If we should desire to classify discoveries in order of merit, we must undoubtedly give a high place to those which are made under direct discouragements. In the last chapter we saw that Schwabe entered upon his work under conditions of this kind, it being the opinion of experienced astronomers who had looked at the facts that there was nothing of interest to be got by watching sun-spots. In the present chapter I propose to deal with a discovery made in the very teeth of the unanimous opinion of the astronomical world by an American amateur, Mr. S. C. Chandler of Cambridge (Massachusetts). It is my purpose to allow him to himself explain the steps of this discovery by giving extracts from the magnificent series of papers which he contributed to the Astronomical Journal on the subject in the years 1891-94, but it may help in the understanding of these extracts if I give a brief summary of the facts. And I will first explain what is meant by the “Variation of Latitude.” Latitude. We are all familiar with the existence of a certain star in the heavens called the Pole Star, and we know that at any particular place it is Change of latitude. Secondly (and this is what more immediately concerns us), the centre of the circle may alter its position and be no longer at the same height above the horizon of any given place. This would mean that the earth’s axis was shifting in the earth itself—that the North Pole which our explorers Chandler’s papers. With these few words of explanation I will First signs of change. “In the determination of the latitude of Cambridge[5] with the Almucantar, about six years and a half ago, it was shown that the observed values, arranged according to nights of observation, exhibited a decided and curious progression throughout the series, the earlier values being small, the later ones large, and the range from November 1884 to April 1885 being about four-tenths of a second. There was no known or imaginable instrumental or personal cause for this phenomenon, yet the only alternative seemed to be an inference that the latitude had actually changed. This seemed at the time too bold an inference to place upon record, and I therefore left the results to speak for themselves. The subsequent continuation of the series of observations to the end of June 1885 gave a Mr. Chandler then gives some figures in support of these statements, presenting them with the clearness which is so well marked a feature of the whole series of papers, and concludes this introductory paper as follows:— “It thus appears that the apparent change in the latitude of Cambridge is verified by this discussion of more abundant material. The presumption that it is real, on this determination alone, would justify further inquiry. Confirmed in Europe. “Curiously enough Dr. KÜstner, in his determination of the aberration from a series of observations coincident in time with those of the Almucantar, came upon similar anomalies, and his results, published in 1888, furnish a counterpart to those which I had pointed out in 1885. The verification afforded by the recent parallel determinations at Berlin, Prague, Potsdam, and Pulkowa, which show a most surprising and satisfactory accordance, as to the character of the change, in range and periodicity, with the Almucantar results, has led me to make further investigations on the subject. They seem to establish the nature of the law of those The second paper appeared on November 23, and opens with the following brief statement of his general results at that time:— 427 days’ period. “Before entering upon the details of the investigations spoken of in the preceding number, it is convenient to say that the general result of a preliminary discussion is to show a revolution of the earth’s pole in a period of 427 days, from west to east, with a radius of thirty feet, measured at the earth’s surface. Assuming provisionally, for the purpose of statement, that this is a motion of the north pole of the principal axis of inertia about that of the axis of rotation, the direction of the former from the latter lay towards the Greenwich meridian about the beginning of the year 1890. This, with the period of 427 days, will serve to fix approximately the relative positions of these axes at any other time, for any given meridian. It is not possible at this stage of the investigation to be more precise, as there are facts which appear to show that the rotation is not a perfectly uniform one, but is subject to secular change, and perhaps irregularities within brief spaces of time.” It is almost impossible, now that we have become familiar with the ideas conveyed in this But this is anticipating, and it is our intention to follow patiently the evidence adduced in support of the above statements, made with such splendid confidence to a totally disbelieving world. Mr. Chandler first examines the observations of Dr. KÜstner of Berlin, quoted at the end of his last also Washington. “In 1862 Professor Hubbard began a series of observations of a LyrÆ at the Washington Observatory with the prime vertical transit