SUNDRY ELECTRICAL APPLIANCES—MR. EDISON’S INVENTIONS—THE ELECTRIC LIGHT—THE GYROSCOPE—A NEW ELECTROPHORUS—ELECTRIC TOYS. The Electro-Motograph—although perhaps even yet scarcely developed—has already proved a very useful invention. The idea of it first occurred to Mr. Edison in 1873, when he was prosecuting some researches in chemical telegraphy. “One day,” says Mr. Fox, in his account of the invention, “as he sat pondering over his work, he happened to take in hand the metallic point through which, as it rested upon the paper, the current was wont to pass. When again he closed the circuit to let the current through the paper, he held the metallic point loosely, and unintentionally allowed it to rest upon the paper. Every time he moved the metallic strip on the paper the latter became wonderfully smooth. Edison was determined to find the reason of this, and he decided that the electricity very much lessened the friction of the metal on the paper. He made many experiments, and brought the subject before the Royal Society in 1874, but nothing came of the idea till 1876, when Edison was perfecting his musical telephone. “The new appliance is, in fact, the same invention revived and now perfected by the original inventor, and brought to complete practical success under the title of the ‘electro-motograph.’ The action of the ‘electro-motograph’ depends on the fact, discovered during former experiments, and employed imperfectly in the musical telephone, that the friction of moving bodies varies in greater or less degree with their electrical condition. In the electro-motograph a cylinder made of prepared chalk, and saturated with a strong solution of caustic alkali, is set upon supports, so that it can be turned upon its axis. A strip of metal fastened to the mica diaphragm rests on the cylinder, and is pressed so firmly by its spring upon the cylinder that when it is turned by means of the handle the friction of the strip on the cylinder tends to pull the diaphragm out of shape, causing it to bulge inward as long as the cylinder is in motion. If now, while this motion of the cylinder is maintained, an electric current passes through the strip of metal, and then through the chalk cylinder to earth, the amount of this friction is varied or it is destroyed altogether, and the strip slides freely on the cylinder. This was the basis of the former invention. The “The electro-motograph is not only a solution of the telephone, making it capable of sounds of every quality and pitch and in greatly increased volume, but by this conversion of electrical action into mechanical work at a distance makes it possible to unite the telephone and phonograph. Telephonic messages by the electro-motograph may be impressed upon a self-acting (clock-work) phonograph, the same current starting and stopping the phonograph after the manner of the stock-reporting machines, and afterward the phonograph may be made to repeat the message impressed upon it.” [The above extract, which explains the principle fully, has been taken from a long article on the subject which formerly appeared in Scribner’s Magazine.] The uses to which the electro-motograph may be applied are various. It can produce mechanical motion even at a distance, and is useful to lessen friction by machinery; and in this way its service to railways and other locomotive systems may be estimated. It is a great help to telegraphy by increasing the speed of transmission, and can ascertain the beatings of the heart of the apparently dead. It amplifies sound in a much greater degree than the microphone, by which even a fly can be heard moving. In fact, the limit of the usefulness of this wonderful machine has not been reached. Another very ingenious apparatus has been developed by Professor Bell. This is for the purpose of ascertaining the position of bullets in the body. The following is condensed from the Times:— “Two conductors are used, and the ball completes the circuit. Professor Bell inserts a fine needle in the suspected region. It is connected by wire with one of the binding screws of a telephone, which the surgeon holds to his ear; the other binding screw being connected with a metallic mass applied to the skin. When the needle point touches the ball, an electric couple is formed, and the current generates the sound in the telephone. The surgeon may then use his knife with confidence, guided by the needle. He may make several insertions of the needle if necessary without danger, and any pain may be obviated by etherization. This simple method (which should prove useful on the field of battle) was tried with success with a lead ball introduced into a piece of beef. Contact of the needle with bone had no effect, but a very distinct sound was heard each time the ball was reached. A modification consists in inserting a vibrator in the circuit; this gives a musical note in the telephone at each contact of ball and needle. Again, if the circuit include a battery, the telephone sounds may be heard by several persons at once. A sound is heard, in this case, whenever the needle enters the skin; but, on reaching the ball, it is much intensified, owing to lessened resistance. A galvanometer may be used in place of the telephone.” Mr. C. Vernon Boys has exhibited and described a very ingenious new integrating machine of his invention, and its application as a measurer of the electric energy in the circuit of an electric lamp or a dynamo-electric motor. Mr. Boys’ mechanical integrator belongs to the class termed tangent machines, and consists essentially of a small disc or wheel running along the surface of a drum or cylinder. When the wheel runs straight along the drum parallel to its axis there is no rotation of the latter, but when the wheel is inclined to the axis the drum rotates, and the integral is represented by the amount of rotation. Continuous action is secured in giving the drum a reciprocating motion along its axis, so that when the wheel has travelled to one end of the cylinder it can travel back again. The new integrator is especially adapted for measuring forces which are either delicate or variable. It is applied by causing the