Astronomy. THE GREAT TRUTHS OF ASTRONOMY.

Previous

The difficulty of understanding these marvellous truths has been glanced at by an old divine (see Things not generally Known, p. 1); but the rarity of their full comprehension by those unskilled in mathematical science is more powerfully urged by Lord Brougham in these cogent terms:

Satisfying himself of the laws which regulate the mutual actions of the planetary bodies, the mathematician can convince himself of a truth yet more sublime than Newton’s discovery of gravitation, though flowing from it; and must yield his assent to the marvellous position, that all the irregularities occasioned in the system of the universe by the mutual attraction of its members are periodical, and subject to an eternal law, which prevents them from ever exceeding a stated amount, and secures through all time the balanced structure of a universe composed of bodies whose mighty bulk and prodigious swiftness of motion mock the utmost efforts of the human imagination. All these truths are to the skilful mathematician as thoroughly known, and their evidence is as clear, as the simplest proposition of arithmetic to common understandings. But how few are those who thus know and comprehend them! Of all the millions that thoroughly believe these truths, certainly not a thousand individuals are capable of following even any considerable portion of the demonstrations upon which they rest; and probably not a hundred now living have ever gone through the whole steps of these demonstrations.—Dissertations on Subjects of Science connected with Natural Theology, vol. ii.

Sir David Brewster thus impressively illustrates the same subject:

Minds fitted and prepared for this species of inquiry are capable of appreciating the great variety of evidence by which the truths of the planetary system are established; but thousands of individuals, and many who are highly distinguished in other branches of knowledge, are incapable of understanding such researches, and view with a sceptical eye the great and irrefragable truths of astronomy.

That the sun is stationary in the centre of our system; that the earth moves round the sun, and round its own axis; that the diameter of the earth is 8000 miles, and that of the sun one hundred and ten times as great; that the earth’s orbit is 190,000,000 of miles in breadth; and that if this immense space were filled with light, it would appear only like a luminous point at the nearest fixed star,—are positions absolutely unintelligible and incredible to all who have not carefully studied the subject. To millions of our species, then, the great Book of Nature is absolutely sealed; though it is in the power of all to unfold its pages, and to peruse those glowing passages which proclaim the power and wisdom of its Author.

ASTRONOMY AND DATES ON MONUMENTS.

Astronomy is a useful aid in discovering the Dates of ancient Monuments. Thus, on the ceiling of a portico among the ruins of Tentyris are the twelve signs of the Zodiac, placed according to the apparent motion of the sun. According to this Zodiac, the summer solstice is in Leo; from which it is easy to compute, by the precession of the equinoxes of 50·1 annually, that the Zodiac of Tentyris must have been made 4000 years ago.

Mrs. Somerville relates that she once witnessed the ascertainment of the date of a Papyrus by means of astronomy. The manuscript was found in Egypt, in a mummy-case; and its antiquity was determined by the configuration of the heavens at the time of its construction. It proved to be a horoscope of the time of Ptolemy.

“THE CRYSTAL VAULT OF HEAVEN.”

This poetic designation dates back as far as the early period of Anaximenes; but the first clearly defined signification of the idea on which the term is based occurs in Empedocles. This philosopher regarded the heaven of the fixed stars as a solid mass, formed from the ether which had been rendered crystalline by the action of fire.

In the Middle Ages, the fathers of the Church believed the firmament to consist of from seven to ten glassy strata, incasing each other like the different coatings of an onion. This supposition still keeps its ground in some of the monasteries of southern Europe, where Humboldt was greatly surprised to hear a venerable prelate express an opinion in reference to the fall of aerolites at Aigle, that the bodies we called meteoric stones with vitrified crusts were not portions of the fallen stone itself, but simply fragments of the crystal vault shattered by it in its fall.

Empedocles maintained that the fixed stars were riveted to the crystal heavens; but that the planets were free and unconstrained. It is difficult to conceive how, according to Plato in the TimÆus, the fixed stars, riveted as they are to solid spheres, could rotate independently.

Among the ancient views, it may be mentioned that the equal distance at which the stars remained, while the whole vault of heaven seemed to move from east to west, had led to the idea of a firmament and a solid crystal sphere, in which Anaximenes (who was probably not much later than Pythagoras) had conjectured that the stars were riveted like nails.

MUSIC OF THE SPHERES.

The Pythagoreans, in applying their theory of numbers to the geometrical consideration of the five regular bodies, to the musical intervals of tone which determine a word and form different kinds of sounds, extended it even to the system of the universe itself; supposing that the moving, and, as it were, vibrating planets, exciting sound-waves, must produce a spheral music, according to the harmonic relations of their intervals of space. “This music,” they add, “would be perceived by the human ear, if it was not rendered insensible by extreme familiarity, as it is perpetual, and men are accustomed to it from childhood.”

The Pythagoreans affirm, in order to justify the reality of the tones produced by the revolution of the spheres, that hearing takes place only where there is an alternation of sound and silence. The inaudibility of the spheral music is also accounted for by its overpowering the senses. Aristotle himself calls the Pythagorean tone-myth pleasing and ingenious, but untrue.

Plato attempted to illustrate the tones of the universe in an agreeable picture, by attributing to each of the planetary spheres a syren, who, supported by the stern daughters of Necessity, the three Fates, maintain the eternal revolution of the world’s axis. Mention is constantly made of the harmony of the spheres, though generally reproachfully, throughout the writings of Christian antiquity and the Middle Ages, from Basil the Great to Thomas Aquinas and Petrus Alliacus.

At the close of the sixteenth century, Kepler revived these musical ideas, and sought to trace out the analogies between the relations of tone and the distances of the planets; and Tycho Brahe was of opinion that the revolving conical bodies were capable of vibrating the celestial air (what we now call “resisting medium”) so as to produce tones. Yet Kepler, although he had talked of Venus and the Earth sounding sharp in aphelion and flat in perihelion, and the highest tone of Jupiter and that of Venus coinciding in flat accord, positively declared there to be “no such things as sounds among the heavenly bodies, nor is their motion so turbulent as to elicit noise from the attrition of the celestial air.” (See Things not generally Known, p. 44.)

