GALVANI’S DISCOVERY—THE FROGS ELECTRIFIED—EXPERIMENTS—VOLTA’S PILE—THE TEST—ITS USEFULNESS—FARADAY’S “RESEARCHES.” Galvanism owes its origin to the researches of Galvani, the celebrated professor of Bologna, and we are indebted to what was a mere “accident” for our knowledge of this science. Before Galvani’s time there had been many instances adduced of animal electricity. The Rev. F. Lunn, in his article upon Electricity,15 mentions the fact that fire streamed from the head of Servius Tullius when about seven years of age, and Virgil we know refers to flame emitted by the hair of Ascanius— “Lambere flamma comas, et circum tempora pasci”; and if any one will comb his or her hair with an ebonite comb in the dark, with what is sometimes called an “india-rubber comb,” the hair will give out sufficient light to enable the operator to see himself in a looking-glass. In olden days it is related that a lady when touched with a linen cloth emitted sparks, and the same phenomenon was observable when a bookseller at Pisa removed his under-garment or vest (De Castro). We are all aware of the electricity of the cat and of certain fishes (see Electricity of Animals in sequel), and “torpedos.” Galvani had of course a knowledge of this property, and had occupied himself for some time making experiments upon the electricity in animals. He was not in his laboratory that day when the great discovery was made by means of the edible frog. Galvani’s wife was just then in a very delicate state of health, and in accordance with usage had been ordered soup made from frogs. It is related that some of these animals, ready skinned, were lying upon the laboratory table, for the Professor had been just previously investigating the question of what he opined was “animal” electricity; that is, he fancied that muscular motion depended upon that subtle force. The electric machine was in action, and one of the attendants happening to approach or touch one of the frogs, the man as well as Madame Galvani observed that the limbs were violently agitated. Galvani was at once informed of this, and he made repeated experiments, which showed him that the convulsive movements only took place when a spark was drawn from the Galvani, in 1791, published his discovery and his theory that the body acted as a Leyden jar, different parts being in a different state of electricity. No sooner were his deductions published than all Europe was in a ferment, and philosophers of all nations were discussing it. Fowler, Valli, Robison, Wells, Humboldt, etc., all were deeply interested, but none of them appear to have arrived at so correct conclusions as did Volta, the physician of Pavia. “Wherever frogs were to be found,” says Du Bois Reymond, “and where two different kinds of metal could be procured, everybody was anxious to see the mangled limbs of frogs brought to life in this wonderful way. Physiologists believed that at length they should realize their visions of a vital power, and physicians thought no cure was impossible.” But notwithstanding the popular theory, Volta, in his letters to Carallo, while giving a full and clear account of the discovery made by Galvani and his own experiments, attacked and finally defeated the Professor. Volta quite upset Galvani’s Leyden-jar theory; Volta says that it was by accident that Mr. Galvani discovered the phenomenon, and by which he was more astonished than he ought to have been. Volta’s letters will be found in the Philosophical Transactions of the Royal Society (in French), and he attributes the effect to the metals which produced a small amount of electricity. He found that the nerve was acted upon on even parts of a muscle laid upon two different metals, and if those were united, a contraction took place. “Many experiments were made in all parts of Europe,” says Doctor Roget, and “an opinion had been very prevalent that the real source of the power developed existed in the muscle and nerve which formed part of the circuit, and that the metals which composed the other part acted merely as the conductors by which that agency was transferred from the one to the other of these animal structures. But the discoveries of Volta dispelled the error, by proving that the sources of power were derived from the galvanic properties of the metals themselves when combined with certain fluids,” and decided that this principle was electricity. From this the “general fact” was deduced—viz., “that when a certain portion of a nerve which is distributed to any muscle is made part of a galvanic circuit, convulsions, generally of a violent and convulsive kind, are produced in that muscle.” Volta at length made the discovery that when two metals were brought This was at first a difficulty apparently impossible to remove. It was so self-evident that the discs of metal, if placed in a pile in a series of pairs, would continually exercise like effects to the first pair of discs, that Volta was puzzled, and for some time he could not arrive at any reasonable solution. At last it struck him that if he placed between the discs some slow-conducting substance, the electricity would not pass from disc to disc, and the force developed or set in motion would be more powerful. He made the experiment. The result was the Voltaic pile made in 1800, of which we give an illustration (fig. 219). A communication on the subject of Electricity by contact, written by M. Volta, is to be found in the Philosophical Proceedings for the year 1800. Volta constructed the pile which bears his name, on the assumption that “every two heterogeneous bodies form a galvanic circle or arc in which electricity is generated.” The “pile” consisted of a number of discs of zinc and copper separated by discs of card soaked in water. This combination of metals separated by a bad conductor, developed considerable electricity, the “positive” going to the zinc at the top, and the “negative” turning to the opposite end. By touching the zinc and copper extremities simultaneously with wetted fingers we shall experience a shock. “I don’t need your frog,” Volta said, when he had proved his theory; “give me two metals and a moist rag, and I will produce your animal electricity. Your frog is nothing but a moist conductor, and in this respect it is inferior to my wet rag!” After this discovery the theory of animal electricity died away for many years, till in 1825, Nobili, and afterwards Matteucci, proved the existence of galvanic currents in muscles. After Volta had succeeded in obtaining a shock from his “pile,” he proceeded to the construction of another instrument, or rather apparatus, Volta, in 1800, addressed to the Royal Society his celebrated letter upon electricity excited by contact of conducting substances, and then the English philosophers proceeded to make further experiments. It was Fabroni of Florence who had just before suggested that chemical action was really the cause of the phenomena exhibited. Sir Humphrey Davy warmly advocated this theory, and made numerous experiments with the view to