Sound and Light. SOUNDING SAND.

Previous

Mr. Hugh Miller, the geologist, when in the island of Eigg, in the Hebrides, observed that a musical sound was produced when he walked over the white dry sand of the beach. At each step the sand was driven from his footprint, and the noise was simultaneous with the scattering of the sand; the cause being either the accumulated vibrations of the air when struck by the driven sand, or the accumulated sounds occasioned by the mutual impact of the particles of sand against each other. If a musket-ball passing through the air emits a whistling note, each individual particle of sand must do the same, however faint be the note which it yields; and the accumulation of these infinitesimal vibrations must constitute an audible sound, varying with the number and velocity of the moving particles. In like manner, if two plates of silex or quartz, which are but crystals of sand, give out a musical sound when mutually struck, the impact or collision of two minute crystals or particles of sand must do the same, in however inferior a degree; and the union of all these sounds, though singly imperceptible, may constitute the musical notes of “the Mountain of the Bell” in Arabia PetrÆa, or the lesser sounds of the trodden sea-beach of Eigg.—North-British Review, No. 5.

INTENSITY OF SOUND IN RAREFIED AIR.

The experiences during ascents of the highest mountains are contradictory. Saussure describes the sounds on the top of Mont Blanc as remarkably weak: a pistol-shot made no more noise than an ordinary Chinese cracker, and the popping of a bottle of champagne was scarcely audible. Yet Martius, in the same situation, was able to distinguish the voices of the guides at a distance of 1340 feet, and to hear the tapping of a lead pencil upon a metallic surface at a distance of from 75 to 100 feet.

MM Wertheim and Breguet have propagated sound over the wire of an electric telegraph at the rate of 11,454 feet per second.

DISTANCE AT WHICH THE HUMAN VOICE MAY BE HEARD.

Experience shows that the human voice, under favourable circumstances, is capable of filling a larger space than was ever probably enclosed within the walls of a single room. Lieutenant Foster, on Parry’s third Arctic expedition, found that he could converse with a man across the harbour of Port Bowen, a distance of 6696 feet, or about one mile and a quarter. Dr. Young records that at Gibraltar the human voice has been heard at a distance of ten miles. If sound be prevented from spreading and losing itself in the air, either by a pipe or an extensive flat surface, as a wall or still water, it may be conveyed to a great distance. Biot heard a flute clearly through a tube of cast-iron (the water-pipes of Paris) 3120 feet long: the lowest whisper was distinctly heard; indeed, the only way not to be heard was not to speak at all.

THE ROAR OF NIAGARA.

The very nature of the sound of running water pronounces its origin to be the bursting of bubbles: the impact of water against water is a comparatively subordinate cause, and could never of itself occasion the murmur of a brook; whereas, in streams which Dr. Tyndall has examined, he, in all cases where a ripple was heard, discovered bubbles caused by the broken column of water. Now, were Niagara continuous, and without lateral vibration, it would be as silent as a cataract of ice. In all probability, it has its “contracted sections,” after passing which it is broken into detached masses, which, plunging successively upon the air-bladders formed by their precursors, suddenly liberate their contents, and thus create the thunder of the waterfall.

FIGURES PRODUCED BY SOUND.

Stretch a sheet of wet paper over the mouth of a glass tumbler which has a footstalk, and glue or paste the paper at the edges. When the paper is dry, strew dry sand thinly upon its surface. Place the tumbler on a table, and hold immediately above it, and parallel to the paper, a plate of glass, which you also strew with sand, having previously rubbed the edges smooth with emery powder. Draw a violin-bow along any part of the edges; and as the sand upon the glass is made to vibrate, it will form various figures, which will be accurately imitated by the sand upon the paper; or if a violin or flute be played within a few inches of the paper, they will cause the sand upon its surface to form regular lines and figures.

THE TUNING-FORK A FLUTE-PLAYER.

Take a common tuning-fork, and on one of its branches fasten with sealing-wax a circular piece of card of the size of a small wafer, or sufficient nearly to cover the aperture of a pipe, as the sliding of the upper end of a flute with the mouth stopped: it may be tuned in unison with the loaded tuning-fork by means of the movable stopper or card, or the fork may be loaded till the unison is perfect. Then set the fork in vibration by a blow on the unloaded branch, and hold the card closely over the mouth of the pipe, as in the engraving, when a note of surprising clearness and strength will be heard. Indeed a flute may be made to “speak” perfectly well, by holding close to the opening a vibrating tuning-fork, while the fingering proper to the note of the fork is at the same time performed.

THEORY OF THE JEW’S HARP.

If you cause the tongue of this little instrument to vibrate, it will produce a very low sound; but if you place it before a cavity (as the mouth) containing a column of air, which vibrates much faster, but in the proportion of any simple multiple, it will then produce other higher sounds, dependent upon the reciprocation of that portion of the air. Now the bulk of air in the mouth can be altered in its form, size, and other circumstances, so as to produce by reciprocation many different sounds; and these are the sounds belonging to the Jew’s Harp.

A proof of this fact has been given by Mr. Eulenstein, who fitted into a long metallic tube a piston, which being moved, could be made to lengthen or shorten the efficient column of air within at pleasure. A Jew’s Harp was then so fixed that it could be made to vibrate before the mouth of the tube, and it was found that the column of air produced a series of sounds, according as it was lengthened or shortened; a sound being produced whenever the length of the column was such that its vibrations were a multiple of those of the Jew’s Harp.

SOLAR AND ARTIFICIAL LIGHT COMPARED.

The most intensely ignited solid (produced by the flame of Lieutenant Drummond’s oxy-hydrogen lamp directed against a surface of chalk) appears only as black spots on the disc of the sun, when held between it and the eye; or in other words, Drummond’s light is to the light of the sun’s disc as 1 to 146. Hence we are doubly struck by the felicity with which Galileo, as early as 1612, by a series of conclusions on the smallness of the distance from the sun at which the disc of Venus was no longer visible to the naked eye, arrived at the result that the blackest nucleus of the sun’s spots was more luminous than the brightest portions of the full moon. (See “The Sun’s Light compared with Terrestrial Lights,” in Things not generally Known, pp. 4, 5.)

SOURCE OF LIGHT.

Mr. Robert Hunt, in a lecture delivered by him at the Russell Institution, “On the Physics of a Sunbeam,” mentions some experiments by Lord Brougham on the sunbeam, in which, by placing the edge of a sharp knife just within the limit of the light, the ray was inflected from its previous direction, and coloured red; and when another knife was placed on the opposite side, it was deflected, and the colour was blue. These experiments (says Mr. Hunt) seem to confirm Sir Isaac Newton’s theory, that light is a fluid emitted from the sun.

THE UNDULATORY SCALE OF LIGHT.

The white light of the sun is well known to be composed of several coloured rays; or rather, according to the theory of undulations, when the rate at which a ray vibrates is altered, a different sensation is produced upon the optic nerve. The analytical examination of this question shows that to produce a red colour the ray of light must give 37,640 undulations in an inch, and 458,000,000,000,000 in a second. Yellow light requires 44,000 undulations in an inch, and 535,000,000,000,000 in a second; whilst the effect of blue results from 51,110 undulations within an inch, and 622,000,000,000,000 of waves in a second of time.—Hunt’s Poetry of Science.

VISIBILITY OF OBJECTS.