instrument, for the purpose of determining the constants of aberration and nutation and the parallax of the star. The methods of observation and reduction were conformed to those used with such success by W. Struve. After Hubbard’s death the series was continued by Professors Newcomb, Hall, and Harkness until the beginning of 1867. Professor “It is manifest, however, that if the 427-day period exists, its effect ought to appear distinctly in declination-measurements of such high degree of excellence as these presumably were, and, as I hope satisfactorily to show, actually are. When this variation is taken into account the observations will unquestionably vindicate the high From this general account I am excluding technical details and figures, and unfortunately a great deal is thereby lost. We lose the sense of conviction which the long rows of accordant figures force upon us, and we lose the opportunities of admiring both the astonishing amount of work done and the beautiful way in which the material is handled by a master. But I am tempted to give one very small illustration of the numerical results from near the end of the paper.Direction of revolution of Pole. After discussing the Washington results, and amply fulfilling the promise made in the preceding extract, Mr. Chandler compares them with the Pulkowa results, and shows that the Earth’s Pole must be revolving from west to east, and not from east to west. And then he writes down a simple formula representing this motion, and compares his formula with the observations. He gives the results in seconds of arc, but for the benefit of those not familiar with astronomical measurements we may readily convert these into feet;Example of results. and in the following tables are shown the distances of the Earth’s Pole in feet from its average position,[6] as observed at Washington and Washington.
Pulkowa.
Of course the figures are not exact in every case, but they are never many feet wrong; and it may Mr. Chandler winds up his second paper thus:— “We thus find that the comparison of the simultaneous series at Pulkowa and Washington, 1863-1867, leads to the same conclusion as that already drawn from the simultaneous series at Berlin and Cambridge, 1884-1885. The direction of the polar motion may therefore be looked upon as established with a large degree of probability. “In the next paper I will present the results derived from Peters, Struve, Bradley, and various other series of observations, after which the results of all will be brought to bear upon the determination of the best numerical values of the constants involved.” Bradley’s observations. The results were not, however, presented in this order. In the next paper, which appeared on December 23, 1891, Mr. Chandler begins, with the work of Bradley, the very series of observations at Kew and Wansted which led to the discoveries of aberration and nutation, and which we considered in the third chapter. He first The results obtained from Bradley’s Fig. 7. It will be seen that the maxima and minima fall in the spring and autumn, and this fact alone seemed to show that the effect could not be due to temperature, for we should expect the greatest effect in that case in winter and summer. It could not be due to the parallax of the stars for which Bradley began his search, for stars in different quarters of the heavens would then be differently affected, and this was not the case. “There remains,” concluded Mr. Chandler after full discussion, “the only natural conclusion of an actual displacement of the zenith, in other words, a change of latitude.” And he concludes this paper with the following fine passage:— “So far, then, as the results of this incomparable series of observations at Kew and Wansted, Bradley’s greatness. “Before taking leave of these observations for the present I cannot forbear to speak of the profound impression which a study of them leaves upon the mind, and the satisfaction which all astronomers must feel in recognising that, besides its first fruits of the phenomena of aberration and nutation, we now owe also our first knowledge of the polar motion to this same immortal work of Bradley. Its excellence, highly appreciated as it has been, has still been hitherto obscured by the presence of this unsuspected phenomenon. When divested of its effects, the wonderful accuracy of this work must appear in a finer light, and our admiration must be raised to higher pitch. Going back to it after one hundred and sixty years seems indeed like advancing into an era of practical astronomy more refined than that from which we pass. And this leads to a suggestion worthy of serious practical consideration—whether we can do better in the future study of the polar rotation, than again to avail ourselves of Bradley’s method, “In the next article Bradley’s later observations at Greenwich, the results of which are not so distinct, will be discussed; and also those of Brinkley at Dublin, 1808-13 and 1818-22. This will bring again to the surface one of the most interesting episodes in astronomical history,Other puzzles