establish it. Nicholson, Carlisle, and Cruickshank also paid great attention to the subject. Volta, although he had laid the foundation, did not venture to build upon it. Messrs. Nicholson and Carlisle found the two kinds of electricity in the pile, the zinc being positive and the silver negative. They also found that the water was decomposed both in the circuit and in the body of the pile. Subsequently Cruickshank confirmed Nicholson’s observations, and made use of what is termed the “trough” apparatus. He found that hydrogen was emitted from the silver or upper end, and oxygen from the other. These discoveries opened up a wide field. “The power of the pile in decomposing chemical substances was now established.” Dr. Henry employed galvanism for analysis, and Sir Humphrey Davy invented new combinations of substances. He formed a pile of charcoal and zinc, and found out that a pile could consist of only one metal, different fluids being applied to the opposite surfaces separated by water, and one fluid “capable of oxidating the metal, the other of preventing the effect of oxidation.” Soon after a pile was made of charcoal. In 1806, Sir H. Davy gave the results of his researches to the world upon the electro-chemical action of bodies. In the course of his experiments he found out the chemical constituents of the alkalies, and a surprising number of new things were brought to light, and chemical science received a most astonishing ally. Sir W. S. Harris says: “A series of new substances Michael Faraday threw himself con amore into the question. He set about to classify the pile phenomena, and arranged them with appropriate terms, and in a series of papers, between the years 1830 and 1840 (see his “Experimental Researches”), he explained the chemical effects of voltaic electricity and electro-magnetic induction. He showed that the electricities obtainable from the voltaic pile and the electrical machine are essentially the same in their action. He proved that the theory held respecting the necessity for the presence of water in electro-chemical composition was erroneous, and that many other fluids and compounds were equally effective. We have not space at our disposal to include a digest of his various lectures and papers. He calculated that as much electricity is employed in holding the gases oxygen and hydrogen together in a grain of water, “as is present in a discharge of lightning.” When water is decomposed by the electric current, the force which determines the oxygen and acid matter held in solution to the positive, while the hydrogen passes to the negative pole, is not in the poles, but in the body decomposed, he says. “The poles,” writes Faraday, “are merely the surfaces or doors by which the electricity enters into or passes out of the decomposing substance. They limit the extent of that substance in the course of the electric current, being its termination in that direction. Hence the elements evolved passed so far and no farther.” Faraday named the poles “electrodes”—the way (in or out) of electricity. A very simple voltaic pile may be constructed with “gold-leaf” paper. Take two sheets of the gold paper and paste them back to back, and two of silver paper; cut them into discs about the size of a five-shilling-piece (or even of half-a-crown), and place them one on the top of the other, so as the gold and silver may be alternate; press the discs together slightly when a good many layers have been piled up, and introduce them into a glass tube; close the ends of the tubes with corks through which wires are passed from the discs top and bottom. It will be found that the ends are charged with opposite electricities. This is the Zamboni pile, or the dry pile, which was constructed of hundreds of paper discs “tinned on one side, and covered with binoxide of manganese on the other,” put into a tube, and closed with brass stoppers. The electricity will last a long time in a dry pile. In the accompanying illustration of the Galvanic Pile a disc of copper There are many forms of galvanic batteries. The Trough Battery or Cruickshank has been mentioned. There is Wollaston’s Pile, Bunsen’s Battery, Grove’s Battery, and Daniell’s, called the “Constant” Battery. In this last a porous earthenware cell is placed within a cylinder of copper; in the cell a rod of zinc is inserted, the cell being filled with diluted sulphuric acid,—one part of acid to ten parts of water,—and in the outer cylinder is a solution of sulphate of copper. The cut above illustrates Daniell’s Battery (fig. 223) with connectors. In Bunsen’s Battery (or the Zinc-Carbon Battery), which is very like the “Daniell” arrangement, as will be seen from the plates (figs. 222, 223), the porous cell has a prism of carbon immersed in it, and is apparently a modification of the powerful “Grove” Battery (fig. 224). This consists of slips of platinum, h, placed in porous cells, g, each cell being surrounded by a glass cylinder. The outer (glass) cells are filled, or nearly filled, with diluted sulphuric acid; nitric acid is used in the porous cells, and a platinum plate inserted. The chemical action of the Grove cell is thus explained by A great number of cells are used in the Grove Battery; perhaps even a hundred may be employed. Smee’s Battery consists of a plate of platinized silver, S, with a bar of wood to prevent contact with the zinc on each side, Z. These are immersed in a glass jar, A, which contains dilute sulphuric acid. The current is obtained by metallic communication with the binding-screws on the top. This battery has much the same general arrangement as Wollaston’s—the position of the plates being, however, reversed; in the latter there are two negative plates to one positive. In Smee’s Battery there are two positive (zinc) plates to one negative plate. It will now be understood how an electric current is produced; the electricity passing through the cells, etc., to wires, confers certain properties upon the wires, and we can ascertain the effect of the current by means of a Galvanometer, an instrument used to detect the strength and direction of electric currents. The current will evolve heat and light; it will excite muscular action, and will decompose substances into their constituent elements. The deflection of the magnetic needle by the electric current is considered the best evidence of its power; it is on this that the Galvanometer is based. We can perform a few simple experiments with the current. Suppose, for instance, that a piece of fine wire be fixed between the pole wires of the battery; it will be heated “white hot.” Or if two carbon points be approached in a glass of water, as in the illustration (fig. 227), they will emit a brilliant light in the fluid from the voltaic arc which has given us the electric light. The current is the passage of electricity along the wire, and continues “If two metals be placed near together, but not in contact, in a liquid which acts chemically more upon one than upon the other, the metals become charged, so that the one