varying force to be measured to vary in a corresponding manner the inclination of the wheel to the axis of the rotating cylinder. We have, in a former portion of this work, explained the construction of the telephone and phonograph with other inventions to make sounds audible at a distance, so we need not repeat the explanations here. A brief reference to them will, however, be found in this chapter, in which the electro-magnet and the methods of lighting by magneto-electric machines are treated of. We will proceed to give some particulars concerning the electric light before considering the means by which it is produced, as such an arrangement is more convenient. The light is very easily produced by uniting and then separating the terminals of a strong battery. The passage of the electric current induces intense heat and a most brilliant light. But if this were continued the wires would melt, and therefore some non-fusible substance is placed at the ends of the wires, which will be at once a conductor and infusible. Now in gas-carbon (the deposited substance found in gas retorts) we have a substance suited to these conditions. The carbon is heated to an intense brightness, and particles of it are passed across the arc of flame almost in a state of fusion. Combustion does not actually take place, because it has been proved that the wires will give out light under water, and in the vacuum of an air-pump the light is even increased, so that had the oxygen of the air any part in the production of the light it would not remain unaffected under these conditions. The heat arising from this Voltaic arc is intense, and even platinum may be fused with the assistance of the gas carbon. The carbon points are of course liable to be worn away, and one side more than another. The positive pole There are various lamps, many of which required a regulator in consequence of the wearing away of the carbon points, as already explained. We append two illustrations of the Maxim lamp, the invention of Hiram Maxim, of New York. In both cuts the letters refer to the same portions. In the first illustration (fig. 267), A and B are the positive and negative carbon-holders respectively, and the carbon points are controlled In the “Brush” light, which is in use in London, and is fitted for large spaces, the carbon points are held by a regulator side by side, and they last eight hours without renewal. The power is generated by an electro-dynamic engine. We give illustrations of the lamps of Wallace and Houston (figs. 269, 270). The current is conveyed through b and the magnet, m. The armature, a, separates the electrodes, and the weakened current is restored by b, and the light continues. The pillar, p, is hollow, with a wire running through it. The positive electrode is supported by J, the negative by C; V is a button which comes in contact with the lever, T, when the carbon points are exhausted, and cuts the lamp out of the circuit by passing it direct through mercury cups. The Jablochkoff candle and chandelier are also represented (figs. 271, 272). The candles consist of carbons connected at the top, but otherwise insulated, and fixed in a socket. They do not last very long without renewal. The exhibition at the Crystal Palace will be essentially an Electric Light Exhibition, and all the latest forms can be studied there. The great attraction will doubtless be, as at Paris, the varied and numerous inventions Mr. Edison’s electric light18 requires something more than a passing notice, and we will therefore endeavour to give a sketch of the general subject. Now that the electric light has been made available for domestic purposes, and the very simple lamp (consisting of an exhausted glass globe, two platinum wires, and a piece of charred paper) can be obtained, people will no doubt soon largely adopt electric lighting in their houses. The light has found a success at the theatre, in the streets, and in the train; there is no reason why it should not be adopted generally, being more economical and more healthy than gas. If we sever an electric wire, and bring the ends, tipped with carbon, into juxtaposition, we obtain a brilliant light. This is the Voltaic arc we have already mentioned, produced by the incandescence of finely-divided matter; it was the first method of illuminating by electricity, and was discovered by Sir Humphrey Davy, who obtained a very brilliant light, but at great expense—about a guinea a minute! But the Daniell and Grove batteries and generators, and modern improvements in 1860, brought the use of the electric light into prominence. Faraday lighted a lighthouse with its assistance. But when the Gramme Generator was invented the needed impetus was applied. The Jablochkoff candles followed, and now we have the electric light in full operation. So far we have sketched the history of illumination by the Voltaic arc, and descriptions of the various apparatus will be found at the end of this chapter. But the method of lighting with an incandescent solid was introduced in 1845 by Starr and Peabody, who took out a patent for the use of platinum. Later on Drs. Draper and Despretz made experiments with platinum and carbon. The latter gentleman sealed the carbon in an exhausted globe, and then introduced nitrogen in place of the air. But the method died out and was forgotten, and in 1873 a medal was actually given by the Academy of St. Petersburg for the “discovery” to Messrs. Sawyer and Mann. In 1878 Paris was lighted with the electric candles of Jablochkoff. He perceived at once that “permanence in the lamp and the subdivision of the light” were the two desiderata. He put the Voltaic arc aside as unsuitable, and addressed himself to the problem of obtaining the desired results from an incandescent solid. The subdivision of the light is really an important point, and a comparison between divided and undivided burners is in favour of the more diffused light in a number of burners. This subdivision Edison worked hard to secure, and, as it is said of him, “With a steadfast faith in the fulness of nature, a profound conviction that if a new substance were demanded for the carrying out