In terrestrial objects, the form, no less than the modes of illumination, determines the magnitude of the smallest angle of vision for the naked eye. Adams very correctly observed that a long and slender staff can be seen at a much greater distance than a square whose sides are equal to the diameter of the staff. A stripe may be distinguished at a greater distance than a spot, even when both are of the same diameter.

The minimum optical visual angle at which terrestrial objects can be recognised by the naked eye has been gradually estimated lower and lower, from the time when Robert Hooke fixed it exactly at a full minute, and Tobias Meyer required 34 to perceive a black speck on white paper, to the period of Leuwenhoeck’s experiments with spiders’ threads, which are visible to ordinary sight at an angle of 4·7. In Hueck’s most accurate experiments on the problem of the movement of the crystalline lens, white lines on a black ground were seen at an angle of 1·2; a spider’s thread at 0·6; and a fine glistening wire at scarcely 0·2.

Humboldt, when at Chillo, near Quito, where the crests of the volcano of Pichincha lay at a horizontal distance of 90,000 feet, was much struck by the circumstance that the Indians standing near distinguished the figure of Bonpland (then on an expedition to the volcano), as a white point moving on the black basaltic sides of the rock, sooner than Humboldt could discover him with a telescope. Bonpland was enveloped in a white cotton poncho: assuming the breadth across the shoulders to vary from three to five feet, according as the mantle clung to the figure or fluttered in the breeze, and judging from the known distance, the angle at which the moving object could be distinctly seen varied from 7 to 12. White objects on a black ground are, according to Hueck, distinguished at a greater distance than black objects on a white ground.

Gauss’s heliotrope light has been seen with the naked eye reflected from the Brocken on Hobenhagen at a distance of about 227,000 feet, or more than 42 miles; being frequently visible at points in which the apparent breadth of a three-inch mirror was only 0·43.

THE SMALLEST BRIGHT BODIES.

Ehrenberg has found from experiments on the dust of diamonds, that a diamond superficies of 1/100th of a line in diameter presents a much more vivid light to the naked eye than one of quicksilver of the same diameter. On pressing small globules of quicksilver on a glass micrometer, he easily obtained smaller globules of the 1/100th to the 1/2000th of a line in diameter. In the sunshine he could only discern the reflection of light, and the existence of such globules as were 1/300th of a line in diameter, with the naked eye. Smaller ones did not affect his eye; but he remarked that the actual bright part of the globule did not amount to more than 1/900th of a line in diameter. Spider threads of 1/2000th in diameter were still discernible from their lustre. Ehrenberg concludes that there are in organic bodies magnitudes capable of direct proof which are in diameter 1/100000 of a line; and others, that can be indirectly proved, which may be less than a six-millionth part of a Parisian line in diameter.

VELOCITY OF LIGHT.

It is scarcely possible so to strain the imagination as to conceive the Velocity with which Light travels. “What mere assertion will make any man believe,” asks Sir John Herschel, “that in one second of time, in one beat of the pendulum of a clock, a ray of light travels over 192,000 miles; and would therefore perform the tour of the world in about the same time that it requires to wink with our eyelids, and in much less time than a swift runner occupies in taking a single stride?” Were a cannon-ball shot directly towards the sun, and were it to maintain its full speed, it would be twenty years in reaching it; and yet light travels through this space in seven or eight minutes.

The result given in the Annuaire for 1842 for the velocity of light in a second is 77,000 leagues, which corresponds to 215,834 miles; while that obtained at the Pulkowa Observatory is 189,746 miles. William Richardson gives as the result of the passage of light from the sun to the earth 8´ 19·28, from which we obtain a velocity of 215,392 miles in a second.—Memoirs of the Astronomical Society, vol. iv. In other words, light travels a distance equal to eight times the circumference of the earth between two beats of a clock. This is a prodigious velocity; but the measure of it is very certain.—Professor Airy.

The navigator who has measured the earth’s circuit by his hourly progress, or the astronomer who has paced a degree of the meridian, can alone form a clear idea of velocity, when we tell him that light moves through a space equal to the circumference of the earth in the eighth part of a second—in the twinkling of an eye.

Could an observer, placed in the centre of the earth, see this moving light, as it describes the earth’s circumference, it would appear a luminous ring; that is, the impression of the light at the commencement of its journey would continue on the retina till the light had completed its circuit. Nay, since the impression of light continues longer than the fourth part of a second, two luminous rings would be seen, provided the light made two rounds of the earth, and in paths not coincident.

APPARATUS FOR THE MEASUREMENT OF LIGHT.

Humboldt enumerates the following different methods adopted for the Measurement of Light: a comparison of the shadows of artificial lights, differing in numbers and distance; diaphragms; plane-glasses of different thickness and colour; artificial stars formed by reflection on glass spheres; the juxtaposition of two seven-feet telescopes, separated by a distance which the observer could pass in about a second; reflecting instruments in which two stars can be simultaneously seen and compared, when the telescope has been so adjusted that the star gives two images of like intensity; an apparatus having (in front of the object-glass) a mirror and diaphragms, whose rotation is measured on a ring; telescopes with divided object-glasses, on either half of which the stellar light is received through a prism; astrometers, in which a prism reflects the image of the moon or Jupiter, and concentrates it through a lens at different distances into a star more or less bright.—Cosmos, vol. iii.

HOW FIZEAU MEASURED THE VELOCITY OF LIGHT.

This distinguished physicist has submitted the Velocity of Light to terrestrial measurement by means of an ingeniously constructed apparatus, in which artificial light (resembling stellar light), generated from oxygen and hydrogen, is made to pass back, by means of a mirror, over a distance of 28,321 feet to the same point from which it emanated. A disc, having 720 teeth, which made 12·6 rotations in a second, alternately obscured the ray of light and allowed it to be seen between the teeth on the margin. It was supposed, from the marking of a counter, that the artificial light traversed 56,642 feet, or the distance to and from the stations, in 1/1800th part of a second, whence we obtain a velocity of 191,460 miles in a second.12 This result approximates most closely to Delambre’s (which was 189,173 miles), as obtained from Jupiter’s satellites.

The invention of the rotating mirror is due to Wheatstone, who made an experiment with it to determine the velocity of the propagation of the discharge of a Leyden battery. The most striking application of the idea was made by Fizeau and Foucault, in 1853, in carrying out a proposition made by Arago, soon after the invention of the mirror: we have here determined in a distance of twelve feet no less than the velocity with which light is propagated, which is known to be nearly 200,000 miles a second; the distance mentioned corresponds therefore to the 77-millionth part of a second. The object of these measurements was to compare the velocity of light in air with its velocity in water; which, when the length is greater, is not sufficiently transparent. The most complete optical and mechanical aids are here necessary: the mirror of Foucault made from 600 to 800 revolutions in a second, while that of Fizeau performed 1200 to 1500 in the same time.—Prof. Helmholtz on the Methods of Measuring very small Portions of Time.

WHAT IS DONE BY POLARISATION OF LIGHT.

Malus, in 1808, was led by a casual observation of the light of the setting sun, reflected from the windows of the Palais de Luxembourg, at Paris, to investigate more thoroughly the phenomena of double refraction, of ordinary and of chromatic polarisation, of interference and of diffraction of light. Among his results may be reckoned the means of distinguishing between direct and reflected light; the power of penetrating, as it were, into the constitution of the body of the sun and of its luminous envelopes; of measuring the pressure of atmospheric strata, and even the smallest amount of water they contain; of ascertaining the depths of the ocean and its rocks by means of a tourmaline plate; and in accordance with Newton’s prediction, of comparing the chemical composition of several substances with their optical effects.