least acted on is of higher potential than the one most acted on. The difference of potential produced depends only upon the nature of the metals and of the liquid, and not on the size or position of the plates. As soon as the difference of potential has reached its constant value the chemical action ceases. “If now the metals are connected by a wire outside the liquid the difference of potential begins to diminish, and an electric current flows through the wire. As soon as the difference of potential becomes less than the maximum for the metals and liquid, chemical action recommences and brings it up to the maximum; and thus if no disturbing cause interferes the current will continue until the metal most acted on is entirely dissolved.” The metal most acted on is considered the “generating plate,” and is “positive.” The other attacked less is “negative,” and is known as the “collecting plate,” and the zinc is the positive plate. Sir W. Thomson has shown that the electrical movement in the galvanic circuit is entirely due to the electrical difference produced at the surfaces of contact of the dissimilar metals. The electro-motive force obtained is not the same with all metals. We have mentioned that some are electro-positive and some electro-negative, and it is with reference to each other that the metals are considered to be endowed with these properties respectively. It all depends how the metals are arranged or coupled. With reference to their behaviour in this respect scientists have arranged them in a series, as follows:—
Each metal in the list is arranged so that it is electro-positive to any one below, and electro-negative to any one above it. There is another curious fact which should be mentioned. In associating these metals it has been found that when two are brought into contact the electro-motive force becomes greater the more distant they are in the series given above; in other words, the force between any two is equal to the sum of the forces between those intervening between those two. So when zinc is used with copper its force is not so great as when used with platinum. It was Herr G. S. Ohm who laid down the law that the strength of the electric current is equal to the electro-motive force divided by the resistance, for he proved that the “resistance was inversely proportional to the strength of a current.” There are two other laws respecting currents; viz.,— (1.) Parallel currents in the same direction attract each other. (2.) Parallel currents in opposite directions repel each other. Upon these two hang all the varied phenomena of electro-dynamics. That chemical action develops electricity we can perceive with the aid of the two cuts (figs. 228 and 229). If the wires be attached to the collecting-plate of a condenser of electricity and the metal plate of a cell, as shown in the figure (fig. 228), the electricity on the plate will be negative. If the operation be reversed, and the plate be put in connection with the acid, and the metal with the earth, the instrument will be charged with positive electricity. In the other case, when two cups are used, united by a magnet so that the solutions (one acid and the other alkaline) can by capillary attraction unite upon the binding of the magnet, and we place the wires as in fig. 229, the charge on the plate will be positive if it be in connection with the acid, and negative if in communication with the alkaline solution. Every time there is chemical action between two bodies in contact electricity is produced—positive on one negative on the other, and that is the fundamental principle of the voltaic pile. The decomposition of water can also be effected by means of the electric current. If two tubes or vessels be placed in a vase of water, and the wires from the battery be inserted in them respectively, the oxygen will go to the platinum or positive pole wire, and the hydrogen to the zinc or negative pole. This decomposition or “splitting up” of components was termed Electrolysis by Faraday, who gave a series of names to the action and the actors in these phenomena (fig. 230). Any liquid body, such as the water we have just decomposed for instance, Faraday termed an electrolyte; the surfaces where the current enters or leaves the body were called electrodes—the “ways,” from odos, a “way”; the entry is the anode; the leaving point the katode, from ana, “up,” and kata, “down.” The electrolyte is divided into two portions, “ions” (“movers”), which move towards the electrodes, which are positive and negative. In the case of the decomposition of water the hydrogen goes to the negative electrode, the oxygen to the positive. There are a few observations to be made respecting electrolysis. One rule is, that it “never takes place unless the electrolyte is in a liquid state.” The liquid state is essential. It is also observed that the components go to the different electrodes; such elements as go to the negative electrode are termed electro-positive, the others electro-negative; or, as Faraday termed them, “anions” or “kations:” The chemical power or electrolytic action of the current is the same at all parts of the circuit; the quantity of the substance decomposed is in exact proportion to the strength of the current. Faraday measured the strength of the electric current, and invented for the purpose an instrument called the Voltameter. We have mentioned the Galvanometer more than once, and will proceed to describe it. There are several forms of this instrument: the Tangent, the Marine, and the Reflecting Galvanometers, and the Astatic, or “Multiplier.” In the first-named the direction of the current is determined by AmpÈre’s rule, which is as follows:— “Imagine an observer placed in the wire so that the current shall pass The “Tangent” Galvanometer consists of a vertical circle like an upright ring, across which is a support in the centre holding a copper wire, through which the electric current passes. On this point (where the wire is) a needle is very lightly supported, and when the instrument is to be used it is placed so that the plane of the circle is parallel to the line in which the needle points. The current passes, and the needle is deviated. By noting which side the north end of the needle goes the direction of the current is ascertained, and the length of the needle being small in comparison with the diameter of the circle through which the current passes, the strength of the current in the vertical circle is in proportion to the tangent of the angle through which the needle turns. Hence the term “Tangent” Galvanometer. The “Reflecting” instrument is the invention of Sir William Thomson, in which a mirror is attached to the needle, and reflects a small focus of light upon a scale. The movements, however minute, are easily read. Sir W. Thomson’s Galvanometers are extremely sensitive. We need not mention any other varieties, as full descriptions can easily be obtained. We only need to indicate the mode of working. The accompanying illustration (fig. 231) shows an