of some beneficial project, that substance need only be sought for, he set to work.” Mr. Edison found difficulties in his way. One was the apparent impossibility of illuminating by means of an incandescent solid, for even platinum will melt at a heat too low for use. But this apparent impossibility was overcome by the inventor’s genius. He, after many trials, found that if he raised the platinum to a white heat in a vacuum he would practically obtain a new metal which would sustain the required heat. “In making an electric lamp without a regulator,” says Mr. Upton, “two things are essential,—great resistance in the wire, and a small radiating surface. Mr. Edison sought to combine these two essential conditions by using a considerable quantity of insulated platinum wire wound like thread on a spool.” This platinum, as shown in the accompanying cut (fig. 273), was suspended in a glass bulb in vacuo, the air contained in it being expelled by electricity, heating it, and suddenly cooling the platinum, and squeezing out the air by the process. But, after all, the great difficulty of the inventor was to insulate his wires so perfectly that they would not meet and become a conductor. For, to perfect his lamp, this non-conducting principle was a necessity, otherwise the current would flow across instead of going all along the wires. He had previously made many uses of carbon, which we know is infusible. He tried lampblack tar, but it contained air, and would not do. Thread answered his purpose, but was too fragile and uneven in texture. It suddenly occurred to him that paper—charred paper—cut into a thread-like form would satisfy all his conditions. The problem was solved—the lamp was a fact. But how can paper, so easily burned, answer? We will endeavour to explain. “A piece of charred paper, cut into horse-shoe shape, so delicate that it looked like a fine wire firmly clamped to the two ends of the conducting and discharging wires, so as to form part of the electric circuit, proved to be the long-sought combination.” We will now explain the construction of this little lamp, which is shown in the illustration (fig. 274) one-half of its actual size. The illuminating is equal to ten or twelve ordinary gas jets. The manner in which the paper is prepared is, like many other very important inventions, extremely simple, and, we may add, almost costless. Cardboard will furnish us with the loops, and these “horseshoes” are placed in layers in an iron box with tissue paper between each. The box is then hermetically sealed, and made red hot. The carbonized paper remains till all the air has been got rid of, and although it will burn freely to ashes in atmospheric air, in the vacuum prepared for it it is never consumed. That is the plain fact—the secret of the Edison lamp. A vacuum can now be produced almost perfect. It is of course impossible to extract every tiny particle of air from the globes, but by the Sprengel pump, in which mercury is employed, excellent vacuums are obtained. Several very curious phenomena have been observed in these vacuums, and the Royal Society has been engaged upon their consideration. Another advantage of the vacuum, as applied by Edison, is that little or no heat is generated. The electricity is all, or very nearly all, converted into light. Thus the glass globes remain almost unheated, and are unbroken. The electric current passes along the wire, W, and at a certain place marked B, the copper is soldered to a platinum wire, which enters at C, and so by platinum clamps into the horse-shoe, L. The return wire is similarly arranged; the carbon is enclosed in a glass bulb, GG, and all the air is extracted by the pumps; the end is then sealed up by melting it at F. The world is now in possession of a lamp for household use, and we are surprised that it is not more extensively adopted in England. There are some Swan lamps used in parts of the British Museum, and when we have explained the application of the light, and the uses to which the motive power can be applied, we shall, we believe, convince the most conservative gas bill advocate that Edison’s lamp is cheaper, safer, and far better in illuminating power than gas, if the success of the electric lamp can be assured. We need not dwell upon the construction of the “pumping station,” for that is virtually what the magneto-electric generator is. Several of these stations can be established in various parts of the city, and each station will supply a district with electricity. The wires are laid in a tight box along the street, beneath the footpath, or other convenient position, and we are informed that the frost rather improves their electrical condition. Here is one advantage over gas. From the main wires smaller ones enter the houses, and are carried through a “meter” containing a safety valve. There are two wires—a distributing wire and a waste—coloured, one red and the other green, which communicate respectively with the main supply and return wires to the “pumping station” or generator. The electricity is admitted between carbon points and flows round a magnet, the armature of which is held above it by a spring. If too much force be put on and any danger incurred, the magnet will attract the armature, and the current will cease. A snap connected by a small wire will then be closed by the electricity, and melting from the heat will cut off all the current. In ordinary circumstances the electricity passes through regulators (wire wound on spools) and on to a copper plate, “through a solution of copper salt.” Thus for every unit of current a certain quantity of copper is deposited. A certain standard amount represents five cubic feet, and the bills, based on the accumulation of copper, are made out like gas bills. When the lamp is required a small handle is turned, and is instantly lighted; the reverse motion cuts off the current. “By touching a knob in the bedroom the whole house can be simultaneously lighted up” if desirable. No matches are necessary, as the lamps light themselves. By adding a small electro-motor to the furniture of the house, and turning a handle, the sewing-machine can be worked by