“MORE WORLDS THAN ONE.”

Although this opinion was maintained incidentally by various writers both on astronomy16 and natural religion, yet M. Fontenelle was the first individual who wrote a treatise on the Plurality of Worlds, which appeared in 1685, the year before the publication of Newton’s Principia. Fontenelle’s work consists of five chapters: 1. The earth is a planet which turns round its axis, and also round the sun. 2. The moon is a habitable world. 3. Particulars concerning the world in the moon, and that the other planets are also inhabited. 4. Particulars of the worlds of Venus, Mercury, Mars, Jupiter, and Saturn. 5. The fixed stars are as many suns, each of which illuminates a world. In a future edition, 1719, Fontenelle added, 6. New thoughts which confirm those in the preceding conversations, and the latest discoveries which have been made in the heavens. The next work on the subject was the Theory of the Universe, or Conjectures concerning the Celestial Bodies and their Inhabitants, 1698, by Christian Huygens, the contemporary of Newton.

The doctrine is maintained by almost all the distinguished astronomers and writers who have flourished since the true figure of the earth was determined. Giordano Bruna of Nola, Kepler, and Tycho Brahe, believed in it; and Cardinal Cusa and Bruno, before the discovery of binary systems among the stars, believed also that the stars were inhabited. Sir Isaac Newton likewise adopted the belief; and Dr. Bentley, Master of Trinity College, Cambridge, in his eighth sermon on the Confutation of Atheism from the origin and frame of the world, has ably maintained the same doctrine. In our own day we may number among its supporters the distinguished names of the Marquis de la Place, Sir William and Sir John Herschel, Dr. Chalmers, Isaac Taylor, and M. Arago. Dr. Chalmers maintains the doctrine in his Astronomical Discourses, which one Alexander Maxwell (who did not believe in the grand truths of astronomy) attempted to controvert, in 1820, in a chapter of a volume entitled Plurality of Worlds.

Next appeared Of a Plurality of Worlds, attributed to the Rev. Dr. Whewell, Master of Trinity College, Cambridge; urging the theological not less than the scientific reasons for believing in the old tradition of a single world, and maintaining that “the earth is really the largest planetary body in the solar system,—its domestic hearth, and the only world in the universe.” “I do not pretend,” says Dr. Whewell, “to disprove the plurality of worlds; but I ask in vain for any argument which makes the doctrine probable.” “It is too remote from knowledge to be either proved or disproved.” Sir David Brewster has replied to Dr. Whewell’s Essay, in More Worlds than One, the Creed of the Philosopher and the Hope of the Christian, emphatically maintaining that analogy strongly countenances the idea of all the solar planets, if not all worlds in the universe, being peopled with creatures not dissimilar in being and nature to the inhabitants of the earth. This view is supported in Scientific Certainties of Planetary Life, by T.C. Simon, who well treats one point of the argument—that mere distance of the planets from the central sun does not determine the condition as to light and heat, but that the density of the ethereal medium enters largely into the calculation. Mr. Simon’s general conclusion is, that “neither on account of deficient or excessive heat, nor with regard to the density of the materials, nor with regard to the force of gravity on the surface, is there the slightest pretext for supposing that all the planets of our system are not inhabited by intellectual creatures with animal bodies like ourselves,—moral beings, who know and love their great Maker, and who wait, like the rest of His creation, upon His providence and upon His care.” One of the leading points of Dr. Whewell’s Essay is, that we should not elevate the conjectures of analogy into the rank of scientific certainties; and that “the force of all the presumptions drawn from physical reasoning for the opinion of planets and stars being either inhabited or uninhabited is so small, that the belief of all thoughtful persons on this subject will be determined by moral, metaphysical, and theological considerations.”

WORLDS TO COME—ABODES OF THE BLEST.

Sir David Brewster, in his eloquent advocacy of the doctrine of “more worlds than one,” thus argues for their peopling:

Man, in his future state of existence, is to consist, as at present, of a spiritual nature residing in a corporeal frame. He must live, therefore, upon a material planet, subject to all the laws of matter, and performing functions for which a material body is indispensable. We must consequently find for the race of Adam, if not races that may have preceded him, a material home upon which they may reside, or by which they may travel, by means unknown to us, to other localities in the universe. At the present hour, the inhabitants of the earth are nearly a thousand millions; and by whatever process we may compute the numbers that have existed before the present generation, and estimate those that are yet to inherit the earth, we shall obtain a population which the habitable parts of our globe could not possibly accommodate. If there is not room, then, on our earth for the millions of millions of beings who have lived and died upon its surface, and who may yet live and die during the period fixed for its occupation by man, we can scarcely doubt that their future abode must be on some of the primary or secondary planets of the solar system, whose inhabitants have ceased to exist like those on the earth, or upon planets in our own or in other systems which have been in a state of preparation, as our earth was, for the advent of intellectual life.

“GAUGING THE HEAVENS.”

Sir William Herschel, in 1785, conceived the happy idea of counting the number of stars which passed at different heights and in various directions over the field of view, of fifteen minutes in diameter, of his twenty-feet reflecting telescope. The field of view each time embraced only 1/833000th of the whole heavens; and it would therefore require, according to Struve, eighty-three years to gauge the whole sphere by a similar process.

VELOCITY OF THE SOLAR SYSTEM.

M. F. W. G. Struve gives as the splendid result of the united studies of MM. Argelander, O. Struve, and Peters, grounded on observations made at the three Russian observatories of Dorpat, Abo, and Pulkowa, “that the velocity of the motion of the solar system in space is such that the sun, with all the bodies which depend upon it, advances annually towards the constellation Hercules17 1·623 times the radius of the earth’s orbit, or 33,550,000 geographical miles. The possible error of this last number amounts to 1,733,000 geographical miles, or to a seventh of the whole value. We may, then, wager 400,000 to 1 that the sun has a proper progressive motion, and 1 to 1 that it is comprised between the limits of thirty-eight and twenty-nine millions of geographical miles.”