Astatic Galvanometer which may be used in two ways—either to measure strength of current, or to find out a current; in the latter case it would be termed a Galvanoscope. It is a compound needle instrument, and consists of two needles placed in parallel directions with opposite poles above each other in a coil. The wire coil is wound round a bobbin, and the astatic needle is placed therein and suspended freely, as in the illustration, by a cocoon thread. The upper needle moves upon a scale, O O, and the instrument is enclosed in a glass shade. The screw, V, communicates with the upper needle, and fixes it at zero point when ready for use. The wires are fastened to the binding-screws, and the current is then sent. The needle is deflected accordingly, and the number of degrees on the scale can be read off. The uses of the galvanic current are many. Amongst them Electroplating is perhaps the most generally useful, though Electrotyping is also a very important process in art. A visitor to Birmingham may view the process carried on there by some enterprising firms, who have succeeded wonderfully in producing electro-plate. The principle is very simple and easy to understand, but the greatest care and watchfulness are required on the part of the men employed. The principle, as we have said, is simple, Suppose we take a plate of silver, and immerse it in cyanide of silver dissolved in cyanide of potassium; a coating of silver will be deposited upon the nickel spoon or other article suspended at the other pole. But to make the coating adhere the spoons, forks, etc., are prepared for the bath by cleansing in caustic potash to remove grease, and washed in nitric acid to remove all traces of oxide, then are scoured with sand. Next, a thin coating of mercury is put on by immersion in solution of nitrate of mercury. Finally, they are hung in the bath. A metal rod is hung across the bath (fig. 232), and the plate is immersed. If the rod to which the articles are suspended be attached to the zinc or negative pole, and the plate of silver to the positive pole of the battery, decomposition begins, and the silver begins to attach itself to the suspended objects. If it be desirable to give the plated articles a thick coating, they are retained for a long time in the bath, which is of some non-conducting material. The dull appearance is easily removed by brushing and burnishing, and then the “Electro-plate” is Electrotyping may be briefly explained as follows:—Take two vessels, A and B, and in one, A, put some dilute sulphuric acid and two plates, one of zinc, Z, the other of copper, D, but be sure they are not touching each other; each of these plates must have a piece of wire fastened, by soldering to their upper parts. In the vessel, B, put some solution of sulphate of copper and a small quantity of dilute sulphuric acid, and attach another copper plate to the wire which comes from the copper plate in the acid; this second copper plate is to be immersed in the solution of sulphate of copper, and to the wire from the zinc plate is to be fixed the object to be coated. If a medallion or other object in plaster, it should be soaked in very hot wax and then brushed over with blacklead until the surface is perfectly blackened and bright; the wire should be bound all round the margin and soldered (as it were) with melted wax to the medallion, taking care that this wax also is well coated with blacklead. If the object be now immersed in the sulphate of copper solution and kept at a short distance from the plate (it must not touch it), a coating of copper will soon cover the surface and form a perfect cast, which, when of sufficient thickness, may be removed Many uses are made of the galvanic current by medical men. If the circuit of the pile is closed and we take a wire in each hand and break contact, a concussion will be felt in the joints of the arm and fingers, and a certain contraction of the muscles. The currents of electricity cause the shocks, and by a peculiar arrangement by which the circuit can be closed or broken at pleasure, a series of shocks can be sent through the body when it forms the connection between the poles of the battery. We give illustrations of a medico-galvanic machine. In fig. 235 there are two batteries, A and B, with cells, C D. Each battery consists of a central plate of platinized silver separated from the zinc plates by a piece of wood, E and F; the binding-screws are fastened to the silver plates, and G H retain the zinc plates; I is a copper band connecting the zinc plate of one battery with the silver plate of the other. At Z and opposite are wires leading to the coil machine. The quantity and intensity of the current are regulated respectively by the indicator, O, and the wires, Q. There is a point, R S, for the breaking of the contact; P N are screws retaining the wires which lead to the handles, U V, grasped by the patients. The electric current is employed in many diseases, and is of great use in some cases, but the further consideration of it with reference to its medical applications does not fall within the scope of our present work. We will now pass on to one of the most useful applications of the electric force, the Telegraph, and in dealing with it we must make a few remarks upon magnetism. First, let us make an experiment or two, and see the reciprocal action between electricity and magnetism. (1.) If we take a piece of iron of the form of a horse-shoe (fig. 236), and wind around it copper wire, and pass through the wire an electric current from our battery, the iron will exhibit strong magnetic properties, which it will lose when the current is interrupted. The conducting wires are insulated with silk, and the current will then travel in one direction. (2.) If we cover the ends of a non-magnetic piece of iron with coils of wire, and rotate the magnet, A B, so as to cause the poles to approach (3.) Referring to the first experiment, if we bring a needle in contact with the iron horse-shoe, while the current is passing through the wire we shall find that the needle has become a magnet; i.e., that it will point due north and south when suspended. We will now see what a Magnet is, and why it has obtained this name. In Magnesia, in Lydia, in olden times was found a stone of peculiar attributes, which had the property of attracting small portions of iron. The Chinese were acquainted with it, and nowadays it is found in many places. In our childhood we have all read of it in the story of “Sinbad the Sailor.” Popularly it is known as the loadstone; chemists call it magnetic oxide of iron (F2O3). This stone is a natural magnet. In Sweden it exists in great quantities as “magnetic iron,” for it has a great affinity for that metal. If we rub a piece of steel upon the loadstone we convert the former into a magnet—an artificial magnet as it is called, and the magnetic needle so useful to us in our compasses and in the working of one form of the electric telegraph is thus obtained. Let us see how this needle acts. Take