electricity, or lathes turned; and any business operations, such as lifting by cranes, etc., can be easily carried on. The Swan electric lamps, which, with Mr. Edison’s, were exhibited in Paris, and will be found at Sydenham, give about twelve candle-power light. Edison’s lamps are made in two sizes, and vary accordingly. The Swan lamps give a very soft light, and are as easily manipulated as Edison’s. The Siemens system of lighting was also well seen in Paris, and the Faure storage system enables our trains to be lighted instantaneously by simply turning a handle. A full description of the Faure battery was given in the Times by Sir William Thomson, and in his address to the British Association at York in September last. He pointed out that in the accumulators of M. Faure,—which can be seen at 446, West Strand, London,—by means of a large battery it is quite easy to draw off electricity and to apply it as Edison proposed to do, in lighting our houses and do any little service. The electricity thus stored would be always ready for use, and would be supplied and paid for. It can be applied to any purpose, and locomotion by its means will ere long become more general. In Paris Dr. Siemens exhibited But this is a digression. The electric light as applied to lighthouses was also exhibited, and any reader desirous to obtain full information upon the subject of lights and lighthouses will find it in a very pleasantly-written work by Mr. Thomas Stevenson, in which the various systems of lighting by electricity and otherwise are fully recounted, the conclusion being in favour of electricity, which is employed and has been used for years in France and in some English beacons. If its penetrative power can be finally established,—for some authorities maintain that the electric is more easily absorbed by fog than other light,—there is no doubt about its being universally adopted. It is very interesting to watch the uses to which the electric light is being put. The latest experiment has been made by an Austrian, Doctor Mikerliez. Almost incredible as it may seem, the interior of the human stomach can now be illuminated by means of a wonderful little instrument called the Gastroscope, which is said to be actually in use and to have been favourably reported upon by the medical faculty of Vienna. There is at the end of a jointed flexible tube (which can be passed down the gullet) a miniature lamp, far more marvellous and mysterious than that of Aladdin, in which a strip of platinum is fixed and connected with fine wires conducting the electricity from a small battery. When contact is made, and the “light turned on,” the cavernous interior of the stomach is lit up. Still more extraordinary is the fact that the tube can be made to revolve, and the light reflected from the walls of the stomach and directed to the eye of the observer. There is necessarily a bend in the instrument, so that the light has literally to turn a corner before it reaches the surgeon’s eye; here the inventor’s skill and thorough knowledge of the laws of optics are brought into requisition. The reflected rays of light fall upon a sort of window situated a little above the lantern, and by means of prisms and a series of lenses, the light is twisted and turned about until it arrives at the eye-piece. No sensation of heat is to be feared, the little lamp being kept constantly cool by a reservoir of water. Several contrivances have been invented within the last few years for examining the interior of the body, but they are very costly; the Gastroscope is likely to render great service to medical science. The term “magneto-electric machine” is given to a collection of parts of mechanism intended to create or gather together induced electric In 1869 Mr. Holmes perfected his machine, which differs from all previous ones (except Pixii’s), in that the electro-magnets revolve in front of the coils instead of vice versÂ; and besides magnetising his electro-magnets with part of the self-produced electricity, his bobbins are so disposed as to be able to keep several independent lights going at once. The Wylde machine consists, as it were, of two Siemens machines, one on the top of the other, the lower and larger of which is worked by an electro-magnet, which is magnetised by the action of the upper or smaller one, consisting in the ordinary way of a permanent magnet apparatus, which is termed “the exciting machine.” The longitudinal bobbin revolved between these permanent poles produces alternating currents, which are commutated (or redirected), and We now come to what is perhaps the most perfect magneto-electric machine, which was first constructed by M. Gramme, a Parisian, in 1872, and differs in principle and construction from all those hitherto noticed. Its essential characteristic is a soft iron ring, round which is coiled one single continuous wire (i.e., the two ends are joined). Round the exterior surface of the wire coil a band is bared, and on this bared part two friction springs act. If the ring and coil be placed before the poles of a magnet, the ring will have two poles, S. and N., induced opposite the opposing poles N. and S. of the magnet; and if the ring revolve the poles will remain stationary, and as the coil revolves each coil of the wire will pass this induced pole, and as naturally half the coil will be inducted with one current, the other half (acted on by the other pole) will be charged with another or opposite current, which two kinds of electricity are carried away by the friction springs before mentioned. In the machine, as actually constructed, the soft iron ring is composed like the magnet or wire bundle of an induction coil, and the coils are set upon it side by side. Inside the ring are radially set insulated pieces, to each of which is attached the issuing end of one and the entering end of another bobbin; these answer the same purpose as the denudation of the external layer of wire. These pieces are bent so as to come out of the centre of the ring at right angles, and lay side by side (insulated) round a small cylinder. These, as they revolve, are touched by friction springs, which draw off