Arago, in a letter to Humboldt, states that by the aid of his polariscope, he discovered, before 1820, that the light of all terrestrial objects in a state of incandescence, whether they be solid or liquid, is natural, so long as it emanates from the object in perpendicular rays. On the other hand, if such light emanate at an acute angle, it presents manifest proofs of polarisation. This led M. Arago to the remarkable conclusion, that light is not generated on the surface of bodies only, but that some portion is actually engendered within the substance itself, even in the case of platinum.

A ray of light which reaches our eyes after traversing many millions of miles, from, the remotest regions of heaven, announces, as it were of itself, in the polariscope, whether it is reflected or refracted, whether it emanates from a solid or fluid or gaseous body; it announces even the degree of its intensity.—Humboldt’s Cosmos, vols. i. and ii.

MINUTENESS OF LIGHT.

There is something wonderful, says Arago, in the experiments which have led natural philosophers legitimately to talk of the different sides of a ray of light; and to show that millions and millions of these rays can simultaneously pass through the eye of a needle without interfering with each other!

THE IMPORTANCE OF LIGHT.

Light affects the respiration of animals just as it affects the respiration of plants. This is novel doctrine, but it is demonstrable. In the day-time we expire more carbonic acid than during the night; a fact known to physiologists, who explain it as the effect of sleep: but the difference is mainly owing to the presence or absence of sunlight; for sleep, as sleep, increases, instead of diminishing, the amount of carbonic acid expired, and a man sleeping will expire more carbonic acid than if he lies quietly awake under the same conditions of light and temperature; so that if less is expired during the night than during the day, the reason cannot be sleep, but the absence of light. Now we understand why men are sickly and stunted who live in narrow streets, alleys, and cellars, compared with those who, under similar conditions of poverty and dirt, live in the sunlight.—Blackwood’s Edinburgh Magazine, 1858.

The influence of light on the colours of organised creation is well shown in the sea. Near the shores we find seaweeds of the most beautiful hues, particularly on the rocks which are left dry by the tides; and the rich tints of the actiniÆ which inhabit shallow water must often have been observed. The fishes which swim near the surface are also distinguished by the variety of their colours, whereas those which live at greater depths are gray, brown, or black. It has been found that after a certain depth, where the quantity of light is so reduced that a mere twilight prevails, the inhabitants of the ocean become nearly colourless.—Hunt’s Poetry of Science.

ACTION OF LIGHT ON MUSCULAR FIBRES.

That light is capable of acting on muscular fibres, independently of the influence of the nerves, was mentioned by several of the old anatomists, but repudiated by later authorities. M. Brown SÉquard has, however, proved to the Royal Society that some portions of muscular fibre—the iris of the eye, for example—are affected by light independently of any reflex action of the nerves, thereby confirming former experiences. The effect is produced by the illuminating rays only, the chemical and heat rays remaining neutral. And not least remarkable is the fact, that the iris of an eel showed itself susceptible of the excitement sixteen days after the eyes were removed from the creature’s head. So far as is yet known, this muscle is the only one on which light thus takes effect.—Phil. Trans. 1857.

LIGHT NIGHTS.

It is not possible, as well-attested facts prove, perfectly to explain the operations at work in the much-contested upper boundaries of our atmosphere. The extraordinary lightness of whole nights in the year 1831, during which small print might be read at midnight in the latitudes of Italy and the north of Germany, is a fact directly at variance with all that we know, according to the most recent and acute researches on the crepuscular theory and the height of the atmosphere.—Biot.

PHOSPHORESCENCE OF PLANTS.

Mr. Hunt recounts these striking instances. The leaves of the oenothera macrocarpa are said to exhibit phosphoric light when the air is highly charged with electricity. The agarics of the olive-grounds of Montpelier too have been observed to be luminous at night; but they are said to exhibit no light, even in darkness, during the day. The subterranean passages of the coal-mines near Dresden are illuminated by the phosphorescent light of the rhizomorpha phosphoreus, a peculiar fungus. On the leaves of the Pindoba palm grows a species of agaric which is exceedingly luminous at night; and many varieties of the lichens, creeping along the roofs of caverns, lend to them an air of enchantment by the soft and clear light which they diffuse. In a small cave near Penryn, a luminous moss is abundant; it is also found in the mines of Hesse. According to Heinzmann, the rhizomorpha subterranea and aidulÆ are also phosphorescent.—See Poetry of Science.

PHOSPHORESCENCE OF THE SEA.

By microscopic examination of the myriads of minute insects which cause this phenomenon, no other fact has been elicited than that they contain a fluid which, when squeezed out, leaves a train of light upon the surface of the water. The creatures appear almost invariably on the eve of some change of weather, which would lead us to suppose that their luminous phenomena must be connected with electrical excitation; and of this Mr. C. Peach of Fowey has furnished the most satisfactory proofs yet obtained.13

LIGHT FROM THE JUICE OF A PLANT.

In Brazil has been observed a plant, conjectured to be an Euphorbium, very remarkable for the light which it yields when cut. It contains a milky juice, which exudes as soon as the plant is wounded, and appears luminous for several seconds.

LIGHT FROM FUNGUS.

Phosphorescent funguses have been found in Brazil by Mr. Gardner, growing on the decaying leaves of a dwarf palm. They vary from one to two inches across, and the whole plant gives out at night a bright phosphorescent light, of a pale greenish hue, similar to that emitted by fire-flies and phosphorescent marine animals. The light given out by a few of these fungi in a dark room is sufficient to read by. A very large phosphorescent species is occasionally found in the Swan River colony.

LIGHT FROM BUTTONS.

Upon highly polished gilt buttons no figure whatever can be seen by the most careful examination; yet, when they are made to reflect the light of the sun or of a candle upon a piece of paper held close to them, they give a beautiful geometrical figure, with ten rays issuing from the centre, and terminating in a luminous rim.

COLOURS OF SCRATCHES.

An extremely fine scratch on a well-polished surface may be regarded as having a concave, cylindrical, or at least a curved surface, capable of reflecting light in all directions; this is evident, for it is visible in all directions. Hence a single scratch or furrow in a surface may produce colours by the interference of the rays reflected from its opposite edges. Examine a spider’s thread in the sunshine, and it will gleam with vivid colours. These may arise from a similar cause; or from the thread itself, as spun by the animal, consisting of several threads agglutinated together, and thus presenting, not a cylindrical, but a furrowed surface.

MAGIC BUST.

Sir David Brewster has shown how the rigid features of a white bust may be made to move and vary their expression, sometimes smiling and sometimes frowning, by moving rapidly in front of the bust a bright light, so as to make the lights and shadows take every possible direction and various degrees of intensity; and if the bust be placed before a concave mirror, its image may be made to do still more when it is cast upon wreaths of smoke.

COLOURS HIT MOST FREQUENTLY DURING BATTLE.

It would appear from numerous observations that soldiers are hit during battle according to the colour of their dress in the following order: red is the most fatal colour; the least fatal, Austrian gray. The proportions are, red, 12; rifle-green, 7; brown, 6; Austrian bluish-gray, 5.—Jameson’s Journal, 1853.

TRANSMUTATION OF TOPAZ.

Yellow topazes may be converted into pink by heat; but it is a mistake to suppose that in the process the yellow colour is changed into pink: the fact is, that one of the pencils being yellow and the other pink, the yellow is discharged by heat, thus leaving the pink unimpaired.

