method of measuring the quantity of rain that falls—the rain gauge—methods of observing for rain and snow—effects of elevation on the quantity of rain—difference between the top of a tall building and the summit of a mountain—size of drops of rain—velocity of their fall—quantity of rain in different latitudes—extraordinary falls of rain—remarks on the rain of this country—influence of the moon—absence of rain—remarkable drought in south america—its terrible effects and consequences—artificial rains. The quantity of rain which falls at different parts of the earth’s surface is very variable; and A more convenient form of rain-gauge than the one just noticed, is made by placing the funnel at the top of a brass or copper cylinder, connected with which at the lower point, is a glass tube with a scale, measuring inches and tenths of an Some rain-gauges are constructed for showing the quantity of rain which falls from each of the four principal quarters. Others are made so as to register, themselves, the quantity of rain fallen. One of this kind, by Mr. Crosley, consists of a funnel through which the rain passes to a vibrating trough; when, after a sufficient quantity has fallen into its higher side, it sinks down and discharges the rain which escapes by a tube. The vibrating action of this trough moves a train of wheel-work and indices, which register upon a dial plate the quantity of rain fallen. Whatever form of rain-gauge is adopted, it When snow has fallen the rain-gauge may not give a correct quantity, as a portion of it may be blown out, or a greater quantity may have fallen The rain-gauge should be placed as near the surface of the ground as possible; for it is a perplexing circumstance, that the rain-gauge indicates very different quantities of rain as falling upon the very same spot, according to the different heights at which it is placed. Thus it has been found, that the annual depth of rain at the top of Westminster Abbey was 12.1 inches nearly, while, on the top of a house sixteen feet lower, it was rather more than 18.1 inches, and on the ground, in the garden of the house, it was 22.6 inches. M. Arago has also found from observations made during twelve years, that on the terrace of the Observatory at Paris the annual depth was about It would naturally be expected from these observations, that less rain falls on high ground than at the level of the sea. Such however is not the case, except on abrupt elevations; where the elevation is made by the natural and gradual slope of the earth’s surface, the quantity of rain is greater on the mountain than in the plain. Thus, on the coast of Lancashire, there is an annual fall of 39 inches; while at Easthwaite, among the mountains in the same county, the annual depth of rain amounts to 86 inches. By comparing the registers at Geneva and the convent of the Great St. Bernard, it appears that at the former place, by a mean of thirty-two years, the annual fall of rain is about 30¾ inches; while at the latter, by a mean of twelve years, it is a little over 60 inches. In order to explain these remarkable differences, it must not be supposed that the clouds extend down to the ground, so as to cause more rain at the foot of Westminster Abbey than on its roof. There is no doubt that in moist weather the air contains more water near the ground than a few hundred feet above it; and probably, the same cause The drops of rain are of unequal size, as may be seen from the marks made by the first drops of a shower upon any smooth surface. They vary in size from perhaps the twenty-fifth to a quarter of an inch in diameter. It is supposed that in parting from the clouds they fall with increasing speed, until the increasing resistance of the air The annual quantity of rain decreases from the equator to the poles, as appears from the following table, which gives the name of the station, its latitude, and the average annual number of inches of rain:—
The number of rainy days, on the contrary, increases from the equator to the poles.