explained. the spirited and almost acrimonious dispute between Brinkley and Pond with regard to stellar parallaxes. I hope to show that the hitherto unsolved enigma of Brinkley’s singular results finds its easy solution in the fact of the polar motion. The period of his epoch appears to have been about a year, and its range more than a second. Afterwards will follow various discussions already more or less advanced towards completion. These include Bessel’s observations at KÖnigsberg, 1820-24, with the Reichenbach circle, and in 1842-44 with the Repsold circle; the latitudes derived from the polar-point determinations of Struve and MÄdler with the Dorpat circle, 1822-38; Struve’s observations for the determination of the aberration; Peters’ observations of Polaris, 1841-43, with the vertical-circle; the results obtained from the reflex zenith-tube at Greenwich, 1837-75, whose singular anomalies Provisional nature of results. “In connection with this synopsis of the scope of the investigations, one or two particulars may be of interest, which at the present writing seem to foreshadow the probable outcome. I beg, however, that the statement will be regarded merely as a provisional one. First, while the period is manifestly subject to change, as has already once or twice been intimated, I have hitherto failed in tracing the variations to any regular law, expressible in a numerical formula. Indeed, the general “Another characteristic which has struck my attention, although somewhat vaguely, is that the variations in the length of the period seem to go hand in hand with simultaneous alterations in the amplitude of the rotation; the shorter periods being apparently associated with the larger coefficients for the latter. The verification of these surmises awaits a closer comparative scrutiny, the opportunity for which will come when the computations are in a more forward state. If confirmed, these observations will afford a valuable touchstone, in seeking for the cause of a phenomenon which now seems to be at variance with the accepted laws of terrestrial rotation.” Reception of discovery. “Mr. Chandler’s remarkable discovery, that the apparent variations in terrestrial latitudes may be accounted for by supposing a revolution of the axis of rotation of the earth around that of figure, in a period of 427 days, is in such disaccord with the received theory of the earth’s rotation that at first I was disposed to doubt its possibility. But I am now able to point out a vera causa which affords a complete explanation of this period.Newcomb’s explanation. Up to the present time the treatment of this subject has been this: The ratio of the moment of inertia of the earth around its principal axis to the mean of the other two principal moments, admits of very accurate determination from the amount of precession and nutation. This ratio involves what we might call, in a general way, the solid ellipticity of the earth, or the ellipticity of a “When the differential equations of the earth’s rotation are integrated, there appear two arbitrary constants, representing the position of any assigned epoch of the axis of rotation relative to that of figure. Theory then shows that the axis of rotation will revolve round that of figure, in a period of 306 days, and in a direction from west toward east. The attempts to determine the value of these constants have seemed to show that both are zero, or that the axes of rotation and figure are coincident. Several years since, Sir William Thomson published the result of a brief computation from the Washington Prime-Vertical observations of a Lyrae which I made at his request and which showed a coefficient 0.05. This coefficient did not exceed the possible error of the result; I therefore regarded it as unreal. The forgotten assumption. “The question now arises whether Mr. Chandler’s result can be reconciled with dynamic theory. I answer that it can, because the theory which assigns 306 days as the time of revolution is based on the hypothesis that the earth is an absolutely rigid body. But, as a matter of fact, the fluidity of the ocean plays an important part in the phenomenon, as does also the elasticity of the earth. The combined effect of this fluidity and elasticity is that if the axis of rotation is displaced by a certain amount, the axis of figure will, by the This was very satisfactory. Professor Newcomb put his finger on the assumption which had been made so long ago that it had been forgotten: and the lesson is well worth taking to heart, for it is not the first time that mistaken confidence in a supposed fact has been traced to some forgotten preliminary assumption: and we must be ever ready to cast our eyes backward over all our assumptions, when some new fact seems to challenge our conclusions. It might further be expected that this discovery of the way in which theory had been defective would as a secondary consequenceBut Chandler’s work still mistrusted. inspire confidence in the other conclusions which Mr. Chandler had arrived at in apparent contradiction to theory; or at least