COLOURS AND TINTS.

M. Chevreul, the Directeur des Gobelins, has presented to the French Academy a plan for a universal chromatic scale, and a methodical classification of all imaginable colours. Mayer, a professor at GÖttingen, calculated that the different combinations of primitive colours produced 819 different tints; but M. Chevreul established not less than 14,424, all very distinct and easily recognised,—all of course proceeding from the three primitive simple colours of the solar spectrum, red, yellow, and blue. For example, he states that in the violet there are twenty-eight colours, and in the dahlia forty-two.

OBJECTS REALLY OF NO COLOUR.

A body appears to be of the colour which it reflects; as we see it only by reflected rays, it can but appear of the colour of those rays. Thus grass is green because it absorbs all except the green rays. Flowers, in the same manner, reflect the various colours of which they appear to us: the rose, the red rays; the violet, the blue; the daffodil, the yellow, &c. But these are not the permanent colours of the grass and flowers; for wherever you see these colours, the objects must be illuminated; and light, from whatever source it proceeds, is of the same nature, composed of the various coloured rays which paint the grass, the flowers, and every coloured object in nature. Objects in the dark have no colour, or are black, which is the same thing. You can never see objects without light. Light is composed of colours, therefore there can be no light without colours; and though every object is black or without colour in the dark, it becomes coloured as soon as it becomes visible.

THE DIORAMA—WHY SO PERFECT AN ILLUSION.

Because when an object is viewed at so great a distance that the optic axes of both eyes are sensibly parallel when directed towards it, the perspective projections of it, seen by each eye separately, are similar; and the appearance to the two eyes is precisely the same as when the object is seen by one eye only. There is, in such case, no difference between the visual appearance of an object in relief and its perspective projection on a plane surface; hence pictorial representations of distant objects, when those circumstances which would prevent or disturb the illusion are carefully excluded, may be rendered such perfect resemblances of the objects they are intended to represent as to be mistaken for them. The Diorama is an instance of this.—Professor Wheatstone; Philosophical Transactions, 1838.

CURIOUS OPTICAL EFFECTS AT THE CAPE.

Sir John Herschel, in his observatory at Feldhausen, at the base of the Table Mountain, witnessed several curious optical effects, arising from peculiar conditions of the atmosphere incident to the climate of the Cape. In the hot season “the nights are for the most part superb;” but occasionally, during the excessive heat and dryness of the sandy plains, “the optical tranquillity of the air” is greatly disturbed. In some cases, the images of the stars are violently dilated into nebular balls or puffs of 15' in diameter; on other occasions they form “soft, round, quiet pellets of 3' or 4' diameter,” resembling planetary nebulÆ. In the cooler months the tranquillity of the image and the sharpness of vision are such, that hardly any limit is set to magnifying power but that which arises from the aberration of the specula. On occasions like these, optical phenomena of extraordinary splendour are produced by viewing a bright star through a diaphragm of cardboard or zinc pierced in regular patterns of circular holes by machinery: these phenomena surprise and delight every person that sees them. When close double stars are viewed with the telescope, with a diaphragm in the form of an equilateral triangle, the discs of the two stars, which are exact circles, have a clearness and perfection almost incredible.

THE TELESCOPE AND THE MICROSCOPE.

So singular is the position of the Telescope and the Microscope among the great inventions of the age, that no other process but that which they embody could make the slightest approximation to the secrets which they disclose. The steam-engine might have been imperfectly replaced by an air or an ether-engine; and a highly elastic fluid might have been, and may yet be, found, which shall impel the “rapid car,” or drag the merchant-ship over the globe. The electric telegraph, now so perfect and unerring, might have spoken to us in the rude “language of chimes;” or sound, in place of electricity, might have passed along the metallic path, and appealed to the ear in place of the eye. For the printing-press and the typographic art might have been found a substitute, however poor, in the lithographic process; and knowledge might have been widely diffused by the photographic printing powers of the sun, or even artificial light. But without the telescope and the microscope, the human eye would have struggled in vain to study the worlds beyond our own, and the elaborate structures of the organic and inorganic creation could never have been revealed.—North-British Review, No. 50.

INVENTION OF THE MICROSCOPE.

The earliest magnifying lens of which we have any knowledge was one rudely made of rock-crystal, which Mr. Layard found, among a number of glass bowls, in the north-west palace of Nimroud; but no similar lens has been found or described to induce us to believe that the microscope, either single or compound, was invented and used as an instrument previous to the commencement of the seventeenth century. In the beginning of the first century, however, Seneca alludes to the magnifying power of a glass globe filled with water; but as he only states that it made small and indistinct letters appear larger and more distinct, we cannot consider such a casual remark as the invention of the single microscope, though it might have led the observer to try the effect of smaller globes, and thus obtain magnifying powers sufficient to discover phenomena otherwise invisible.

Lenses of glass were undoubtedly in existence at the time of Pliny; but at that period, and for many centuries afterwards, they appear to have been used only as burning or as reading glasses; and no attempt seems to have been made to form them of so small a size as to entitle them to be regarded even as the precursors of the single microscope.—North-British Review, No. 50.

The rock-crystal lens found at Nineveh was examined by Sir David Brewster. It was not entirely circular in its aperture. Its general form was that of a plano-convex lens, the plane side having been formed of one of the original faces of the six-sided crystal quartz, as Sir David ascertained by its action on polarised light: this was badly polished and scratched. The convex face of the lens had not been ground in a dish-shaped tool, in the manner in which lenses are now formed, but was shaped on a lapidary’s wheel, or in some such manner. Hence it was unequally thick; but its extreme thickness was 2/10ths of an inch, its focal length being 4½ inches. It had twelve remains of cavities, which had originally contained liquids or condensed gases. Sir David has assigned reasons why this could not be looked upon as an ornament, but a true optical lens. In the same ruins were found some decomposed glass.

HOW TO MAKE THE FISH-EYE MICROSCOPE.

Very good microscopes may be made with the crystalline lenses of fish, birds, and quadrupeds. As the lens of fishes is spherical or spheroidal, it is absolutely necessary, previous to its use, to determine its optical axis and the axis of vision of the eye from which it is taken, and place the lens in such a manner that its axis is a continuation of the axis of our own eye. In no other direction but this is the albumen of which the lens consists symmetrically disposed in laminÆ of equal density round a given line, which is the axis of the lens; and in no other direction does the gradation of density, by which the spherical aberration is corrected, preserve a proper relation to the axis of vision.

When the lens of any small fish, such as a minnow, a par, or trout, has been taken out, along with the adhering vitreous humour, from the eye-ball by cutting the sclerotic coat with a pair of scissors, it should be placed upon a piece of fine silver-paper previously freed from its minute adhering fibres. The absorbent nature of the paper will assist in removing all the vitreous humour from the lens; and when this is carefully done, by rolling it about with another piece of silver-paper, there will still remain, round or near the equator of the lens, a black ridge, consisting of the processes by which it was suspended in the eye-ball. The black circle points out to us the true axis of the lens, which is perpendicular to a plane passing through it. When the small crystalline has been freed from all the adhering vitreous humour, the capsule which contains it will have a surface as fine as a pellicle of fluid. It is then to be dropped from the paper into a cavity formed by a brass rim, and its position changed till the black circle is parallel to the circular rim, in which case only the axis of the lens will be a continuation of the axis of the observer’s eye.—Edin. Jour. Science, vol. ii.