a magnetic needle and dust upon it some iron filings. You will observe that the filings will be attracted to both ends of the magnet, but the centre will remain uncovered. The ends of a magnet are termed “poles,” the centre the equator. So one end is north and the other south, and we might perhaps imagine that the same characteristics would abide in the bar when it is cut in two. But we find that as when a worm is divided, each portion gets a new head or tail, and makes a perfect worm, so in the magnet each divided half becomes a perfect magnet with separate poles, one of which always points to the north. The poles of the magnet display the same phenomena as regards attraction and repulsion, as do the opposite kinds of electricity. If we suspend a magnet and bring the north pole of another to the north pole of the suspended magnet, the latter will turn away; but if we apply the north pole of one to the south pole of the other they will be attracted just as opposite electricities attract each other. Magnetization is the term applied to the making of artificial magnets, which act is accomplished by bringing the needle in contact with other magnets, or sometimes by means of the electric current. If we carefully stroke the needle with the magnet, always in the same direction, lifting the magnet and beginning afresh every time, we shall magnetize the needle, but with a different polarity from the pole it was rubbed with. A magnet rubbing its north pole against a needle will make the latter’s point south, and vice versÂ. Now that we have seen how the “magnetic needle” is arrived at, we can proceed to explain the electric telegraph. The term telegraph is derived from the Greek words tele, “far,” and graphein, “to write,” and now includes all modes of signalling. Signalling, or telegraphing, is of very ancient origin; the Roman generals spelt words by fire. The beacons fired on the hills, the “Fiery Cross,” and other ancient modes are well known. The semaphore and flags have long been and are still used as modes of signalling, while the flashing of the heliograph “telegraphs” to a distant camp. The Semaphore was invented by ChappÉ, and was really the first practical system of telegraphy. It was adopted in 1794, but before this, in 1753, a letter appeared in the Scots Magazine, by Charles Marshall, suggesting that signals should be given by means of electric wires, equal in number to the letters of the alphabet. Soon afterwards Lesage, of Geneva, made an electric telegraph to be worked by frictional electricity, and many ingenious attempts were subsequently made to utilize electricity for signalling purposes, but without any permanent success; indeed, the British government were quite content with their semaphores, for they wrote that “telegraphs of any kind are now wholly unnecessary, and no other than the one now in use will be adopted”! The Electric Telegraph has had considerable antiquity claimed for it, but it is pretty certain that the discovery made by Doctor Watson, in 1747, that electricity would pass through wires, and that the earth would complete the circuit, gave the first impetus to the Electric Telegraph. Doctor Watson was enabled to transmit shocks across the Thames, and made experiments at Shooters Hill. Franklin did likewise across the Schuykill in 1748, and De Luc performed the same experiments on the Lake of Geneva. Both Lesage and Lomond caused pith balls to diverge at distant points, and in 1794 Reizen made use of the electric spark for transmitting signals, and made strips of foil show out certain letters when the spark passed. He had a wire and a return wire for each letter of the alphabet. These were all slow advances, and subsequently many learned men in After the invention of Volta’s pile, which SalvÁ wished to adopt, SÖmmering began his experiments. He used thirty-five wires, set up vertically at the bottom of a glass reservoir of water, and terminating in gold points. These wires ended in the opposite direction in brass plates attached to a bar of wood. At one end the points and at the other the plates bore the same letters respectively; hydrogen at one gold point, and oxygen at another, and two different letters were indicated when the current was sent through any two plates. This arrangement was afterwards improved upon, and only two wires retained. It was not until electro-magnetism had been developed, however, that Œrstead found out the power of electricity to deflect the magnetised needle, and in 1820, Scheweigger added a “multiplier.” Then came Arago into the field with his discovery, that a “wire carrying a current could magnetise a steel rod.” AmpÈre substituted a helix for a straight wire, and Sturgeon used soft iron for steel, and developed the electro-magnet. Daniell’s battery, and Faraday’s discoveries of magneto-electricity and the induction coil were the means of putting a constant supply of electricity at the service of the telegraph and so on, till 1830 brought out a more practical method introduced by Schilling. In that year Baron Schilling made a telegraph, and exhibited it in 1832 at Bonn. This invention, with five vertical needles, was shown to Mr. Cooke in 1836. But in 1834, Gauss and Weber had succeeded in sending signals by means of a voltaic current acting upon a magnetised needle, and this apparatus was really the first practical electric telegraph in use, and it was much improved by Professor Steinheil of Munich. They employed a magnetic-electro machine, and caused a bar to move in certain directions to indicate certain letters of the alphabet. This was really of value, but Steinheil, the pupil of Gauss, assisted by his government, employed only a single wire, and made the earth complete the circuit for him instead of having a return wire as his predecessors had. This telegraph was perfected by a series of bells, which gave different tones for different letters, and he also caused the needle to make certain tracings as it moved upon a paper slip, something like the Morse pattern, which was completed in 1837. Professor Morse, in 1832, conceived the idea of an electric telegraph but his claim was disputed by a Doctor Jackson, who was on the same vessel “It was once a popular fallacy in England and elsewhere that Messrs. Cooke and Wheatstone were the original inventors of the electric telegraph. The electric telegraph had, properly speaking, no inventor.... Messrs. Cooke and Wheatstone were, however, the first who established a telegraph for practical purposes comparatively on a large scale, and in which the public were more nearly concerned.... Therefore it was that the names of these enterprising and talented inventors came to the public ear, while those of AmpÈre and Steinheil remained comparatively unknown.17 The telegraph, as used in Great Britain, was the result of the co-operation of Professors Cooke and Wheatstone. Mr. Cooke, in 1836, having seen the needle telegraph when in Heidelberg, made certain designs, and soon entered into partnership with Professor Wheatstone for the