That is, taking 95,000,000 of English miles as the mean radius of the Earth’s orbit, we have 95 × 1·623 = 154·185 millions of miles; and consequently,

English Miles.
The velocity of the Solar System 154,185,000 in the year.
422,424 in a day.
17,601 in an hour.
293 in a minute.
57 in a second.

The Sun and all his planets, primary and secondary, are therefore now in rapid motion round an invisible focus. To that now dark and mysterious centre, from which no ray, however feeble, shines, we may in another age point our telescopes, detecting perchance the great luminary which controls our system and bounds its path: into that vast orbit man, during the whole cycle of his race, may never be allowed to round.—North-British Review, No. 16.

NATURE OF THE SUN.

M. Arago has found, by experiments with the polariscope, that the light of gaseous bodies is natural light when it issues from the burning surface; although this circumstance does not prevent its subsequent complete polarisation, if subjected to suitable reflections or refractions. Hence we obtain a most simple method of discovering the nature of the sun at a distance of forty millions of leagues. For if the light emanating from the margin of the sun, and radiating from the solar substance at an acute angle, reach us without having experienced any sensible reflections or refractions in its passage to the earth, and if it offer traces of polarisation, the sun must be a solid or a liquid body. But if, on the contrary, the light emanating from the sun’s margin give no indications of polarisation, the incandescent portion of the sun must be gaseous. It is by means of such a methodical sequence of observations that we may acquire exact ideas regarding the physical constitution of the sun.—Note to Humboldt’s Cosmos, vol. iii.

STRUCTURE OF THE LUMINOUS DISC OF THE SUN.

The extraordinary structure of the fully luminous Disc of the Sun, as seen through Sir James South’s great achromatic, in a drawing made by Mr. Gwilt, resembles compressed curd, or white almond-soap, or a mass of asbestos fibres, lying in a quaquaversus direction, and compressed into a solid mass. There can be no illusion in this phenomenon; it is seen by every person with good vision, and on every part of the sun’s luminous surface or envelope, which is thus shown to be not a flame, but a soft solid or thick fluid, maintained in an incandescent state by subjacent heat, capable of being disturbed by differences of temperature, and broken up as we see it when the sun is covered with spots or openings in the luminous matter.—North-British Review, No. 16.

Copernicus named the sun the lantern of the world (lucerna mundi); and Theon of Smyrna called it the heart of the universe. The mass of the sun is, according to Encke’s calculation of Sabine’s pendulum formula, 359,551 times that of the earth, or 355,499 times that of the earth and moon together; whence the density of the sun is only about ¼ (or more accurately 0·252) that of the earth. The volume of the sun is 600 times greater, and its mass, according to Galle, 738 times greater, than that of all the planets combined. It may assist the mind in conceiving a sensuous image of the magnitude of the sun, if we remember that if the solar sphere were entirely hollowed out, and the earth placed in its centre, there would still be room enough for the moon to describe its orbit, even if the radius of the latter were increased 160,000 geographical miles. A railway-engine, moving at the rate of thirty miles an hour, would require 360 years to travel from the earth to the sun. The diameter of the sun is rather more than one hundred and eleven times the diameter of the earth. Therefore the volume or bulk of the sun must be nearly one million four hundred thousand times that of the earth. Lastly, if all the bodies composing the solar system were formed into one globe, it would be only about the five-hundredth part of the size of the sun.

GREAT SIZE OF THE SUN ON THE HORIZON EXPLAINED.

The dilated size (generally) of the Sun or Moon, when seen near the horizon, beyond what they appear to have when high up in the sky, has nothing to do with refraction. It is an illusion of the judgment, arising from the terrestrial objects interposed, or placed in close comparison with them. In that situation we view and judge of them as we do of terrestrial objects—in detail, and with an acquired attention to parts. Aloft we have no association to guide us, and their insulation in the expanse of the sky leads us rather to undervalue than to over-rate their apparent magnitudes. Actual measurement with a proper instrument corrects our error, without, however, dispelling our illusion. By this we learn that the sun, when just on the horizon, subtends at our eyes almost exactly the same, and the moon a materially less, angle than when seen at a greater altitude in the sky, owing to its greater distance from us in the former situation as compared with the latter.—Sir John Herschel’s Outlines.

TRANSLATORY MOTION OF THE SUN.

This phenomenon is the progressive motion of the centre of gravity of the whole solar system in universal space. Its velocity, according to Bessel, is probably four millions of miles daily, in a relative velocity to that of 61 Cygni of at least 3,336,000 miles, or more than double the velocity of the revolution of the earth in her orbit round the sun. This change of the entire solar system would remain unknown to us, if the admirable exactness of our astronomical instruments of measurement, and the advancement recently made in the art of observing, did not cause our progress towards remote stars to be perceptible, like an approximation to the objects of a distant shore in apparent motion. The proper motion of the star 61 Cygni, for instance, is so considerable, that it has amounted to a whole degree in the course of 700 years.—Humboldt’s Cosmos, vol. i.

THE SUN’S LIGHT COMPARED WITH TERRESTRIAL LIGHTS.

Mr. Ponton has by means of a simple monochromatic photometer ascertained that a small surface, illuminated by mean solar light, is 444 times brighter than when it is illuminated by a moderator lamp, and 1560 times brighter than when it is illuminated by a wax-candle (short six in the lb.)—the artificial light being in both instances placed at two inches’ distance from the illuminated surface. And three electric lights, each equal to 520 wax-candles, will render a small surface as bright as when it is illuminated by mean sunshine.

It is thence inferred, that a stratum occupying the entire surface of the sphere of which the earth’s distance from the sun is the radius, and consisting of three layers of flame, each 1/1000th of an inch in thickness, each possessing a brightness equal to that of such an electric light, and all three embraced within a thickness of 1/40th of an inch, would give an amount of illumination equal in quantity and intensity to that of the sun at the distance of 95 millions of miles from his centre.

