Saturn is the most remote of all the planets that the ancient peoples knew anything about. These anciently known planets are sometimes called the lucid or naked-eye planets—five in number: Mercury, Venus, Mars, Jupiter, and Saturn. Saturn shines as a first-magnitude star, with a steady straw-colored light, and is at a distance of about 800 million miles from the earth when best seen. Saturn travels completely round the sun in a little short of thirty years, and the telescope, when turned to Saturn, reveals a unique and astonishing object; a vast globe somewhat similar to Jupiter, but surrounded by a system of rings wholly unlike anything else in the universe, as far as at present known; the whole encircled by a family of ten moons or satellites. The Saturnian system, therefore, is regarded by many as the most wonderful and most interesting of all the objects that the telescope reveals. At first the flattening of the disk of Saturn is not easily made out, but every fifteen years (as 1921 and 1936) the earth comes into a position where we look directly at the thin edge of the rings, causing them to completely disappear. Then the remarkable flattening of the poles of Saturn is strikingly visible, amounting to as much as one-tenth of the entire diameter. The atmospheric belt system is also best seen at these times. There are in fact no less than four rings; an outer ring, sometimes seen to be divided near its middle; an inner, broader and brighter ring; and an innermost dusky, or crape ring, as it is often called. This comes within about 10,000 miles of the planet itself. After the form and size of the rings were well made out, their thickness, or rather lack of thickness, was a great puzzle. If a model about a foot in diameter were cut out of tissue paper, the relative proportion of size and thickness would be about right. In space the thickness is very nearly 100 miles, so that, when we look at the ring system edge-on, it becomes all but invisible except in very large telescopes. Clearly a ring so thin cannot be a continuous solid object and recent observations have proved beyond a doubt that Saturn's rings are made up of millions of separate particles moving round the planet, each as if it were an individual satellite. Ever since 1857 the true theory of the constitution of the Saturnian ring has been recognized on theoretic grounds, because Clerke-Maxwell founded the dynamical demonstration that the rings could be neither fluid nor solid, so that they must be made up of a vast multitude of particles traveling |