the electricity induced in the coils in one continuous current. No sparks are produced at the contact of the friction springs, and there is no tendency to become heated. To obviate the inconvenience of the secondary A great revolution, or rather the beginning of a new era in the history of electricity, may be said to have commenced with the perfection of M. Faure’s accumulators. These are troughs containing eleven lead plates, each coated with oxide of lead and wrapped in felt, the fluid being dilute sulphuric acid. The application of them to the electric light is one of their most valuable features; at the depÔt in the Strand, where they may be seen at work, there are thirty such elements, each weighing about 50 lbs. It takes a two-horse-power engine working an Edison or Gramme machine six to eight hours to charge them, and when charged they will keep almost any number of lamps of sixteen-candle-power going some eight hours. They are used on the Brighton and South Coast Railway, and seem peculiarly adapted to lighting by incandescence, by Swan, or Edison’s lamp. The elements fully charged may be carried any distance without losing their electric power. And the stored force may be used for charging the accumulators themselves afresh from the machine. These accumulators may be seen any day at 446, Strand, and are well worth a visit. The Gyroscope, though now an instrument common and familiar to all students, is none the less the subject of a problem, the solution of which is still to seek. It has indeed been entitled the paradox of mechanics; for though it depends on gravitation, gravitation yet appears indifferent to it. In order to render the operation of the Gyroscope as continuous as possible, so as to facilitate the profound study of its working, and also to unite another influence with those of the ordinary Gyroscope, producing phenomena of which this instrument affords us the spectacle, a learned American has employed electricity as a motive power. The Gyroscope, shown in fig. 277, has a large, heavy pedestal, with a pointed column, which supports the instrument itself. The frame, of which the electro-magnets form a part, is connected with a rod, having at one end a hollow cavity which rests on the point of the vertical column. One of the extremities of the magnetic spool is attached to this cavity, the other end communicating with the bar which unites the two magnets. Over this bar is a spring which breaks the current, supported by an insulator in hard india-rubber; it is adjusted so that it touches a small cylinder on the axis of the wheel twice during every rotation of the latter. The wheel’s plane of rotation is at right angles with the magnets, and it carries an armature of soft iron, which rotates close to the magnet without touching it. The armature is so placed in relation to the surface of contact with the cylinder that breaks the current, that twice The Gyroscope exemplifies very clearly the persistence with which a body undergoing a movement of rotation maintains itself in the plane of its rotation in spite of gravitation. It shows also the result of the combined action of two forces tending to produce rotations round two axes which are separate, but situated in the same plane. The rotation of the wheel round its axis, produced, in the present instance, by the electro-magnet, and the tendency of the wheel to fall or turn in a vertical plane, parallel to its axis, produce, as a result, the rotation of the entire instrument round a new axis which coincides with the column. Peiffer’s Electrophorus. It will now perhaps interest our readers to describe a charming little plaything which is a great favourite with children, and which has the incontestable merit of early initiating them into all the principal phenomena of the statics of electricity, and teaching them the science of physics in an amusing form. It is a small electrophorus invented by M. J. Peiffer, and reduced to such a point of simplicity, that it consists merely of a thin plate of ebonite, about the size of a large sheet of letter paper. The tinned wooden disc of the electrophorus which is found described in most treatises on physics, is replaced by a small sheet of tin, about the size of a playing-card, fastened on to the surface of the ebonite. The ebonite electrophorus produces electricity with remarkable facility. It must be placed flat on a wooden table, and thoroughly rubbed with the hand; if it is then lifted, and the sheet of tin lightly touched, a spark is elicited from ¼ inch to ½ inch in length. The electrophorus is completed by the addition of a number of small accessories in the shape of small dolls made of elder-wood, which exhibit in a very amusing manner the phenomena of attraction and repulsion. After the board has been charged with electricity, place the three little “It is easy to discover in the education of children,” says M. Peiffer in his preface, “how to turn their budding faculties to the best account. Would you utilize them in a satisfactory manner?—Then put in their hands playthings which, in an attractive form, serve to familiarize them at an early age with those sciences, a knowledge of which will be at a later period absolutely indispensable to them; and they will be much more amused than with ordinary commonplace toys.” These are sensible words, in which we heartily concur. Yes! Science properly taught, and properly understood, can indeed be brought within the range of children; it should give a lasting interest to all amusements, and form a part of the culture of the youthful mind, as at a later period it will contribute to the perfect development of the grown man. Magic Fish. An ingenious physicist, M. de. Combettes, who is a civil engineer at Paris, has devoted himself to constructing a number of playthings and scientific appliances for young people, among which we will describe the very curious one represented in fig. 279. A jar is filled with water, holding in suspension some fish made of tin, similar to those which children put in water and attract with a magnet. In this case, however, the mechanism is hidden, and the operator can turn the fish first in