LEUWENHOECK’S MICROSCOPES.

Leuwenhoeck, the father of microscopical discovery, communicated to the Royal Society, in 1673, a description of the structure of a bee and a louse, seen by aid of his improved microscopes; and from this period until his decease in 1723, he regularly transmitted to the society his microscopical observations and discoveries, so that 375 of his papers and letters are preserved in the society’s archives, extending over fifty years. He further bequeathed to the Royal Society a cabinet of twenty-six microscopes, which he had ground himself and set in silver, mostly extracted by him from minerals; these microscopes were exhibited to Peter the Great when he was at Delft in 1698. In acknowledging the bequest, the council of the Royal Society, in 1724, presented Leuwenhoeck’s daughter with a handsome silver bowl, bearing the arms of the society.—Weld’s History of the Royal Society, vol. i.

DIAMOND LENSES FOR MICROSCOPES.

In recommending the employment of Diamond and other gems in the construction of Microscopes, Sir David Brewster has been met with the objection that they are too expensive for such a purpose; and, says Sir David, “they certainly are for instruments intended merely to instruct and amuse. But if we desire to make great discoveries, to unfold secrets yet hid in the cells of plants and animals, we must not grudge even a diamond to reveal them. If Mr. Cooper and Sir James South have given a couple of thousand pounds a piece for a refracting telescope, in order to study what have been miscalled ‘dots’ and ‘lumps’ of light on the sky; and if Lord Rosse has expended far greater sums on a reflecting telescope for analysing what has been called ‘sparks of mud and vapour’ encumbering the azure purity of the heavens,—why should not other philosophers open their purse, if they have one, and other noblemen sacrifice some of their household jewels, to resolve the microscopic structures of our own real world, and disclose secrets which the Almighty must have intended that we should know?”—Proceedings of the British Association, 1857.

THE EYE AND THE BRAIN SEEN THROUGH A MICROSCOPE.

By a microscopic examination of the retina and optic nerve and the brain, M. Bauer found them to consist of globules of 1/2800th to 1/4000th an inch diameter, united by a transparent viscid and coagulable gelatinous fluid.

MICROSCOPICAL EXAMINATION OF THE HAIR.

If a hair be drawn between the finger and thumb, from the end to the root, it will be distinctly felt to give a greater resistance and a different sensation to that which is experienced when drawn the opposite way: in consequence, if the hair be rubbed between the fingers, it will only move one way (travelling in the direction of a line drawn from its termination to its origin from the head or body), so that each extremity may thus be easily distinguished, even in the dark, by the touch alone.

The mystery is resolved by the achromatic microscope. A hair viewed on a dark ground as an opaque object with a high power, not less than that of a lens of one-thirtieth of an inch focus, and dully illuminated by a cup, the hair is seen to be indented with teeth somewhat resembling those of a coarse round rasp, but extremely irregular and rugged: as these incline all in one direction, like those of a common file, viz. from the origin of the hair towards its extremity, it sufficiently explains the above singular property.

This is a singular proof of the acuteness of the sense of feeling, for the said teeth may be felt much more easily than they can be seen. We may thus understand why a razor will cut a hair in two much more easily when drawn against its teeth than in the opposite direction.—Dr. Goring.

THE MICROSCOPE AND THE SEA.

What myriads has the microscope revealed to us of the rich luxuriance of animal life in the ocean, and conveyed to our astonished senses a consciousness of the universality of life! In the oceanic depths every stratum of water is animated, and swarms with countless hosts of small luminiferous animalcules, mammaria, crustacea, peridinea, and circling nereides, which, when attracted to the surface by peculiar meteorological conditions, convert every wave into a foaming band of flashing light.

USE OF THE MICROSCOPE TO MINERALOGISTS.

M. Dufour has shown that an imponderable quantity of a substance can be crystallised; and that the crystals so obtained are quite characteristic of the substances, as of sugar, chloride of sodium, arsenic, and mercury. This process may be extremely valuable to the mineralogist and toxicologist when the substance for examination is too small to be submitted to tests. By aid of the microscope, also, shells are measured to the thousandth part of an inch.

FINE DOWN OF QUARTZ.

Sir David Brewster having broken in two a crystal of quartz of a smoky colour, found both surfaces of the fracture absolutely black; and the blackness appeared at first sight to be owing to a thin film of opaque matter which had insinuated itself into the crevice. This opinion, however, was untenable, as every part of the surface was black, and the two halves of the crystals could not have stuck together had the crevice extended across the whole section. Upon further examination Sir David found that the surface was perfectly transparent by transmitted light, and that the blackness of the surfaces arose from their being entirely composed of a fine down of quartz, or of short and slender filaments, whose diameter was so exceedingly small that they were incapable of reflecting a single ray of the strongest light; and they could not exceed the one third of the millionth part of an inch. This curious specimen is in the cabinet of her grace the Duchess of Gordon.

MICROSCOPIC WRITING.

Professor Kelland has shown, in Paris, on a spot no larger than the head of a small pin, by means of powerful microscopes, several specimens of distinct and beautiful writing, one of them containing the whole of the Lord’s Prayer written within this minute compass. In reference to this, two remarkable facts in Layard’s latest work on Nineveh show that the national records of Assyria were written on square bricks, in characters so small as scarcely to be legible without a microscope; in fact, a microscope, as we have just shown, was found in the ruins of Nimroud.

HOW TO MAKE A MAGIC MIRROR.

Draw a figure with weak gum-water upon the surface of a convex mirror. The thin film of gum thus deposited on the outline or details of the figure will not be visible in dispersed daylight; but when made to reflect the rays of the sun, or those of a divergent pencil, will be beautifully displayed by the lines and tints occasioned by the diffraction of light, or the interference of the rays passing through the film with those which pass by it.

SIR DAVID BREWSTER’S KALEIDOSCOPE.

The idea of this instrument, constructed for the purpose of creating and exhibiting a variety of beautiful and perfectly symmetrical forms, first occurred to Sir David Brewster in 1814, when he was engaged in experiments on the polarisation of light by successive reflections between plates of glass. The reflectors were in some instances inclined to each other; and he had occasion to remark the circular arrangement of the images of a candle round a centre, or the multiplication of the sectors formed by the extremities of the glass plates. In repeating at a subsequent period the experiments of M. Biot on the action of fluids upon light, Sir David Brewster placed the fluids in a trough, formed by two plates of glass cemented together at an angle; and the eye being necessarily placed at one end, some of the cement, which had been pressed through between the plates, appeared to be arranged into a regular figure. The remarkable symmetry which it presented led to Dr. Brewster’s investigation of the cause of this phenomenon; and in so doing he discovered the leading principles of the Kaleidoscope.

By the advice of his friends, Dr. Brewster took out a patent for his invention; in the specification of which he describes the kaleidoscope in two different forms. The instrument, however, having been shown to several opticians in London, became known before he could avail himself of his patent; and being simple in principle, it was at once largely manufactured. It is calculated that not less than 200,000 kaleidoscopes were sold in three months in London and Paris; though out of this number, Dr. Brewster says, not perhaps 1000 were constructed upon scientific principles, or were capable of giving any thing like a correct idea of the power of his kaleidoscope.

THE KALEIDOSCOPE THOUGHT TO BE ANTICIPATED.