suggest the suspension of judgment. But Professor Newcomb did not feel that this was possible in respect of the change of period, “The fact of a periodic variation of terrestrial latitudes, and the general law of that variation, have been established beyond reasonable doubt by the observations collected by Mr. Chandler. But two of his minor conclusions, as enumerated in No. 3 of this volume, do not seem to me well founded. They are— “1. That the period of the inequality is a variable quantity. “2. That the amplitude of the inequality has remained constant for the last half century.” Professor Newcomb proceeds to give his reasons for scepticism, which are too technical in character to reproduce here. But I will quote the following further sentence from his paper:— “The question now arises how far we are entitled to assume that the period must be invariable. I reply that, perturbations aside, any variation of the period is in such direct conflict with the laws of dynamics that we are entitled to pronounce it impossible. But we know that there are perturbations, and I do not see how one can In other words, while recognising that there may be a way of reconciling one of the “minor” conclusions with theory, Professor Newcomb considers that in this case the other must go.Chandler’s reply. Mr. Chandler’s answer will speak for itself. It was delayed a little in order that he might present an immense mass of evidence in support of his conclusions, and was ultimately printed on August 23, 1892. “The material utilised in the foregoing forty-five series aggregates more than thirty-three thousand observations. Of these more than one-third were made in the southern hemisphere, a fact which we owe principally to Cordoba. It comprises the work of seventeen observatories (four of them in the southern hemisphere) with twenty-one different instruments, and by nine distinct methods of observation. Only three of the series (XXI., XXV., and XXXV.), and these among the least precise intrinsically, give results contradictory of the general law developed in No. 267. This degree of general harmony is indeed surprising when the evanescent character of the phenomenon under investigation is considered. “The reader has now before him the means for independent scrutiny of the material on which the conclusions already drawn, and those which are He “put aside all teachings of theory,” “It should be said, first, that in beginning these investigations last year, I deliberately put aside all teachings of theory, because it seemed to me high time that the facts should be examined by a purely inductive process; that the nugatory results of all attempts to detect the existence of the Eulerian period probably arose from a defect of the theory itself; and that the entangled condition of the whole subject required that it should be examined afresh by processes unfettered by and “is not dismayed.” “Naturally, then, I am not much dismayed by the argument of conflict with dynamic laws, since all that such a phrase means must refer merely to the existent state of the theory at any given time. When the 427-day period was propounded, it was as inconsistent with known dynamic law as the variation of it now appears to be. Professor Newcomb’s own happy explanation has already set aside the first difficulty, as it would appear, and advanced the theory by an important step. Are we so sure yet of a complete knowledge of all the forces at work as to exclude the chance of a vera causa for the second?” Faraday’s words. There is a splendid ring of resolution about these words. Let us compare them with a notable utterance of Faraday:— Tested by this severe standard, Mr. Chandler fails in no particular, least of all in that of industry.Chandler’s other work at this time. The amount of work he got through about this time was enormous, for besides the main line of investigation, of which we have only had after all a mere glimpse, he had been able to turn aside to discuss a subsidiary question with Professor Comstock; he had examined with great care some puzzling characteristics in the variability of stars; he computed some comet ephemerides; and he was preparing a new catalogue of variable stars—a piece of work involving the collection and arrangement of great masses of miscellaneous material. Yet within a few months after replying as above to Professor Newcomb’s criticism,His ultimate satisfactory solution. he was able to announce that he had found the key to the new puzzle, and that “theory and observation were again brought into complete accord.” We will as before listen to the account of this new step in his own words, Fig. 8.