one direction and then in the other at pleasure. The secret of this experiment is easily explained by examining the illustration (fig. 279). In the wooden stand which supports the jar there is concealed a small electro-magnet which acts on the soft iron contained in the floating fish. When the current passes the small magnet turns round and attracts the little fish swimming in the water. This gyratory movement can be changed at pleasure by means of a regulator. We will give an illustration of a few electric toys which M. TrouvÉ has found for us. In the picture (fig. 281) we see three different objects,—a rabbit beating a small bell, a representation of a bird with outstretched wings, and a pin surmounted by a skull. All these are capable of having movement imparted to them by means of electricity, although made and intended for ordinary use in the form of scarf-pin or other ornament. Let us take the “death’s head” pin first. It is in gold, and enamelled A conducting wire leads from the pin into the waistcoat pocket, where a small “pile,” about the size of a cigarette, is hidden away. If any one particularly admires the scarf-pin, all you have to do is to insinuate your fingers into your pocket, and you will, by contact, cause the electric current to act upon the pin in your scarf. The death’s head will at once begin to roll its eyes and grind its teeth, while the rabbit, under similar circumstances, will begin to play its bell with the greatest energy. The handsome diamond bird represented in the centre of the illustration belongs to Madame de Metternich. When any lady wears it in her hair, she can, by the concealed wire, make it flap its jewelled wings, and by so doing cause much surprise amongst the spectators. We will now endeavour to give a description of the manner in which these toys play their parts in company with the “hermetic-pile” which M. TrouvÉ has applied to many specialities that he has supplied to doctors, who use them largely. This pile is formed by a “couple” of carbon and zinc hermetically enclosed in an ebonite box. The carbon and zinc only occupy one-half of the case. The liquid occupies the other. The sketch (fig. 280) on preceding page will explain the apparatus. So long as the case is in its normal position the elements are not immersed in the solution, and consequently no electricity is developed. But as soon as the figure is placed in a horizontal or leaning position the force is generated; on readjusting the box the electric current is cut off, and all development ceases. Many curious electrical toys can be seen in Paris. Dolls are made to talk, and many other wonders for children can be easily procured. Animal and Atmospheric Electricity. Before concluding the subject of electricity we must devote a few pages to the consideration of the electric influence possessed by certain fishes, and to some of the phenomena of the atmosphere, especially thunderstorms. We have seen how Galvani experimented upon the limbs of frogs, and maintained that they possessed electricity; he attributed the current in the muscles to that cause. This theory Volta denied, but subsequently Nobili, in 1827, proved the existence of a current in the frog by means of a Galvanometer. This was conclusive, and the experiment was performed in the following manner:—He filled two vessels with salt and water, and into one he dipped the crucal muscles of a frog, and in the other the lumbar nerves were immersed. By putting these vessels in communication with his improved Galvanometer, which was extremely sensitive, he perceived a current passing from the feet towards the head of the animal. It is, however, to Matteucci and Du Bois Reymond that the investigation of the phenomena of the courant propre are due. The former formed a “pile” of the thighs of frogs, and by placing the interior and exterior muscles in contact he formed a current from the inside to the outside muscles. This current is supposed to be occasioned by certain chemical changes which are continually taking place, and it continues longer in the case of a cold-blooded animal than in a warm-blooded one. There are many interesting papers on this subject included amongst the “Philosophical Transactions”; and the “Physical Phenomena of Living Beings” is fully treated in Matteucci’s lectures on that subject. In the “Transactions” for 1848 and subsequent The electricity of fishes, and the power possessed by the torpedo—whose name is now chiefly known in connection with warlike appliances—and the gymnotus, have been known for a very long time. This fish, popularly known as the electric eel, inhabits the warm fresh-water lakes of Africa, Asia, and America. A specimen was exhibited at the Polytechnic some years ago. This was the fish experimented on at the Adelaide Gallery by Professor Faraday, who clearly demonstrated the fact that the electricity of the animal and the common electricity are identical. Numerous experiments were made, and the circuit shock and even sparks were obtained from the gymnotus. In fact, the gymnotus is a natural electric machine. The force of the shock given by the electric eel is very great, for Faraday has put on record that a single discharge of the eel is equal to fifteen Leyden jars charged as highly as possible. Its power does not even end there, for having shocked people to that extent, it was capable of a second and occasionally of a third shock of less violence. The manner in which the gymnotus acts is from a regular battery in the head, the sides of which are filled with a fluid. These cells are something like a honeycomb in appearance. The shock is quite voluntary on the part of the fish. Sometimes it will kill its prey, on other occasions it is merely numbed. Professor Faraday on one occasion placed a live fish in the tub with the gymnotus, which curled itself so as to enclose the unsuspecting one. In a second the prey was struck dead, and floated on the water. The gymnotus immediately devoured it, and went in quest of more. Another, but an injured fish, was then introduced, but the electric eel took no trouble about this one. It did not trouble to give it a shock, seeing it was