In the seventh edition of a work on gardening and planting, published in 1739, by Richard Bradley, F.R.S., late Professor of Botany in the University of Cambridge, we find the following details of an invention, “by which the best designers and draughtsmen may improve and help their fancies. They must choose two pieces of looking-glass of equal bigness, of the figure of a long square. These must be covered on the back with paper or silk, to prevent rubbing off the silver. This covering must be so put on that nothing of it appears about the edges of the bright side. The glasses being thus prepared, must be laid face to face, and hinged together so that they may be made to open and shut at pleasure like the leaves of a book.” After showing how various figures are to be looked at in these glasses under the same opening, and how the same figure may be varied under the different openings, the ingenious artist thus concludes: “If it should happen that the reader has any number of plans for parterres or wildernesses by him, he may by this method alter them at his pleasure, and produce such innumerable varieties as it is not possible the most able designer could ever have contrived.”

MAGIC OF PHOTOGRAPHY.

Professor Moser of KÖnigsberg has discovered that all bodies, even in the dark, throw out invisible rays; and that these bodies, when placed at a small distance from polished surfaces of all kinds, depict themselves upon such surfaces in forms which remain invisible till they are developed by the human breath or by the vapours of mercury or iodine. Even if the sun’s image is made to pass over a plate of glass, the light tread of its rays will leave behind it an invisible track, which the human breath will instantly reveal.

Among the early attempts to take pictures by the rays of the sun was a very interesting and successful experiment made by Dr. Thomas Young. In 1802, when Mr. Wedgewood was “making profiles by the agency of light,” and Sir Humphry Davy was “copying on prepared paper the images of small objects produced by means of the solar microscope,” Dr. Young was taking photographs upon paper dipped in a solution of nitrate of silver, of the coloured rings observed by Newton; and his experiments clearly proved that the agent was not the luminous rays in the sun’s light, but the invisible or chemical rays beyond the violet. This experiment is described in the Bakerian Lecture, 1803.

Niepce (says Mr. Hunt) pursued a physical investigation of the curious change, and found that all bodies were influenced by this principle radiated from the sun. Daguerre14 produced effects from the solar pencil which no artist could approach; and Talbot and others extended the application. Herschel took up the inquiry; and he, with his usual power of inductive search and of philosophical deduction, presented the world with a class of discoveries which showed how vast a field of investigation was opening for the younger races of mankind.

The first attempts in photography, which were made at the instigation of M. Arago, by order of the French Government, to copy the Egyptian tombs and temples and the remains of the Aztecs in Central America, were failures. Although the photographers employed succeeded to admiration, in Paris, in producing pictures in a few minutes, they found often that an exposure of an hour was insufficient under the bright and glowing illumination of a southern sky.

THE BEST SKY FOR PHOTOGRAPHY.

Contrary to all preconceived ideas, experience proves that the brighter the sky that shines above the camera the more tardy the action within it. Italy and Malta do their work slower than Paris. Under the brilliant light of a Mexican sun, half an hour is required to produce effects which in England would occupy but a minute. In the burning atmosphere of India, though photographical the year round, the process is comparatively slow and difficult to manage; while in the clear, beautiful, and moreover cool, light of the higher Alps of Europe, it has been proved that the production of a picture requires many more minutes, even with the most sensitive preparations, than in the murky atmosphere of London. Upon the whole, the temperate skies of this country may be pronounced favourable to photographic action; a fact for which the prevailing characteristic of our climate may partially account, humidity being an indispensable condition for the working state both of paper and chemicals.—Quarterly Review, No. 202.

PHOTOGRAPHIC EFFECTS OF LIGHTNING.

The following authenticated instances of this singular phenomenon have been communicated to the Royal Society by AndrÉs Poey, Director of the Observatory at Havana:

Benjamin Franklin, in 1786, stated that about twenty years previous, a man who was standing opposite a tree that had just been struck by “a thunderbolt” had on his breast an exact representation of that tree.

In the New-York Journal of Commerce, August 26th, 1853, it is related that “a little girl was standing at a window, before which was a young maple-tree; after a brilliant flash of lightning, a complete image of the tree was found imprinted on her body.”

M. Raspail relates that, in 1855, a boy having climbed a tree for the purpose of robbing a bird’s nest, the tree was struck, and the boy thrown upon the ground; on his breast the image of the tree, with the bird and nest on one of its branches, appeared very plainly.

M. Olioli, a learned Italian, brought before the Scientific Congress at Naples the following four instances: 1. In September 1825, the foremast of a brigantine in the Bay of St. Arniro was struck by lightning, when a sailor sitting under the mast was struck dead, and on his back was found an impression of a horse-shoe, similar even in size to that fixed on the mast-head. 2. A sailor, standing in a similar position, was struck by lightning, and had on his left breast the impression of the number 4 4, with a dot between the two figures, just as they appeared at the extremity of one of the masts. 3. On the 9th October 1836, a young man was found struck by lightning; he had on a girdle, with some gold coins in it, which were imprinted on his skin in the order they were placed in the girdle,—a series of circles, with one point of contact, being plainly visible. 4. In 1847, Mme. Morosa, an Italian lady of Lugano, was sitting near a window during a thunderstorm, and perceived the commotion, but felt no injury; but a flower which happened to be in the path of the electric current was perfectly reproduced on one of her legs, and there remained permanently.

M. Poey himself witnessed the following instance in Cuba. On July 24th, 1852, a poplar-tree in a coffee-plantation was struck by lightning, and on one of the large dry leaves was found an exact representation of some pine-trees that lay 367 yards distant.

M. Poey considers these lightning impressions to have been produced in the same manner as the electric images obtained by Moser, Riess, Karster, Grove, Fox Talbot, and others, either by statical or dynamical electricity of different intensities. The fact that impressions are made through the garments is easily accounted for by their rough texture not preventing the lightning passing through them with the impression. To corroborate this view, M. Poey mentions an instance of lightning passing down a chimney into a trunk, in which was found an inch depth of soot, which must have passed through the wood itself.

PHOTOGRAPHIC SURVEYING.

During the summer of 1854, in the Baltic, the British steamers employed in examining the enemy’s coasts and fortifications took photographic views for reference and minute examination. With the steamer moving at the rate of fifteen knots an hour, the most perfect definitions of coasts and batteries were obtained. Outlines of the coasts, correct in height and distance, have been faithfully transcribed; and all details of the fortresses passed under this photographic review are accurately recorded.

It is curious to reflect that the aids to photographic development all date within the last half-century, and are but little older than photography itself. It was not until 1811 that the chemical substance called iodine, on which the foundations of all popular photography rest, was discovered at all; bromine, the only other substance equally sensitive, not till 1826. The invention of the electro process was about simultaneous with that of photography itself. Gutta-percha only just preceded the substance of which collodion is made; the ether and chloroform, which are used in some methods, that of collodion. We say nothing of the optical improvements previously contrived or adapted for the purpose of the photograph: the achromatic lenses, which correct the discrepancy between the visual and chemical foci; the double lenses, which increase the force of the action; the binocular lenses, which do the work of the stereoscope; nor of the innumerable other mechanical aids which have sprung up for its use.

THE STEREOSCOPE AND THE PHOTOGRAPH.