And were such a stratum transferred to the surface of the sun, where it would occupy 46,275 times less area, its thickness would be increased to 94 feet, and it would embrace 138,825 layers of flame, equal in brightness to the electric light; but the same effect might be produced by a stratum about nine miles in thickness, embracing 72 millions of layers, each having only a brightness equal to that of a wax-candle.18

ACTINIC POWER OF THE SUN.

Mr. J. J. Waterston, in 1857, made at Bombay some experiments on the photographic power of the sun’s direct light, to obtain data in an inquiry as to the possibility of measuring the diameter of the sun to a very minute fraction of a second, by combining photography with the principle of the electric telegraph; the first to measure the element space, the latter the element time. The result is that about 1/20000th of a second is sufficient exposure to the direct light of the sun to obtain a distinct mark on a sensitive collodion plate, when developed by the usual processes; and the duration of the sun’s full action on any one point is about 1/9000th of a second.

M. Schatt, a young painter of Berlin, after 1500 experiments, succeeded in establishing a scale of all the shades of black which the action of the sun produces on photographic paper; so that by comparing the shade obtained at any given moment on a certain paper with that indicated on the scale, the exact force of the sun’s light may be determined.

HEATING POWER OF THE SUN.

All moving power has its origin in the rays of the sun. While Stephenson’s iron tubular railway-bridge over the Menai Straits, 400 feet long, bends but half an inch under the heaviest pressure of a train, it will bend up an inch and a half from its usual horizontal line when the sun shines on it for some hours. The Bunker-Hill monument, near Boston, U.S., is higher in the evening than in the morning of a sunny day; the little sunbeams enter the pores of the stone like so many wedges, lifting it up.

In winter, the Earth is nearer the Sun by about 1/30 than in summer; but the rays strike the northern hemisphere more obliquely in winter than the other half year.

M. Pouillet has estimated, with singular ingenuity, from a series of observations made by himself, that the whole quantity of heat which the Earth receives annually from the Sun is such as would be sufficient to melt a stratum of ice covering the entire globe forty-six feet deep.

By the action of the sun’s rays upon the earth, vegetables, animals, and man, are in their turn supported; the rays become likewise, as it were, a store of heat, and “the sources of those great deposits of dynamical efficiency which are laid up for human use in our coal strata” (Herschel).

A remarkable instance of the power of the sun’s rays is recorded at Stonehouse Point, Devon, in the year 1828. To lay the foundation of a sea-wall the workmen had to descend in a diving-bell, which was fitted with convex glasses in the upper part, by which, on several occasions in clear weather, the sun’s rays were so concentrated as to burn the labourers’ clothes when opposed to the focal point, and this when the bell was twenty-five feet under the surface of the water!

CAUSE OF DARK COLOUR OF THE SKIN.

Darkness of complexion has been attributed to the sun’s power from the age of Solomon to this day,—“Look not upon me, because I am black, because the sun hath looked upon me:” and there cannot be a doubt that, to a certain degree, the opinion is well founded. The invisible rays in the solar beams, which change vegetable colour, and have been employed with such remarkable effect in the daguerreotype, act upon every substance on which they fall, producing mysterious and wonderful changes in their molecular state, man not excepted.—Mrs. Somerville.

EXTREME SOLAR HEAT.

The fluctuation in the sun’s direct heating power amounts to 1/15th, which is too considerable a fraction of the whole intensity not to aggravate in a serious degree the sufferings of those who are exposed to it in thirsty deserts without shelter. The amount of these sufferings, in the interior of Australia for instance, are of the most frightful kind, and would seem far to exceed what have ever been undergone by travellers in the northern deserts of Africa. Thus Captain Sturt, in his account of his Australian exploration, says: “The ground was almost a molten surface; and if a match accidentally fell upon it, it immediately ignited.” Sir John Herschel has observed the temperature of the surface soil in South Africa as high as 159° Fahrenheit. An ordinary lucifer-match does not ignite when simply pressed upon a smooth surface at 212°; but in the act of withdrawing it it takes fire, and the slightest friction upon such a surface of course ignites it.

HOW DR. WOLLASTON COMPARED THE LIGHT OF THE SUN AND THE FIXED STARS.

In order to compare the Light of the Sun with that of a Star, Dr. Wollaston took as an intermediate object of comparison the light of a candle reflected from a bulb about a quarter of an inch in diameter, filled with quicksilver; and seen by one eye through a lens of two inches focus, at the same time that the star on the sun’s image, placed at a proper distance, was viewed by the other eye through a telescope. The mean of various trials seemed to show that the light of Sirius is equal to that of the sun seen in a glass bulb 1/10th of an inch in diameter, at the distance of 210 feet; or that they are in the proportion of one to ten thousand millions: but as nearly one half of this light is lost by reflection, the real proportion between the light from Sirius and the sun is not greater than that of one to twenty thousand millions.

“THE SUN DARKENED.”

Humboldt selects the following example from historical records as to the occurrence of a sudden decrease in the light of the Sun:

A.D. 33, the year of the Crucifixion. “Now from the sixth hour there was darkness over all the land till the ninth hour” (St. Matthew xxvii. 45). According to St. Luke (xxiii. 45), “the sun was darkened.” In order to explain and corroborate these narrations, Eusebius brings forward an eclipse of the sun in the 202d Olympiad, which had been noticed by the chronicler Phlegon of Tralles (Ideler, Handbuch der Mathem. Chronologie, Bd. ii. p. 417). Wurn, however, has shown that the eclipse which occurred during this Olympiad, and was visible over the whole of Asia Minor, must have happened as early as the 24th of November 29 A.D. The day of the Crucifixion corresponded with the Jewish Passover (Ideler, Bd. i. pp. 515–520), on the 14th of the month Nisan, and the Passover was always celebrated at the time of the full moon. The sun cannot therefore have been darkened for three hours by the moon. The Jesuit Scheiner thinks the decrease in the light might be ascribed to the occurrence of large sun-spots.