application of electric telegraphs to railways. Their apparatus with five needles and five wires was put up on the London and North-Western (then London and Birmingham) and Great Western lines, but proved too expensive. The instrument was subsequently modified, and is used on the English railways still. We may now proceed to look at the Wheatstone needle telegraph and see the method of working it. We know already that when a pair of metallic plates are immersed in a fluid which acts chemically more rapidly on the one than the other, and a wire connects the upper parts of these plates, this wonderful agency is set in motion, and circulates from the one plate to the other (fig. 242). This arrangement may be best shown by using one plate of zinc and the other of copper, and a dilute solution of sulphuric acid for the liquid; this, however, produces by far too little of the agent to be used on a telegraphic line, there are therefore combinations of such pairs of plates, so arranged that the power of one pair shall be added to the next in such a way that at the end of the series (called a “battery”) there shall be a great increase of the power accumulated; this arrangement is shown in fig. 244. Now (if the power be sufficient) it does not signify what length of wire there may be between the two ends of this arrangement or “battery”; whether they be connected by a few feet or many hundred miles, the electricity passes instantaneously from one end to the other; and furthermore, it has been found in practice, that this electrical influence can be transmitted through the earth in one direction if sent by a wire in the other; for instance, if a wire from one end of the battery be carried on from London to Liverpool, instead of having another from Liverpool to London, to connect the two ends of the battery, it is found to answer the same purpose if the end of the wire at Liverpool be fastened to a plate of metal buried beneath the surface of the earth, and the other end of the battery at London furnished with a similar plate, also buried. In this arrangement, If a bar-magnet be suspended on a pivot so that it may turn freely, it will (as is well known) turn with one end to the north, which is owing to a current of natural electricity passing round the earth in the direction of east and west, the magnet crossing the current at a right angle; and if a coil of wire coated with silk (to keep one part of the coil from another) be placed round, above, and below the long axis of a bar of steel, as shown at fig. 246, and a current of electricity passed through the wire, the steel becomes a magnet, and will take a direction similar to the natural magnet, more or less, at right angles to this coil, as in fig. 247, according to the intensity of the current; and the instant this electrical current is stopped, it will resume its former direction. This fact has been made use of to form the principal feature of all English telegraphs; such a needle is mounted in an upright position, and instead of its tendency to turn to the north, a tendency to maintain the upright position is given to it by having one of the arms of the magnet a little heavier than the other; such a magnet having a coil of The Telegraph Alphabet, in the two-needle instrument, now not generally used in England, is given below.
In the single needle instrument the letters are indicated by right and left vibrations, from A one right, to B one right and left, and so on, increasing to Z. This mode is now generally used. The manner in which the current passes is shown by the following illustrations (figs. 252, 253). For the sake of clearness, the diagram has been drawn with simple lines only. In the real needle-machine the construction is much more complicated; perspective drawings of it may be seen in Lardner’s “Electric Telegraph,” and numerous other works. In fig. 1, B is a single cell of a battery containing a plate of copper, C, and a plate of zinc, Z, immersed in sulphuric acid and water. H is the handle of the instrument, turning from left to right, and vice versÂ, like the handle of a door, consisting of two pieces of brass insulated from each other by being inserted in an axis of ivory. To the ends of the two pieces of brass are fixed the wires, CW and ZW, leading from the copper and zinc ends of the cell respectively. Fixed The following is the alphabet (with numbers) once in use on the South-Eastern Railway for the double-needle instrument. The table is taken from Mr. Walker’s translation of De la Rive’s work on Electricity and Magnetism.
The Morse system of telegraphy was first brought out in 1844, and was worked by means of a Voltaic battery, an electro-magnet being used at the receiving station. This magnet attracted an “armature,” and by it dots or lines are marked on a moving paper band by a point at the other end of the wire, on the register in which the paper is carried by rollers which move out by clockwork. The lever being “tapped” down in fast or slow pressures will give a corresponding series of dots or lines (according as the pressure is long or short) upon the moving strip of paper at the receiving station. Three taps will give C, one tap and a pause will make A. The dots are “taps” on the key, the lines brief “rests” on it, as will be seen from the alphabet below, which is given as a specimen.
The various stops are also indicated in the same manner by combinations of dots and lines. The Atlantic telegraph cables and similar enclosed wires between other countries are too well known to need detailed description. There is a great variety of telegraphic instruments. The dial, and other arrangements, are very common, and the Wheatstone Key instrument is supplied to private firms as being the most handy. It requires but a very short apprenticeship, and any person who is handy can easily learn to work it in a few minutes. The apparatus consists of a dial upon which the letters of the alphabet are printed, each letter being supplied with a key or stop. A pointer is placed in the centre, as in the wheel barometer, and there is a handle beneath. In front, upon a sloping board, is another dial plate and pointer; thus we have the receiver and transmitter before us in a very small space. When it is necessary to work the instrument a bell is rung by turning the handle rapidly. To speak by the instrument it is necessary to keep turning the handle with the right hand while the fingers of the left are employed in pressing down in as rapid succession as practice will permit the keys corresponding to the letters on the dial while the handle is kept turning. When a word is completed the operator must stop at the + at the top, and then begin again, stopping after each word. When all is said, a couple of rapid turns of the dial will signify that you have ended. There are many other systems of telegraph, but all are dependent upon the same principles. The accompanying illustrations (figs. 254, 255) show a dial telegraph of a simple kind, which almost explains itself. The first figure is the