When once the availability of one great primitive agent is worked out, it is easy to foresee how extensively it will assist in unravelling other secrets in natural science. The simple principle of the Stereoscope, for instance, might have been discovered a century ago, for the reasoning which led to it was independent of all the properties of light; but it could never have been illustrated, far less multiplied as it now is, without Photography. A few diagrams, of sufficient identity and difference to prove the truth of the principle, might have been constructed by hand, for the gratification of a few sages; but no artist, it is to be hoped, could have been found possessing the requisite ability and stupidity to execute the two portraits, or two groups, or two interiors, or two landscapes, identical in every minutia of the most elaborate detail, and yet differing in point of view by the inch between the two human eyes, by which the principle is brought to the level of any capacity. Here, therefore, the accuracy and insensibility of a machine could alone avail; and if in the order of things the cheap popular toy which the stereoscope now represents was necessary for the use of man, the photograph was first necessary for the service of the stereoscope.—Quarterly Review, No. 202.

THE STEREOSCOPE SIMPLIFIED.

When we look at any round object, first with one eye, and then with the other, we discover that with the right eye we see most of the right-hand side of the object, and with the left eye most of the left-hand side. These two images are combined, and we see an object which we know to be round.

This is illustrated by the Stereoscope, which consists of two mirrors placed each at an angle of 45 deg., or of two semi-lenses turned with their curved sides towards each other. To view its phenomena two pictures are obtained by the camera on photographic paper of any object in two positions, corresponding with the conditions of viewing it with the two eyes. By the mirrors on the lenses these dissimilar pictures are combined within the eye, and the vision of an actually solid object is produced from the pictures represented on a plane surface. Hence the name of the instrument, which signifies Solid I see.—Hunt’s Poetry of Science.

PHOTO-GALVANIC ENGRAVING.

That which was the chief aid of Niepce in the humblest dawn of the art, viz. to transform the photographic plate into a surface capable of being printed, is in the above process done by the coÖperation of Electricity with Photography. This invention of M. Pretsch, of Vienna, differs from all other attempts for the same purpose in not operating upon the photographic tablet itself, and by discarding the usual means of varnishes and bitings-in. The process is simply this: A glass tablet is coated with gelatine diluted till it forms a jelly, and containing bi-chromate of potash, nitrate of silver, and iodide of potassium. Upon this, when dry, is placed face downwards a paper positive, through which the light, being allowed to fall, leaves upon the gelatine a representation of the print. It is then soaked in water; and while the parts acted upon by the light are comparatively unaffected by the fluid, the remainder of the jelly swells, and rising above the general surface, gives a picture in relief, resembling an ordinary engraving upon wood. Of this intaglio a cast is now taken in gutta-percha, to which the electro process in copper being applied, a plate or matrix is produced, bearing on it an exact repetition of the original positive picture. All that now remains to be done is to repeat the electro process; and the result is a copper-plate in the necessary relievo, of which it has been said nature furnished the materials and science the artist, the inferior workman being only needed to roll it through the press.—Quarterly Review, No. 202.

SCIENCE OF THE SOAP-BUBBLE.

Few of the minor ingenuities of mankind have amused so many individuals as the blowing of bubbles with soap-lather from the bowl of a tobacco-pipe; yet how few who in childhood’s careless hours have thus amused themselves, have in after-life become acquainted with the beautiful phenomena of light which the soap-bubble will enable us to illustrate!

Usually the bubble is formed within the bowl of a tobacco-pipe, and so inflated by blowing through the stem. It is also produced by introducing a capillary tube under the surface of soapy water, and so raising a bubble, which may be inflated to any convenient size. It is then guarded with a glass cover, to prevent its bursting by currents of air, evaporation, and other causes.

When the bubble is first blown, its form is elliptical, into which it is drawn by its gravity being resisted; but the instant it is detached from the pipe, and allowed to float in air, it becomes a perfect sphere, since the air within presses equally in all directions. There is also a strong cohesive attraction in the particles of soap and water, after having been forcibly distended; and as a sphere or globe possesses less surface than any other figure of equal capacity, it is of all forms the best adapted to the closest approximation of the particles of soap and water, which is another reason why the bubble is globular. The film of which the bubble consists is inconceivably thin (not exceeding the two-millionth part of an inch); and by the evaporation from its surface, the contraction and expansion of the air within, and the tendency of the soap-lather to gravitate towards the lower part of the bubble, and consequently to render the upper part still thinner, it follows that the bubble lasts but a few seconds. If, however, it were blown in a glass vessel, and the latter immediately closed, it might remain for some time; Dr. Paris thus preserved a bubble for a considerable period.

Dr. Hooke, by means of the coloured rings upon the soap-bubble, studied the curious subject of the colours of thin plates, and its application to explain the colours of natural bodies. Various phenomena were also discovered by Newton, who thus did not disdain to make a soap-bubble the object of his study. The colours which are reflected from the upper surface of the bubble are caused by the decomposition of the light which falls upon it; and the range of the phenomena is alike extensive and beautiful.15

Newton (says Sir D. Brewster), having covered the soap-bubble with a glass shade, saw its colours emerge in regular order, like so many concentric rings encompassing the top of it. As the bubble grew thinner by the continual subsidence of the water, the rings dilated slowly, and overspread the whole of it, descending to the bottom, where they vanished successively. When the colours had all emerged from the top, there arose in the centre of the rings a small round black spot, dilating it to more than half an inch in breadth till the bubble burst. Upon examining the rings between the object-glasses, Newton found that when they were only eight or nine in number, more than forty could be seen by viewing them through a prism; and even when the plate of air seemed all over uniformly white, multitudes of rings were disclosed by the prism. By means of these observations Newton was enabled to form his Scale of Colours, of great value in all optical researches.

Dr. Reade has thus produced a permanent soap-bubble:

Put into a six-ounce phial two ounces of distilled water, and set the phial in a vessel of water boiling on the fire. The water in the phial will soon boil, and steam will issue from its mouth, expelling the whole of the atmospheric air from within. Then throw in a piece of soap about the size of a small pea, cork the phial, and at the same instant remove it and the vessel from the fire. Then press the cork farther into the neck of the phial, and cover it thickly with sealing-wax; and when the contents are cold, a perfect vacuum will be formed within the bottle,—much better, indeed, than can be produced by the best-constructed air-pump.

To form a bubble, hold the bottle horizontally in both hands, and give it a sudden upward motion, which will throw the liquid into a wave, whose crest touching the upper interior surface of the phial, the tenacity of the liquid will cause a film to be retained all round the phial. Next place the phial on its bottom; when the film will form a section of the cylinder, being nearly but never quite horizontal. The film will be now colourless, since it reflects all the light which falls upon it. By remaining at rest for a minute or two, minute currents of lather will descend by their gravitating force down the inclined plane formed by the film, the upper part of which thus becomes drained to the necessary thinness; and this is the part to be observed.

Several concentric segments of coloured rings are produced; the colours, beginning from the top, being as follows:

1st order: Black, white, yellow, orange, red.
2d order: Purple, blue, white, yellow, red.
3d order: Purple, blue, green, yellowish-green, white, red.
4th order: Purple, blue, green, white, red.
5th order: Greenish-blue, very pale red.
6th order: Greenish-blue, pink.
7th order: Greenish-blue, pink.

As the segments advance they get broader, while the film becomes thinner and thinner. The several orders disappear upwards as the film becomes too thin to reflect their colours, until the first order alone remains, occupying the whole surface of the film. Of this order the red disappears first, then the orange, and lastly the yellow. The film is now divided by a line into two nearly equal portions, one black and the other white. This remains for some time; at length the film becomes too thin to hold together, and then vanishes. The colours are not faint and imperfect, but well defined, glowing with gorgeous hues, or melting into tints so exquisite as to have no rival through the whole circle of the arts. We quote these details from Mr. Tomlinson’s excellent Student’s Manual of Natural Philosophy.