disabled, it merely swallowed without killing it. It is also on record that on one occasion an electric eel had stunned a fish which, before he began to eat it, gave signs of returning animation; the eel immediately gave it another shock and killed it. There were some other curious peculiarities connected with the electric eel. It appears to be quite capable of discriminating between animate and The torpedo is something like the well-known skate; it is sometimes called the electric ray, and is common enough in the Bay of Biscay and in the Mediterranean Sea. It sometimes pays England a visit, or is caught by fishermen and brought in. We have seen one at Plymouth, and a very ugly-looking fish it was. Its electric power is considerable. There is yet another fish known as the malapterurus; one species is called the thunder-fish. Professor Wilson has written a paper upon the electric fishes as applied to the remedy of disease, and considers them the “earliest electric machines ever known.” Humboldt relates that the South-American Indians capture the gymnotus by driving horses into ponds which the electric eels are known to inhabit. The result is that the fish deliver shock after shock upon the unfortunate quadrupeds. Mules and horses have frequently been killed by these powerful eels, and even Faraday experienced a very great shock when he touched the head and tail of the captive gymnotus with either hand. The malapterurus to which we have referred is an inhabitant of the African rivers, chiefly in the Nile and Senegal. Such a fish has been known with others for some hundreds of years; its electrical powers are not great. There are one or two other species of fish which possess electrical qualities, but none apparently to the same extent as the torpedo and the gymnotus. The electricity of plants also is in some cases very marked. Flashes have been seen to come from some flowers in hot and dry weather. Currents of electricity have been detected, and Wartmann investigated the subject closely. He says the currents in flowers are feeble, but in succulent fruits and some kinds of grain they are very marked. These currents depend The subject of atmospherical electricity properly belongs to meteorology, and under that heading we will treat of it more fully. But lightning is so identified with electricity, and being the most common form observable to all, we will say something about thunderstorms and the electric discharges accompanying them. Before Franklin’s ever-memorable experiment with his kite established the identity of lightning and electricity, the resemblance between the two discharges had been frequently noticed. The Etruscans pretended to bring down lightning from heaven, and Tullus Hostilius, when experimenting or performing certain “ceremonies,” was killed by the electric discharge he desired to attract. But after all, we cannot attribute any knowledge of electric science to the ancients, although they were, of course, familiar with electric phenomena. It is to Dr. Wall that testimony points as the first person who remarked the analogy between the electric spark and lightning. This was in 1708. Grey and other philosophers supported the theory, but could not establish it. To Franklin, who in June 1752 actually brought down the Of course the American philosopher found numerous imitators, not always with impunity. Professor Richmann was killed by the spirit he was invoking; Lemounier and Beccaria confirmed the theory that the air was full of electricity; while Du Saussure, from his investigations on the Alps, and Volta from the invention of the pile, are most famous in the history of electricity. They applied themselves with much success to the investigation of the electric condition of the atmosphere, of which the disturbances called thunderstorms are the result. The amount of electricity varies in the atmosphere at different times in the day and night. Towards midday and midnight the development is generally greatest, and this fact will account for the prevalence of storms during our hours of rest. Again, different kinds of clouds have different degrees of electricity, and of different kinds. Under certain conditions these clouds will give forth lightning, and a storm will begin. The more clouds the more globules, and therefore in summer, while there is more production of vapour from solutions of salts, etc., we are more likely to have the storms. We are most of us familiar with the mass of the “thunder cloud” rising in the distance, light at the upper part, very dark below, and throwing out tentacles like the octopus, coming up sometimes—frequently, indeed—“against the wind,” impelled by an upper current, or following the course of a river, which is not unusual. Below, there is perhaps an army of thin dark clouds. The nature and height of clouds have also a great deal to do with the phenomena displayed. In general, storm-clouds are positively electrified. Clouds are good conductors of electricity, and yet they may be so insulated by the dry air surrounding them that they will accumulate it; and when thus charged, if they encounter other clouds charged with opposite electricity, the opposing masses will attract each other until a discharge The colour of lightning varies very much. We have the white, the blue, the violet, and red. The colour depends upon the distance and intensity of the lightning, and the more there is of it the whiter the light. We can illustrate the varied hues of the electric “fluid” by passing a spark through the receiver of an air-pump. If the air be rarefied, or there be a vacuum, we shall perceive a blue or violet light. Therefore we may conclude that the blue and violet flashes have birth in high strata of the atmosphere. We have all heard how dangerous it is to stand under a tree during a thunderstorm, or rather, we should say, when the storm is approaching us nearly. The tree is a conductor, and the lightning having no better one at hand will pass through the tree on its way to the earth, and if we are standing against the tree we shall be included in the course, and die from the shock to the nerves while the lightning is passing through