receiver, on which is a pointer fixed to a dial-plate having the letters of the alphabet inscribed around it. When the manipulator is being worked the dart points to the letters in succession of the words used, and they are separately spelt. The manipulator (fig. 255), by closing and opening the circuit, works the needle. In the manipulator we have a wheel with an index point fixed above it. In this wheel are thirteen teeth, with the openings between them filled As there are a great many other applications of electricity of which we have to treat,—the Electric Light, and Mr. Edison’s other inventions,—our space will not permit a much more detailed account of the telegraph, but there are some incidents connected with its progress which it would be as well to mention. Alexander Bain, about 1840, attempted to produce a printing telegraph, and in 1846 he actually accomplished a registering apparatus, which was an application of the principles of Dyar and Davy. But although Bain’s system was good, Morse had the advantage of possession in the United States, where it was tried, and Bain went out of fashion. Bain’s system was, in fact, the present chemical “automatic” telegraph, which has been perfected for rapid transmission. Bakewell’s instrument, which has been improved upon by later electricians, is termed the fac-simile telegraph. The message to be sent is written with a pen which has been dipped in varnish (for ink), and the characters are inscribed upon prepared tinfoil. The message is then put upon a cylinder covered with prepared paper, and has a pointer attached. There is a precisely similar cylinder at the receiving station. When the cylinders are simultaneously set going, the point at one will trace a spiral line as the first (transmitting) point passes round its cylinder. However, as the latter “stylus” meets the varnish letters a break occurs, and these spaces are exactly reproduced as blanks at the other end, and the form of the letters can be seen. Coselli, in his adaptation, caused dark letters to be registered on a white ground, and thus simplified matters. Since then we have had printing telegraphs, and dials, and writing machines, one of which will be described presently. Submarine telegraphs were, it is said, first suggested by SalvÁ in The following description of a new system is from Scribner’s Magazine for 1880:— “New Telegraphic System. “A new system of sending and receiving electrical impulses over an insulated wire has recently been brought into successful operation, that seems to promise not only a radical change in the present methods of telegraphing, but a material gain in the speed and cost of sending messages by wire. It is founded on a union of the so-called “automatic” and “chemical” systems of telegraphy. The first of these employs a strip of paper having, by some mechanical means, a series of small holes punched in it, the design being to pass the perforated strip under a needle, or stylus, in electrical connection with the line. This stylus, on passing over the paper, opens the circuit, but in passing one of the holes, drops through and closes it,—this alternate making and breaking of the circuit transmitting the message. The chemical telegraph records any electrical impulses sent over a line by staining a strip of prepared paper passing under it. This is founded on the fact that electricity has the power of decomposing certain chemicals, and if paper is soaked in these chemicals and submitted to the action of electricity, it will be discoloured wherever the current passes. While both of these systems have been used, neither has been able to compete with the more simple Morse key and sounder, and it has remained for the new system to bring them to a position where they may come into general use. The new system Of the hundred and one uses to which electric wires are now appropriated—of the alarms, fire-calls, clocks, etc.—we need not speak. We must pass on to the Writing Machine (fig. 258) before we make mention of Mr. Edison’s inventions. The Writing Machine is as remarkable for the simplicity of its mechanism as for the facility and ease with which it can be used. It was invented by Remington, the American, whose name is so universally known in connection with a repeating rifle. He makes these writing machines in his own factory, where he associates them with rifles and sewing machines—implements for war and peace. The appearance of the Writing Machine may be easily perceived from the illustration (fig. 258), which is drawn to scale one-fourth of the actual size. It comprises a key-board, upon which there are forty-four keys or stops, including numbers from 2 to 9, the i and o of the alphabet serving for numbers 1 and 0, and all the letters of the alphabet arranged in the manner most convenient for manipulation. There are also the various accents and stops, with note of interrogation, etc. The flat ruler at the base of the key-board is struck when it is necessary to separate one word from another. In the interior of the apparatus every letter is attached to a small hammer, and corresponds to the pressure bestowed upon the notes, which are disposed in a circle. If A, for example, be touched upon the key-board, the hammer will bring A to the centre of the circle, and so every letter of the word will be, by such action, brought to the centre of the circle in succession. The paper upon which the letter is printed is wound upon a cylinder mounted upon a slide, as seen in the upper portion of the illustration. When the letter is pressed down on the key-board the corresponding hammer strikes against the cylinder, between which and the hammer is a ribbon prepared with a special ink. The letter being in relief like ordinary type is impressed upon the paper. The slide upon which the paper is mounted is so arranged as to move from right to left exactly a letter-breadth In operating both hands may be employed, but between each word care should be taken to press down the flat board at the base of the key-board, which has the effect of leaving a space upon the paper. Immediately the sound of the warning bell is heard the lever at the right-hand side must be lowered. The word can be finished in the line following if it be not concluded, the hyphen button being pressed to indicate the continuation. The paper used must not exceed the width of the cylinder, but it may The inked ribbon which passes underneath the paper is so arranged that no two successive letters strike it on the same place. It moves from an ink reservoir on the right to another on the opposite side, and it can be made to return beneath the paper, thus keeping up the supply. The impression being made in copying ink, the message or letter when finished can easily be reproduced in an ordinary press. The characters are all “capitals.” At first it may be found a slow means of writing, and the manipulator may imagine he can do better without it. But if the author be certain of what he intends to say, after a little practice at the instrument, and when