We find the following anecdote related of Newton at the above period. When Sir Isaac changed his residence, and went to live in St. Martin’s Street, Leicester Square, his next-door neighbour was a widow lady, who was much puzzled by the little she observed of the habits of the philosopher. A Fellow of the Royal Society called upon her one day, when, among her domestic news, she mentioned that some one had come to reside in the adjoining house who, she felt certain, was a poor crazy gentleman, “because,” she continued, “he diverts himself in the oddest way imaginable. Every morning, when the sun shines so brightly that we are obliged to draw the window-blinds, he takes his seat on a little stool before a tub of soapsuds, and occupies himself for hours blowing soap-bubbles through a common clay-pipe, which bubbles he intently watches floating about till they burst. He is doubtless,” she added, “now at his favourite amusement, for it is a fine day; do come and look at him.” The gentleman smiled, and they went upstairs; when, after looking through the staircase-window into the adjoining court-yard, he turned and said: “My dear madam, the person whom you suppose to be a poor lunatic is no other than the great Sir Isaac Newton studying the refraction of light upon thin plates; a phenomenon which is beautifully exhibited on the surface of a common soap-bubble.”

LIGHT FROM QUARTZ.

Among natural phenomena (says Sir David Brewster) illustrative of the colours of thin plates, we find none more remarkable than one exhibited by the fracture of a large crystal of quartz of a smoky colour, and about two and a quarter inches in diameter. The surface of fracture, in place of being a face or cleavage, or irregularly conchoidal, as we have sometimes seen it, was filamentous, like a surface of velvet, and consisted of short fibres, so small as to be incapable of reflecting light. Their size could not have been greater than the third of the millionth part of an inch, or one-fourth of the thinnest part of the soap-bubble when it exhibits the black spot where it bursts.

No, in all probability, says the reader; but the opposite popular belief is supported by eminent naturalists.

Buffon says: “The eyes of the cat shine in the dark somewhat like diamonds, which throw out during the night the light with which they were in a manner impregnated during the day.”

Valmont de Bamare says: “The pupil of the cat is during the night still deeply imbued with the light of the day;” and again, “the eyes of the cat are during the night so imbued with light that they then appear very shining and luminous.”

Spallanzani says: “The eyes of cats, polecats, and several other animals, shine in the dark like two small tapers;” and he adds that this light is phosphoric.

Treviranus says: “The eyes of the cat shine where no rays of light penetrate; and the light must in many, if not in all, cases proceed from the eye itself.”

Now, that the eyes of the cat do shine in the dark is to a certain extent true: but we have to inquire whether by dark is meant the entire absence of light; and it will be found that the solution of this question will dispose of several assertions and theories which have for centuries perplexed the subject.

Dr. Karl Ludwig Esser has published in Karsten’s Archives the results of an experimental inquiry on the luminous appearance of the eyes of the cat and other animals, carefully distinguishing such as evolve light from those which only reflect it. Having brought a cat into a half-darkened room, he observed from a certain direction that the cat’s eyes, when opposite the window, sparkled brilliantly; but in other positions the light suddenly vanished. On causing the cat to be held so as to exhibit the light, and then gradually darkening the room, the light disappeared by the time the room was made quite dark.

In another experiment, a cat was placed opposite the window in a darkened room. A few rays were permitted to enter, and by adjusting the light, one or both of the cat’s eyes were made to shine. In proportion as the pupil was dilated, the eyes were brilliant. By suddenly admitting a strong glare of light into the room, the pupil contracted; and then suddenly darkening the room, the eye exhibited a small round luminous point, which enlarged as the pupil dilated.

The eyes of the cat sparkle most when the animal is in a lurking position, or in a state of irritation. Indeed, the eyes of all animals, as well as of man, appear brighter when in rage than in a quiescent state, which Collins has commemorated in his Ode on the Passions:

“Next Anger rushed, his eyes on fire.”

This brilliancy is said to arise from an increased secretion of the lachrymal fluid on the surface of the eye, by which the reflection of the light is increased. Dr. Esser, in places absolutely dark, never discovered the slightest trace of light in the eye of the cat; and he has no doubt that in all cases where cats’ eyes have been seen to shine in dark places, such as a cellar, light penetrated through some window or aperture, and fell upon the eyes of the animal as it turned towards the opening, while the observer was favourably situated to obtain a view of the reflection.

To prove more clearly that this light does not depend upon the will of the animal, nor upon its angry passions, experiments were made upon the head of a dead cat. The sun’s rays were admitted through a small aperture; and falling immediately upon the eyes, caused them to glow with a beautiful green light more vivid even than in the case of a living animal, on account of the increased dilatation of the pupil. It was also remarked that black and fox-coloured cats gave a brighter light than gray and white cats.

To ascertain the cause of this luminous appearance Dr. Esser dissected the eyes of cats, and exposed them to a small regulated amount of light after having removed different portions. The light was not diminished by the removal of the cornea, but only changed in colour. The light still continued after the iris was displaced; but on taking away the crystalline lens it greatly diminished both in intensity and colour. Dr. Esser then conjectured that the tapetum in the hinder part of the eye must form a spot which caused the reflection of the incident rays of light, and thus produce the shining; and this appeared more probable as the light of the eye now seemed to emanate from a single spot. Having taken away the vitreous humour, Dr. Esser observed that the entire want of the pigment in the hinder part of the choroid coat, where the optic nerve enters, formed a greenish, silver-coloured, changeable oblong spot, which was not symmetrical, but surrounded the optic nerve so that the greater part was above and only the smaller part below it; wherefore the greater part lay beyond the axis of vision. It is this spot, therefore, that produces the reflection of the incident rays of light, and beyond all doubt, according to its tint, contributes to the different colouring of the light.

It may be as well to explain that the interior of the eye is coated with a black pigment, which has the same effect as the black colour given to the inner surface of optical instruments: it absorbs any rays of light that may be reflected within the eye, and prevents them from being thrown again upon the retina so as to interfere with the distinctness of the images formed upon it. The retina is very transparent; and if the surface behind it, instead of being of a dark colour, were capable of reflecting light, the luminous rays which had already acted on the retina would be reflected back again through it, and not only dazzle from excess of light, but also confuse and render indistinct the images formed on the retina. Now in the case of the cat this black pigment, or a portion of it, is wanting; and those parts of the eye from which it is absent, having either a white or a metallic lustre, are called the tapetum. The smallest portion of light entering from it is reflected as by a concave mirror; and hence it is that the eyes of animals provided with this structure are luminous in a very faint light.

These experiments and observations show that the shining of the eyes of the cat does not arise from a phosphoric light, but only from a reflected light; that consequently it is not an effect of the will of the animal, or of violent passions; that their shining does not appear in absolute darkness; and that it cannot enable the animal to move securely in the dark.

It has been proved by experiment that there exists a set of rays of light of far higher refrangibility than those seen in the ordinary Newtonian spectrum. Mr. Hunt considers it probable that these highly refrangible rays, although under ordinary circumstances invisible to the human eye, may be adapted to produce the necessary degree of excitement upon which vision depends in the optic nerves of the night-roaming animals. The bat, the owl, and the cat may see in the gloom of the night by the aid of rays which are invisible to, or inactive on, the eyes of man or those animals which require the light of day for perfect vision.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page