THE SUN AND TERRESTRIAL MAGNETISM.

The important influence exerted by the Sun’s body, as a mass, upon Terrestrial Magnetism, is confirmed by Sabine in the ingenious observation, that the period at which the intensity of the magnetic force is greatest, and the direction of the needle most near to the vertical line, falls in both hemispheres between the months of October and February; that is to say, precisely at the time when the earth is nearest to the sun, and moves in its orbit with the greatest velocity.

IS THE HEAT OF THE SUN DECREASING?

The Heat of the Sun is dissipated and lost by radiation, and must be progressively diminished unless its thermal energy be supplied. According to the measurements of M. Pouillet, the quantity of heat given out by the sun in a year is equal to that which would be produced by the combustion of a stratum of coal seventeen miles in thickness; and if the sun’s capacity for heat be assumed equal to that of water, and the heat be supposed drawn uniformly from its entire mass, its temperature would thereby undergo a diminution of 20·4° Fahr. annually. On the other hand, there is a vast store of force in our system capable of conversion into heat. If, as is indicated by the small density of the sun, and by other circumstances, that body has not yet reached the condition of incompressibility, we have in the future approximation of its parts a fund of heat, probably quite large enough to supply the wants of the human family to the end of its sojourn here. It has been calculated that an amount of condensation which would diminish the diameter of the sun by only the ten-thousandth part, would suffice to restore the heat emitted in 2000 years.

UNIVERSAL SUN-DIAL.

Mr. Sharp, of Dublin, exhibited to the British Association in 1849 a Dial, consisting of a cylinder set to the day of the month, and then elevated to the latitude. A thin plane of metal, in the direction of its axis, is then turned by a milled head below it till the shadow is a minimum, when a dial on the top shows the hours by one hand, and the minutes by another, to the precision of about three minutes.

LENGTH OF DAYS AT THE POLES.

During the summer, in the northern hemisphere, places near the North Pole are in continual sunlight—the sun never sets to them; while during that time places near the South Pole never see the sun. When it is summer in the southern hemisphere, and the sun shines on the South Pole without setting, the North Pole is entirely deprived of his light. Indeed, at the Poles there is but one day and one night; for the sun shines for six months together on one Pole, and the other six months on the other Pole.

HOW THE DISTANCE OF THE SUN IS ASCERTAINED BY THE YARD-MEASURE.

Professor Airy, in his Six Lectures on Astronomy, gives a masterly analysis of a problem of considerable intricacy, viz. the determination of the parallax of the sun, and consequently of his distance, by observations of the transit of Venus, the connecting link between measures upon the earth’s surface and the dimensions of our system. The further step of investigating the parallax, and consequently the distance of the fixed stars (where that is practicable), is also elucidated; and the author, with evident satisfaction, thus sums up the several steps:

By means of a yard-measure, a base-line in a survey was measured; from this, by the triangulations and computations of a survey, an arc of meridian on the earth was measured; from this, with proper observations with the zenith sector, the surveys being also repeated on different parts of the earth, the earth’s form and dimensions were ascertained; from these, and a previous independent knowledge of the proportions of the distances of the earth and other planets from the sun, with observations of the transit of Venus, the sun’s distance is determined; and from this, with observations leading to the parallax of the stars, the distance of the stars is determined. And every step in the process can be distinctly referred to its basis, that is, the yard-measure.

HOW THE TIDES ARE PRODUCED BY THE SUN AND MOON.

Each of these bodies excites, by its attraction upon the waters of the sea, two gigantic waves, which flow in the same direction round the world as the attracting bodies themselves apparently do. The two waves of the moon, on account of her greater nearness, are about 3½ times as large as those excited by the sun. One of these waves has its crest on the quarter of the earth’s surface which is turned towards the moon; the other is at the opposite side. Both these quarters possess the flow of the tide, while the regions which lie between have the ebb. Although in the open sea the height of the tide amounts to only about three feet, and only in certain narrow channels, where the moving water is squeezed together, rises to thirty feet, the might of the phenomenon is nevertheless manifest from the calculation of Bessel, according to which a quarter of the earth covered by the sea possesses during the flow of the tide about 25,000 cubic miles of water more than during the ebb; and that, therefore, such a mass of water must in 6¼ hours flow from one quarter of the earth to the other.—Professor Helmholtz.

SPOTS ON THE SUN.

Sir John Herschel describes these phenomena, when watched from day to day, or even from hour to hour, as appearing to enlarge or contract, to change their forms, and at length disappear altogether, or to break out anew in parts of the surface where none were before. Occasionally they break up or divide into two or more. The scale on which their movements takes place is immense. A single second of angular measure, as seen from the earth, corresponds on the sun’s disc to 461 miles; and a circle of this diameter (containing therefore nearly 167,000 square miles) is the least space which can be distinctly discerned on the sun as a visible area. Spots have been observed, however, whose linear diameter has been upwards of 45,000 miles; and even, if some records are to be trusted, of very much greater extent. That such a spot should close up in six weeks time (for they seldom last much longer), its borders must approach at the rate of more than 1000 miles a-day.

The same astronomer saw at the Cape of Good Hope, on the 29th March 1837, a solar spot occupying an area of near five square minutes, equal to 3,780,000,000 square miles. “The black centre of the spot of May 25th, 1837 (not the tenth part of the preceding one), would have allowed the globe of our earth to drop through it, leaving a thousand miles clear of contact on all sides of that tremendous gulf.” For such an amount of disturbance on the sun’s atmosphere, what reason can be assigned?

The Rev. Mr. Dawes has invented a peculiar contrivance, by means of which he has been enabled to scrutinise, under high magnifying power, minute portions of the solar disc. He places a metallic screen, pierced with a very small hole, in the focus of the telescope, where the image of the sun is formed. A small portion only of the image is thus allowed to pass through, so that it may be examined by the eye-piece without inconveniencing the observer by heat or glare. By this arrangement, Mr. Dawes has observed peculiarities in the constitution of the sun’s surface which are discernible in no other way.