Adding the two rows together, the oscillations at first reinforce one another and we get numbers ranging from 2 to 8 instead of from 1 to 4; but one wave gains on the other, until it is rising when the other is falling, and the numbers add up to a steady series of 5’s. It will be seen that there are no less than seven consecutive 5’s, and all the variation seems to have disappeared. But presently the waves separate again, and the period of great disturbance recurs; it will be seen that in the “combined effect” the numbers repeat exactly after the 42nd term. Now those unfamiliar with the subject may not be prepared for the addition of one physical wave to another, as though they were numbers, but the analogy is perfect.Illustration from ocean travel. Travellers by some of the fast twin-screw steamers have had unpleasant occasion to notice this phenomenon, when the engineer does not run the two screws precisely at the same speed; there come times when the ship vibrates violently, separated by Chandler’s final formulÆ. “We now come upon a new line of investigation. Heretofore, as has been seen, the method has been to condense the results of each series of observations into the interval comprised by a single period, then to determine the mean epoch of minimum and the mean range for each series, and, finally, by a discussion of these quantities, to establish the general character of the law of the rotation of the pole. It is now requisite to analyse the observations in a different way, and discover whether the deviations from the general provisional law, in the last column of Table II., are real, and also in what manner the variation of the period is brought about. The outcome of this discussion, which is to be presented in the present paper, is extremely satisfactory. The “1. The observed variation of the latitude is the resultant curve arising from two periodic fluctuations superposed upon each other. The first of these, and in general the more considerable, has a period of about 427 days, and a semi-amplitude of about 0.12. The second has an annual period with a range variable between 0.04 and 0.20 during the last half-century. During the middle portion of this interval, roughly characterised as between 1860 and 1880, the value represented by the lower limit has prevailed, but before and after those dates, the higher one. The minimum and maximum of this annual component of the variation occur at the meridian of Greenwich, about ten days before the vernal and autumnal equinoxes respectively, and it becomes zero just before the solstices. “2. As the resultant of these two motions, the effective variation of the latitude is subject to a systematic alternation in a cycle of seven years’ duration, resulting from the commensurability of the two terms. According as they conspire or interfere, the total range varies between two-thirds of a second as a maximum, to but a few hundredths of a second, generally speaking, as a minimum. “3. In consequence of the variability of the coefficient of the annual term above mentioned, the apparent average period between 1840 and 1855 Those who cannot follow the details of the above statement will nevertheless catch the general purport—that the difficulties felt by Professor Newcomb have been surmounted; and this is made clearer by a later extract:— “A very important conclusion necessarily follows from the agreement of the values of the 427-day term, deduced from the intervals between the consecutive values of T in Table XII., namely, that there has been no discontinuity in the revolution, such as Professor Newcomb regarded as so probable that he doubted the possibility of drawing any conclusions from the comparison of observations before and after 1860 (A. J., 271, p. 50). Theory must go, if it will not fit observation. The paper from which these words are taken appeared on November 4, 1892. The next paper on the main theme did not appear till a year later, though much work was being done in the meantime on the constant of aberration and other matters arising immediately after the discovery.The final paper. On November 14, 1893, Mr. Chandler winds up the series of eight papers “On the Variation of Latitude,” which he had commenced just two years before. His work was by no means done; rather was it only beginning, for the torch he had “It is therefore proved beyond reasonable doubt that the directions of the rotations is from West to East in both elements; whence the general form of the equation for the variation of latitude adopted in A. J., 284, p. 154, eq. (19). It may be thought that too much pains have been here bestowed upon a point which might be trusted to theory to decide. I cannot think so. One of the most salient results of these articles has been the proof of the fact that theory has been a blind guide with regard to the velocity of the Polar rotation, obscuring truth and misleading investigators for a half a century. And even if we were certain, which we are not, that the fourteen months’ term is the Eulerian period in a Finally, he answers one of the few objectors of eminence who still lingered, the great French physicist Cornu:— Cornu answered. “The ground is now cleared for examination of the only topic remaining to be covered, to establish, upon the foundation of fact, every point in the present theory of these remarkable movements of the earth’s axis. This is the question of the possibility that these movements are not real, but merely misinterpretations of the observed phenomena; being in whole or