us. The best position in a thunderstorm, if we are in the neighbourhood of trees, is to sit or lie down on the ground some little distance from the base of the nearest tree. If the tree be sixty feet high suppose, and we sit fifty feet or less from the trunk, we shall be pretty safe, because the lightning will reach the tree top before it can reach us. We are protected by it as by a conductor, bad though it be. Standing up in a boat during a storm is not wise. Lightning has an affinity for water, and besides, if no higher objects are near, our body will act Arago classified lightning into three kinds: zig-zag, globular, and sheet. The first we call forked lightning, and frequently this kind branches out at the end, so that although there may be only one flash, it may strike out in two or three directions at the same time. This may be accounted for by the unequal power of the air strata to conduct the electricity. The forked flashes are of very great length, extending frequently for miles, and the bifurcations also are often miles apart. The duration of the flash is less than the thousandth part of a second; so instantaneous is it that no motion can be perceived even in a most rapidly-moving wheel, as proved by Professor Wheatstone. We sometimes fancy that the flash lasts longer, but the impression received by the eye quite accounts for the apparently prolonged sight of the lightning. Sheet lightning, the faint flashes frequently seen upon the horizon, are quite harmless. Sheet lightning is that which is seen reflected behind clouds or from far-distant storms. It is sometimes very beautiful. Ball, or globular lightning, is dangerous, and globes of fire have been seen to descend, and striking the ground, bound onwards for some distance. The descent of these forms of electric discharge has given rise to the popular notion of “thunderbolts.” The “Mariner’s Lights,” or St. Elmo’s fire, is frequently observed in ships. It is usually regarded as a fortunate occurrence. It was noticed by Columbus. One voyager describes the phenomena as follows:—“The sky was suddenly covered with thick clouds.... There were more than thirty of St. Elmo’s fires on the ship. One of them occupied the vane of the mainmast. I sent a sailor to fetch it. When he was aloft he heard a noise like that which is made when moist gunpowder is burned. I ordered him to take off the vane. He had scarcely executed this order, when the fire quitted it and placed itself at the apex of the mainmast, whence it could not possibly be removed.” There have been occasions when the manes and tails of horses, and even the ears of human beings, have shown a phosphorescent light which emitted a hissing noise. Alpine travellers have noticed similar phenomena; and Professor Forbes, when crossing the Theodule Pass into Italy, heard It is observable that the properties of lightning and of the electric spark are identical—the faint crackle of the latter being magnified into the loud rolling of the thunder. The disturbance of the atmosphere is the cause of the loud reverberations, and echoes produced from clouds tend to intensify and prolong the peal. The sound rises and falls, and varies accordingly as the cloud is near or far. A smart sharp report or rattle denotes the nearness of the lightning, while the gradual swelling and subsidence, followed, mayhap, by an increasing volume of sound, which in its turn dies away, tells us that the danger is not imminent. The cause o£ this loud rolling, unless it proceeds from echoes from different clouds, has not been satisfactorily explained. Sound travels less quickly than light, and therefore we only hear the thunder some seconds after we have perceived the flash. It is therefore conceivable that we may hear the last reverberations and its echoes first, and the sound of the first disturbance with its echoes last of all. Thus there will be distinct sounds. Firstly, the actual noise we call thunder from the air strata nearest to us; secondly, the echoes of that disturbance from the clouds, of course fainter; then we hear the sound caused by the tearing asunder of the air particles farthest off, and again the echoes of that disturbance. This theory will, we think, account for the swelling peals of thunder, and the successive loud and fainter reverberations. At any rate, in the absence of any other theory, we submit it for consideration. The sound of thunder is seldom or never heard at a distance greater than fifteen miles. Lightning conductors are such every-day objects that no description is necessary; but the reason the lightning runs along it harmlessly is because the galvanized iron rod is the best conductor in the immediate neighbourhood. Where there is not a good conductor lightning will accept the next best, and so on, any conductor being better than none. The point of the rod cannot contain any electricity, there being no room for it, and the “fluid,” as it is termed, runs down to the ground, to terminate, when possible, in water or charcoal. A great deal of electricity is no doubt carried away from the air by the numerous conductors without any spark passing. Until Sir W. Snow Harris brought forward his lightning conductors for ships, the loss was great at sea. But now we rarely hear of any vessel being disabled by lightning. We owe to Franklin the idea of the lightning conductor. According to observations made by Mr. Crosse, the following statement shows the tendency of the atmosphere, in certain conditions, to thunderstorms. We may accept the deduction of M. Peltier that grey and slate-colour clouds are charged with negative, and white, rose-colour, and orange clouds with positive electricity. The order of arrangement in the following table places the most likely source of thunderstorms first, and the least likely source at the end, with regular rotation of intermediate probabilities intervening:—
We have thus briefly touched upon some of the atmospherical phenomena directly attributable to electricity. In our articles upon Meteorology we will consider the aurora and many other interesting facts concerning the atmosphere, and the effects of sound, heat, and light upon the air. |