Before these observations, the dark spots seen on the sun’s surface were supposed to be portions of the solid body of the sun, laid bare to our view by those immense fluctuations in the luminous regions of its atmosphere to which it appears to be subject. It now appears that these dark portions are only an additional and inferior stratum of a very feebly luminous or illuminated portion of the sun’s atmosphere. This again in its turn Mr. Dawes has frequently seen pierced with a smaller and usually much more rounded aperture, which would seem at last to afford a view of the real solar surface of most intense blackness.

M. Schwabe, of Dessau, has discovered that the abundance or paucity of spots displayed by the sun’s surface is subject to a law of periodicity. This has been confirmed by M. Wolf, of Berne, who shows that the period of these changes, from minimum to minimum, is 11 years and 11-hundredths of a year, being exactly at the rate of nine periods per century, the last year of each century being a year of minimum. It is strongly corroborative of the correctness both of M. Wolf’s period and also of the periodicity itself, that of all the instances of the appearance of spots on the sun recorded in history, even before the invention of the telescope, or of remarkable deficiencies in the sun’s light, of which there are great numbers, only two are found to deviate as much as two years from M. Wolf’s epochs. Sir William Herschel observed that the presence or absence of spots had an influence on the temperature of the seasons; his observations have been fully confirmed by M. Wolf. And, from an examination of the chronicles of Zurich from A.D. 1000 to A.D. 1800, he has come to the conclusion “that years rich in solar spots are in general drier and more fruitful than those of an opposite character; while the latter are wetter and more stormy than the former.”

The most extraordinary fact, however, in connection with the spots on the sun’s surface, is the singular coincidence of their periods with those great disturbances in the magnetic system of the earth to which the epithet of “magnetic storms” has been affixed.

These disturbances, during which the magnetic needle is greatly and universally agitated (not in a particular limited locality, but at one and the same instant of time over whole continents, or even over the whole earth), are found, so far as observation has hitherto extended, to maintain a parallel, both in respect of their frequency of occurrence and intensity in successive years, with the abundance and magnitude of the spots in the same years, too close to be regarded as fortuitous. The coincidence of the epochs of maxima and minima in the two series of phenomena amounts, indeed, to identity; a fact evidently of most important significance, but which neither astronomical nor magnetic science is yet sufficiently advanced to interpret.—Herschel’s Outlines.

The signification and connection of the above varying phenomena (Humboldt maintains) can never be manifested in their entire importance until an uninterrupted series of representations of the sun’s spots can be obtained by the aid of mechanical clock-work and photographic apparatus, as the result of prolonged observations during the many months of serene weather enjoyed in a tropical climate.

M. Schwabe has thus distinguished himself as an indefatigable observer of the sun’s spots, for his researches received the Royal Astronomical Society’s Medal in 1857. “For thirty years,” said the President at the presentation, “never has the sun exhibited his disc above the horizon of Dessau without being confronted by Schwabe’s imperturbable telescope; and that appears to have happened on an average about 300 days a-year. So, supposing that he had observed but once a-day, he has made 9000 observations, in the course of which he discovered about 4700 groups. This is, I believe, an instance of devoted persistence unsurpassed in the annals of astronomy. The energy of one man has revealed a phenomenon that had eluded the suspicion of astronomers for 200 years.”

HAS THE MOON AN ATMOSPHERE?

The Moon possesses neither Sea nor Atmosphere of appreciable extent. Still, as a negative, in such case, is relative only to the capabilities of the instruments employed, the search for the indications of a lunar atmosphere has been renewed with fresh augmentation of telescopic power. Of such indications, the most delicate, perhaps, are those afforded by the occultation of a planet by the moon. The occultation of Jupiter, which took place on January 2, 1857, was observed with this reference, and is said to have exhibited no hesitation, or change of form or brightness, such as would be produced by the refraction or absorption of an atmosphere. As respects the sea, if water existed on the moon’s surface, the sun’s light reflected from it should be completely polarised at a certain elongation of the moon from the sun; and no traces of such light have been observed.

MM. Baer and Maedler conclude that the moon is not entirely without an atmosphere, but, owing to the smallness of her mass, she is incapacitated from holding an extensive covering of gas; and they add, “it is possible that this weak envelope may sometimes, through local causes, in some measure dim or condense itself.” But if any atmosphere exists on our satellite, it must be, as Laplace says, more attenuated than what is termed a vacuum in an air-pump.

Mr. Hopkins thinks that if there be any lunar atmosphere, it must be very rare in comparison with the terrestrial atmosphere, and inappreciable to the kind of observation by which it has been tested; yet the absence of any refraction of the light of the stars during occultation is a very refined test. Mr. Nasmyth observes that “the sudden disappearance of the stars behind the moon, without any change or diminution of her brilliancy, is one of the most beautiful phenomena that can be witnessed.”

Sir John Herschel observes: The fact of the moon turning always the same face towards the earth is, in all probability, the result of an elongation of its figure in the direction of a line joining the centres of both the bodies, acting conjointly with a non-coincidence of its centre of gravity with its centre of symmetry.

If to this we add the supposition that the substance of the moon is not homogeneous, and that some considerable preponderance of weight is placed excentrically in it, it will be easily apprehended that the portion of its surface nearer to that heavier portion of its solid content, under all the circumstances of the moon’s rotation, will permanently occupy the situation most remote from the earth.

In what regards its assumption of a definite level, air obeys precisely the same hydrostatical laws as water. The lunar atmosphere would rest upon the lunar ocean, and form in its basin a lake of air, whose upper portions at an altitude such as we are now contemplating would be of excessive tenuity, especially should the provision of air be less abundant in proportion than our own. It by no means follows, then, from the absence of visible indications of water or air on this side of the moon, that the other is equally destitute of them, and equally unfitted for maintaining animal or vegetable life. Some slight approach to such a state of things actually obtains on the earth itself. Nearly all the land is collected in one of its hemispheres, and much the larger portion of the sea in the opposite. There is evidently an excess of heavy material vertically beneath the middle of the Pacific; while not very remote from the point of the globe diametrically opposite rises the great table-land of India and the Himalaya chain, on the summits of which the air has not more than a third of the density it has on the sea-level, and from which animated existence is for ever excluded.—Herschel’s Outlines, 5th edit.

