rod, thinned off to a sharp edge to make it fit more easily between the wires. Through the edge, and afterward along the rod, are poured with unfailing precision the entangled pulsations produced by the shocks of those ten agile fingers. To the sound-board of the harp before you the rod faithfully delivers up the vibrations of which it is the vehicle. This second sound-board transfers the motion to the air, carving it and chasing it into forms so transcendently complicated that confusion alone could be anticipated from the shock and jostle of the sonorous waves. But the marvellous human ear accepts every feature of the motion, and all the strife and struggle and confusion melt finally into music upon the brain.32

SUMMARY OF CHAPTER II

A musical sound is produced by sonorous shocks which follow each other at regular intervals with a sufficient rapidity of succession.

Noise is produced by an irregular succession of sonorous shocks.

A musical sound may be produced by taps which rapidly and regularly succeed each other. The taps of a card against the cogs of a rotating wheel are usually employed to illustrate this point.

A musical sound may also be produced by a succession of puffs. The siren is an instrument by which such puffs are generated.

The pitch of a musical note depends solely on the number of vibrations concerned in its production. The more rapid the vibrations, the higher the pitch.

By means of the siren the rate of vibration of any sounding body may be determined. It is only necessary to render the sound of the siren and that of the body identical in pitch to maintain both sounds in unison for a certain time, and to ascertain, by means of the counter of the siren, how many puffs have issued from, the instrument in that time. This number expresses the number of vibrations executed by the sounding body.

When a body capable of emitting a musical sound—a tuning-fork, for example—vibrates, it molds the surrounding air into sonorous waves, each of which consists of a condensation and a rarefaction.

The length of the sonorous wave is measured from condensation to condensation, or from rarefaction to rarefaction.

The wave-length is found by dividing the velocity of sound per second by the number of vibrations executed by the sounding body in a second.

Thus a tuning-fork which vibrates 256 times in a second produces in air of 15° C., where the velocity is 1,120 feet a second, waves 4 feet 4 inches long. While two other forks, vibrating respectively 320 and 384 times a second, generate waves 3 feet 6 inches, and 2 feet 11 inches long.

A vibration, as defined in England and Germany, comprises a motion to and fro. It is a complete vibration. In France, on the contrary, a vibration comprises a movement to or fro. The French vibrations are with us semi-vibrations.

The time required by a particle of air over which a sonorous wave passes to execute a complete vibration is that required by the wave to move through a distance equal to its own length.

The higher the temperature of the air, the longer is the sonorous wave corresponding to any particular rate of vibration. Given the wave-length and the rate of vibration, we can readily deduce the temperature of the air.

The human ear is limited in its range of hearing musical sounds. If the vibrations number less than 16 a second, we are conscious only of the separate shocks. If they exceed 38,000 a second, the consciousness of sound ceases altogether. The range of the best ear covers about 11 octaves, but an auditory range limited to 6 or 7 octaves is not uncommon.

The sounds available in music are produced by vibrations comprised between the limits of 40 and 4,000 a second. They embrace 7 octaves.

The range of the ear far transcends that of the eye, which hardly exceeds an octave.

By means of the Eustachian tube, which is opened in the act of swallowing, the pressure of the air on both sides of the tympanic membrane is equalized.

By either condensing or rarefying the air behind the tympanic membrane, deafness to sounds of low pitch may be produced.

On the approach of a railway train the pitch of the whistle is higher, on the retreat of the train the pitch is lower, than it would be if the train were at rest.

Musical sounds are transmitted by liquids and solids. Such sounds may be transferred from one room to another; from the ground-floor to the garret of a house of many stories, for example, the sound being unheard in the rooms intervening between both, and rendered audible only when the vibrations are communicated to a suitable sound-board.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page