The greatest depth of rain which falls in the Indian ocean is during the time when the periodical winds, called the monsoons, change their direction. When the winds blow directly in-shore the rains are very abundant, so much so that, after a continuance of twenty-four hours, the surface of the sea has been covered with a stratum of fresh water, good enough for drinking, and ships have actually filled their casks from it. Colonel Sykes observes, that the deluge-like character of a monsoon in the GhÀts of Western India, is attested by the annual amount of 302¼ inches, at Malcolmpait, on the Mahabuleshwar Hills. A great depth of rain in a short time has occasionally been witnessed in Europe. At Genoa, on the 25th of October, 1822, a depth of thirty inches of rain fell in one day. At Joyeuse, on the 9th of October, 1827, thirty-one inches of rain fell in twenty-two hours. Previous to the great floods of Moray, in 1829, the rain is described as Among the Andes it is said to rain perpetually; but in Peru it never rains, moisture being supplied during a part of the year by thick fogs, called garuas. In Egypt, and some parts of Arabia, it seldom rains at all, but the dews are heavy, and supply with moisture the few plants of the sandy regions. There is a great variation in the quantity of The amount of rain in a district may be changed by destroying or forming forests, and by the inclosure and drainage of land. By thinning off the wood in the neighbourhood of Marseilles, there has been a striking decrease of rain in fifty years. In Mr. Howard’s observations on the climate of this country, he has found, on an average of years, that it rains every other day; that more rain falls in the night than in the day; that the greatest quantity of rain falls in autumn, and the least in winter; that the quantity which falls in autumn is nearly double that in spring; that most rain falls in October and least in February, and that May comes nearest to the mean: that one year in every five, in this country, may be expected to be extremely dry, and one in ten extremely wet. There seems to be some real connexion between the changes of the moon and the weather. Mr. Daniell says, “No observation is more general; and on no occasion, perhaps, is the almanac so frequently consulted as in forming conjectures upon the state of the weather. The common remark, however, goes no further than that changes from wet to dry, and from dry to wet, generally happen at the changes of the moon. When to this result of universal experience we add the philosophical reasons for the existence of tides in the aËrial ocean, we cannot doubt that such a connexion exists. The subject, however, is involved in much obscurity.” At Viviers, it was observed that the number of rainy days was greatest at the first quarter, and least at the last. Mr. Howard has observed that, in this country, when the moon has south declination, there falls but a moderate quantity of rain, and that the quantity increases till she has attained the greatest northern declination. He thinks there is “evidence of a great tidal wave, Most dry climates are subject to periodical droughts. In Australia, they return after every ten or twelve years, and are then followed by excessive rains, which gradually become less and less till another drought is the consequence. When Mr. Darwin was in South America, he passed through a district which had long been suffering from dry weather. The first rain that had fallen during that year was on the 17th of May, when it rained lightly for about five hours. “With this shower,” he says, “the farmers, who plant corn near the sea-coast, where the atmosphere is more humid, would break up the ground; with a second, put the seed in; and, if a third should fall, they would reap in the spring a good harvest. It was interesting to watch the effect of this trifling amount of moisture. Twelve hours afterwards the ground appeared as dry as ever; yet, after an interval of ten days, all the hills were faintly tinged with green patches; the grass being sparingly scattered in hair-like fibres a full inch in A fortnight after this shower had fallen, Mr. Darwin took an excursion to a part of the country to which the shower had not extended. “We had, therefore,” he says, “in the first part of our journey a most faint tinge of green, which soon faded away. Even where brightest, it was scarcely sufficient to remind one of the fresh turf and budding flowers during the spring of other countries. While travelling through these deserts, one feels like a prisoner, shut up in a gloomy courtyard, longing to see something green, and to smell a moist atmosphere.” The effects of a great drought in the Pampas are thus described. “The period included between the years 1827 and 1830 is called the ‘gran seco’ or the great drought. During this time so little rain fell, that the vegetation, even to the thistles, failed; the brooks were dried up, and the whole country assumed the appearance of a dusty high road. This was especially the case in the northern part of the province of Buenos Ayres, and the southern part of St. Fe. Very great numbers of birds, wild animals, cattle, and horses, Captain Owen mentions a curious effect of a drought on the elephants at Benguela on the western coast of Africa:—“A number of these animals had some time since entered the town in a body to possess themselves of the wells, not being able to procure any water in the country. The inhabitants mustered, when a desperate conflict ensued, which terminated in the ultimate discomfiture of the invaders, but not until they had killed one man, and wounded several others.” The town is said to have a population of nearly three thousand. Dr. Malcolmson states, that during a great drought in India the wild animals entered the tents of some troops at Ellore, and that a hare drank out of a vessel held by the adjutant of the regiment. In connexion with droughts may be mentioned a plan It is proposed to form this ascending column of air by kindling large fires which, Mr. Espy says, are known to produce rain. Humboldt speaks of a mysterious connexion between volcanoes and rain, and says that when a volcano bursts out in South America in a dry season, it sometimes changes it to a rainy one. The Indians of Paraguay, when their crops are threatened by drought, set fire to the vast plains with the intention of producing rain. In Louisiana, heavy rains have been known from time immemorial to succeed the conflagration of the prairies; and the inhabitants of Nova Scotia bear testimony to a similar result from the burning of their forests. Great battles are said to produce rain, and it is even stated that the spread of manufactures in a particular district deteriorates the climate of such district, the ascending |