LIGHT OF THE MOON.

The actual illumination of the lunar surface is not much superior to that of weathered sandstone-rock in full sunshine. Sir John Herschel has frequently compared the moon setting behind the gray perpendicular faÇade of the Table Mountain at the Cape of Good Hope, illuminated by the sun just risen from the opposite quarter of the horizon, when it has been scarcely distinguishable in brightness from the rock in contact with it. The sun and moon being nearly at equal altitudes, and the atmosphere perfectly free from cloud or vapour, its effect is alike on both luminaries.

HEAT OF MOONLIGHT.

M. Zantedeschi has proved, by a long series of experiments in the Botanic Gardens at Venice, Florence, and Padua, that, contrary to the general opinion, the diffused rays of moonlight have an influence upon the organs of plants, as the Sensitive Plant and the Desmodium gyrans. The influence was feeble compared with that of the sun; but the action is left beyond further question.

Melloni has proved that the rays of the Moon give out a slight degree of Heat (see Things not generally Known, p. 7); and Professor Piazzi Smyth, from a point of the Peak of Teneriffe 8840 feet above the sea-level, has found distinctly perceptible the heat radiated from the moon, which has been so often sought for in vain in a lower region.

SCENERY OF THE MOON.

By means of the telescope, mountain-peaks are distinguished in the ash-gray light of the larger spots and isolated brightly-shining points of the moon, even when the disc is already more than half illuminated. Lambert and Schroter have shown that the extremely variable intensity of the ash-gray light of the moon depends upon the greater or less degree of reflection of the sunlight which falls upon the earth, according as it is reflected from continuous continental masses, full of sandy deserts, grassy steppes, tropical forests, and barren rocky ground, or from large ocean surfaces. Lambert made the remarkable observation (14th of February 1774) of a change of the ash-coloured moonlight into an olive-green colour bordering upon yellow. “The moon, which then stood vertically over the Atlantic Ocean, received upon its right side the green terrestrial light which is reflected towards her when the sky is clear by the forest districts of South America.”

Plutarch says distinctly, in his remarkable work On the Face in the Moon, that we may suppose the spots to be partly deep chasms and valleys, partly mountain-peaks, which cast long shadows, like Mount Athos, whose shadow reaches Lemnos. The spots cover about two-fifths of the whole disc. In a clear atmosphere, and under favourable circumstances in the position of the moon, some of the spots are visible to the naked eye; as the edge of the Apennines, the dark elevated plain Grimaldus, the enclosed Mare Crisium, and Tycho, crowded round with numerous mountain ridges and craters.

Professor Alexander remarks, that a map of the eastern hemisphere, taken with the Bay of Bengal in the centre, would bear a striking resemblance to the face of the moon presented to us. The dark portions of the moon he considers to be continental elevations, as shown by measuring the average height of mountains above the dark and the light portions of the moon.

The surface of the moon can be as distinctly seen by a good telescope magnifying 1000 times, as it would be if not more than 250 miles distant.

LIFE IN THE MOON.

A circle of one second in diameter, as seen from the earth, on the surface of the moon contains about a square mile. Telescopes, therefore, must be greatly improved before we could expect to see signs of inhabitants, as manifested by edifices or changes on the surface of the soil. It should, however, be observed, that owing to the small density of the materials of the moon, and the comparatively feeble gravitation of bodies on her surface, muscular force would there go six times as far in overcoming the weight of materials as on the earth. Owing to the want of air, however, it seems impossible that any form of life analogous to those on earth can subsist there. No appearance indicating vegetation, or the slightest variation of surface which can in our opinion fairly be ascribed to change of season, can any where be discerned.—Sir John Herschel’s Outlines.

THE MOON SEEN THROUGH LORD ROSSE’S TELESCOPE.

In 1846, the Rev. Dr. Scoresby had the gratification of observing the Moon through the stupendous telescope constructed by Lord Rosse at Parsonstown. It appeared like a globe of molten silver, and every object to the extent of 100 yards was quite visible. Edifices, therefore, of the size of York Minster, or even of the ruins of Whitby Abbey, might be easily perceived, if they had existed. But there was no appearance of any thing of that nature; neither was there any indication of the existence of water, or of an atmosphere. There were a great number of extinct volcanoes, several miles in breadth; through one of them there was a line of continuance about 150 miles in length, which ran in a straight direction, like a railway. The general appearance, however, was like one vast ruin of nature; and many of the pieces of rock driven out of the volcanoes appeared to lie at various distances.

MOUNTAINS IN THE MOON.

By the aid of telescopes, we discern irregularities in the surface of the moon which can be no other than mountains and valleys,—for this plain reason, that we see the shadows cast by the former in the exact proportion as to length which they ought to have when we take into account the inclinations of the sun’s rays to that part of the moon’s surface on which they stand. From micrometrical measurements of the lengths of the shadows of the more conspicuous mountains, Messrs. Baer and Maedler have given a list of heights for no less than 1095 lunar mountains, among which occur all degrees of elevation up to 22,823 British feet, or about 1400 feet higher than Chimborazo in the Andes.

If Chimborazo were as high in proportion to the earth’s diameter as a mountain in the moon known by the name of Newton is to the moon’s diameter, its peak would be more than sixteen miles high.

Arago calls to mind, that with a 6000-fold magnifying power, which nevertheless could not be applied to the moon with proportionate results, the mountains upon the moon would appear to us just as Mont Blanc does to the naked eye when seen from the Lake of Geneva.