he becomes accustomed to the positions of the various letters, etc., the rate at which words can be printed off will far exceed that at which even rapid writers can work. A young English lady after some days’ practice was able to write as many as ninety words a minute with this machine—a rate more than double the average writing rate of penmanship. When such a rate or an approximation to it can be attained, those who are quick in their ideas will find the machine a great saving of time, and for any one afflicted with “writer’s cramp” the gain must be enormous. We need not insist upon the advantages the adaptation of the apparatus would confer upon editors and readers of MSS. too often badly written, and to compositors the invention is a great boon. Finally, the working of the machine could be entrusted to the blind, and by teaching them the form of letters which could be raised upon the key-board, those so sadly afflicted could write with facility. Some methods for teaching the blind to manipulate and to read from the impressions of the hammers on the paper have already been tried with success. The Electric Pen, an invention of the fertile brain of Mr. Edison, is shown in fig. 259. The “writing” consists of a series of little holes close together, made by a fine steel point like a put-crayon. This point is thrust in and out with great rapidity, and passes quickly over the paper. If the characters cannot be formed so quickly as with an ordinary pen, the writing is very distinct. The alternative movement is given to the pen by an electric motor at once simple and ingenious, which is placed on the top of the penholder. The general appearance of the apparatus will be understood from the cut on next page. The point is the termination of a wire which traverses the penholder, and the upper extremity of which catches on the motor by an eccentric. This eccentric has three teeth or cogs, and it makes sixty revolutions a second, thus producing one hundred and eighty beats in that time. The axle carries a plate of soft iron, which acts like the armature of an electro Under these circumstances the battery could be made to last several days without any renewal of the liquid, and the plates will last for weeks. Thus a very simple arrangement is at our disposal. Let us see what use can be made of it. When we use the electric pen we obtain a great number of small holes close to each other. Such hand-writing is not easy to decipher by mere inspection like ordinary writing. By holding it up to the light it is more easy to read, but in both instances reading is not easy, nor does it come by nature as Dogberry declares. But if we consider the paper as a “negative,” we may obtain a number of positive proofs or copies of the writing. To obtain these successfully we must use a press, as shown in the accompanying illustration (fig. 260). The writing, or negative, is placed upon the cover to the left, where it is firmly fastened. Upon the body of the press a sheet of white paper is placed, and when the lid is shut down the negative comes in contact with the paper. By means of a roller, represented in the box, the writing is blackened,—the ink penetrates into all the holes which are upon the paper,—and after the manner of a stencil plate the impression will be found upon the paper when There are two or three other applications of electricity which we must refer to; such as the electric stamp, of which we give an illustration, and a curious method of stopping a horse by electricity. The electric stamp might be very advantageously employed in our post offices to obliterate the “Queen’s Head.” The description, with illustration of this apparatus, is annexed. (See fig. 261.) At the lower end of the apparatus is a thin platinum wire, so arranged as to form either a design or an initial; by this the postage stamp can be defaced. The stamp being put in communication with the pile, the circuit is closed by the pressure of the finger, as shown in the illustration. The platinum grows heated and carbonises the paper, and thus proves itself an ineffaceable stamp. This apparatus may easily be used, not only by the post office authorities, but by every one who is obliged to deface a certain number of stamps every day, and wishes to do so rapidly and without possibility of error. An ingenious, if scarcely necessary arrangement for conquering restive horses, and frightening them into submission, is shown in the illustration (fig. 262). Many means have been tried to stop or conquer a restive horse, but the most efficacious has been designed by M. Defoy; and the director of M. Bella, the Director of the Omnibus Company, has reported that the apparatus was tried in his presence and found very successful, and quite easy of application; and that even the most unruly animals have been subjected by it. On one occasion a most restive animal was thus treated on the way to the forge. He had a tremendous objection to be shod, and made no secret of his dislike. But a gentle application of the electric current put quite an opposite complexion upon the matter, and after a few minutes the animal permitted himself to be patted and caressed, and even allowed the smith to feel his legs and inspect his feet without making any objection whatever. His shoes were taken off, and the horse was re-shod without any of the dangerous demonstrations hitherto indulged in by the animal. We may quote another instance of the efficacy of this method, which is reported from Paris by M. Camille. “Many experiments have been made upon horses which had been most difficult to shoe, and in each case we have succeeded when the electric apparatus has been put in requisition. One horse, in particular, nothing could subdue. He kicked and bit and jumped about in such a manner as to render all approach impossible. We had recourse at length to M. Defoy’s apparatus, and after the first application, and without any great difficulty, we were able to raise the animal’s feet; but after a second lesson we were permitted to shoe him without his offering the slightest resistance. He was completely subdued.” M. Defoy recently made the experiment with a very dangerous animal, which he stopped instantaneously in full gallop (see fig. 262). It may be remarked that the application of the current is not sufficiently strong to stop the horse too suddenly. It merely causes a very unpleasant sensation—he is not stupefied nor galvanized by the electricity. The narrator has felt the shock applied without inconvenience, and the conclusion arrived at is, that this method of employing electricity is far superior to the violent and inhuman treatment so often employed to break horses, which renders them subsequently sulky and vindictive. M. Defoy has completed an electric bit and an electric stick quite as ingenious as the electric rein. The modus operandi is simple and effective, the wires being insulated by leather, and terminating at the extremities of the stick. The current is induced, as before, by a small magneto-electric machine. |