in part an illusory effect of instrumental error due to the influence of temperature. Such a possibility has been a nightmare in practical astronomy from the first, frightening us in every series of unexplained residuals, brought to light continually in nearly all attempts at delicate instrumental research. A source of danger so subtile could not fail to be ever present in the mind of every astronomer and physicist who has given even a superficial attention to the question of the latitude variations, and there is no doubt that some are even now thus deterred from accepting these variations as At this point we must leave the fascinating account of the manner in which this great discovery was established, in the teeth of opposition such as might have dismayed and dissuaded a less clear-sighted or courageous man. It is my purpose to lay more stress upon the method of making the discovery than upon its results;Consequences of the discovery. but we may afford a brief glance at some of the consequences which have already begun to flow from this step in advance. Some of them have indeed already come before us, especially that large class represented by the explanation of anomalies in series of observations which had been put aside as inexplicable. We have seen how the observations made in Russia, or in Washington, or at Greenwich, in all of which there was some puzzling error, were immediately straightened out when Chandler applied his new rule to them.Suspected observers acquitted. We in England have special cause to be grateful to Chandler; not only has he demonstrated more clearly than ever the greatness of Bradley, but he has rehabilitated Pond, the Astronomer Royal of the beginning of the nineteenth century; showing that his Constant of Aberration improved. Secondly, there is the modifying influence of this new phenomenon on other phenomena already known, such, for instance, as that of “aberration.” We saw in the third chapter how Bradley discovered this effect of the velocity of light, and how the measure of it is obtained by comparing the velocity of light with that of the earth. This comparison can be effected in a variety of ways, and we should expect all the results to agree within certain limits; but this agreement was not obtained, and Chandler has been able to show one reason why, and to remove some of the more troublesome differences. It is impossible to give here an idea of the far-reaching consequences which such work as this may have; so long as there are differences of this kind we cannot trust any part of the chain of evidence, and there is in prospect the enormous labour of examining each separate link until the error is found. The velocity of light, for instance, may be Latitude Variation Tide. Another example will, perhaps, be of more general interest. If the axis of the earth is executing small oscillations of this kind, there should be an effect upon the tides; the liquid ocean should feel the wobble of the earth’s axis in some way; and an examination of tidal registers showed that there was in fact a distinct effect. It may cause some amusement when I say that the rise and fall are only a few inches in any case; but they are unmistakable evidences that the earth is not spinning smoothly, but has this kind of unbalanced vibration, which I have compared to the vibrations felt by passengers on an imperfectly engineered twin-screw steamer. A more sensational effect is that apparently earthquakes are more numerous at the time when the vibration is greatest.Earthquakes. We remarked that the vibration waxes and wanes, much as that of the steamer waxes and wanes if the twin-screws are not running quite together. Now the passengers on the steamer would be prepared to find that breakages Finally I will mention another phenomenon which seems to be at present more of a curiosity than anything else, but which may lead to some future great discovery. It is the outcome of observations which have been recently made to watch these motions of the Pole; for although there seems good reason to accept Mr. Chandler’s laws of variation as accurate, it is necessary to establish their accuracy and complete the details by making observations for some time yet to come;The Kimura phenomenon. and there could be no better proof of this necessity than the discovery recently made by Mr. Kimura, one of those engaged in this watch of the Pole in Japan. Perhaps I can give the best idea of it by mentioning one possible explanation, which, however, I must caution you may not be by any means the right one. We are accustomed to think of this great earth as being sufficiently constant in shape; But beyond the fact that he must work hard, it would seem as though there were little of value to tell the would-be discoverer. The situation has been well summarised by Jevons in his chapter on Induction in the “Principles of Science;” and his words will form a fitting conclusion to these chapters:— “It would seem as if the mind of the great discoverer must combine contradictory attributes. He must be fertile in theories and hypotheses, |