We sometimes observe more than half the surface of the moon, the eastern and northern edges being more visible at one time, and the western or southern at another. By means of this libration we are enabled to see the annular mountain Malapert (which occasionally conceals the moon’s south pole), the arctic landscape round the crater of Gioja, and the large gray plane near Endymion, which conceals in superficial extent the mare vaporum.

Three-sevenths of the moon are entirely concealed from our observation; and must always remain so, unless some new and unexpected disturbing causes come into play.—Humboldt.

The first object to which Galileo directed his telescope was the mountainous parts of the moon, when he showed how their summits might be measured: he found in the moon some circular districts surrounded on all sides by mountains similar to the form of Bohemia. The measurements of the mountains were made by the method of the tangents of the solar ray. Galileo, as Helvetius did still later, measured the distance of the summit of the mountains from the boundary of the illuminated portion at the moment when the mountain summit was first struck by the solar ray. Humboldt found no observations of the lengths of the shadows of the mountains: the summits were “much higher than the mountains on our earth.” The comparison is remarkable, since, according to Riccioli, very exaggerated ideas of the height of our mountains were then entertained. Galileo like all other observers up to the close of the eighteenth century, believed in the existence of many seas and of a lunar atmosphere.

THE MOON AND THE WEATHER.

The only influence of the Moon on the Weather of which we have any decisive evidence is the tendency to disappearance of clouds under the full moon, which Sir John Herschel refers to its heat being much more readily absorbed in traversing transparent media than direct solar heat, and being extinguished in the upper regions of our atmosphere, never reaches the surface of the atmosphere at all.

THE MOON’S ATTRACTION.

Mr. G. P. Bond of Cambridge, by some investigations to ascertain whether the Attraction of the Moon has any effect upon the motion of a pendulum, and consequently upon the rate of a clock, has found the last to be changed to the amount of 9/1000 of a second daily. At the equator the moon’s attraction changes the weight of a body only 1/7000000 of the whole; yet this force is sufficient to produce the vast phenomena of the tides!

It is no slight evidence of the importance of analysis, that Laplace’s perfect theory of tides has enabled us in our astronomical ephemerides to predict the height of spring-tides at the periods of new and full moon, and thus put the inhabitants of the sea on their guard against the increased danger attending the lunar revolutions.

MEASURING THE EARTH BY THE MOON.

As the form of the Earth exerts a powerful influence on the motion of other cosmical bodies, and especially on that of its neighbouring satellite, a more perfect knowledge of the motion of the latter will enable us reciprocally to draw an inference regarding the figure of the earth. Thus, as Laplace ably remarks: “an astronomer, without leaving his observatory, may, by a comparison of lunar theory with true observations, not only be enabled to determine the form and size of the earth, but also its distance from the sun and moon; results that otherwise could only be arrived at by long and arduous expeditions to the most remote parts of both hemispheres.” The compression which may be inferred from lunar inequalities affords an advantage not yielded by individual measurements of degrees or experiments with the pendulum, since it gives a mean amount which is referable to the whole planet.—Humboldt’s Cosmos, vol. i.

The distance of the moon from the earth is about 240,000 miles; and if a railway-carriage were to travel at the rate of 1000 miles a-day, it would be eight months in reaching the moon. But that is nothing compared with the length of time it would occupy a locomotive to reach the sun from the earth: if travelling at the rate of 1000 miles a-day, it would require 260 years to reach it.

CAUSE OF ECLIPSES.

As the Moon is at a very moderate distance from us (astronomically speaking), and is in fact our nearest neighbour, while the sun and stars are in comparison immensely beyond it, it must of necessity happen that at one time or other it must pass over, and occult or eclipse, every star or planet within its zone, and, as seen from the surface of the earth, even somewhat beyond it. Nor is the sun itself exempt from being thus hidden whenever any part of the moon’s disc, in this her tortuous course, comes to overlap any part of the space occupied in the heavens by that luminary. On these occasions is exhibited the most striking and impressive of all the occasional phenomena of astronomy, an Eclipse of the Sun, in which a greater or less portion, or even in some conjunctures the whole of its disc, is obscured, and, as it were, obliterated, by the superposition of that of the moon, which appears upon it as a circularly-terminated black spot, producing a temporary diminution of daylight, or even nocturnal darkness, so that the stars appear as if at midnight.—Sir John Herschel’s Outlines.

VAST NUMBERS IN THE UNIVERSE.

The number of telescopic stars in the Milky Way uninterrupted by any nebulÆ is estimated at 18,000,000. To compare this number with something analogous, Humboldt calls attention to the fact, that there are not in the whole heavens more than about 8000 stars, between the first and the sixth magnitudes, visible to the naked eye. The barren astonishment excited by numbers and dimensions in space when not considered with reference to applications engaging the mental and perceptive powers of man, is awakened in both extremes of the universe—in the celestial bodies as in the minutest animalcules. A cubic inch of the polishing slate of Bilin contains, according to Ehrenberg, 40,000 millions of the siliceous shells of GalionellÆ.

FOR WHAT PURPOSE WERE THE STARS CREATED?

Surely not (says Sir John Herschel) to illuminate our nights, which an additional moon of the thousandth part of the size of our own would do much better; nor to sparkle as a pageant void of meaning and reality, and bewilder us among vain conjectures. Useful, it is true, they are to man as points of exact and permanent reference; but he must have studied astronomy to little purpose, who can suppose man to be the only object of his Creator’s care, or who does not see in the vast and wonderful apparatus around us provision for other races of animated beings. The planets derive their light from the sun; but that cannot be the case with the stars. These doubtless, then, are themselves suns; and may perhaps, each in its sphere, be the presiding centre round which other planets, or bodies of which we can form no conception from any analogy offered by our own system, are circulating.19

NUMBER OF STARS.

Various estimates have been hazarded on the Number of Stars throughout the whole heavens visible to us by the aid of our colossal telescopes. Struve assumes for Herschel’s 20-feet reflector, that a magnifying power of 180 would give 5,800,000 for the number of stars lying within the zones extending 30° on either side of the equator, and 20,374,000 for the whole heavens. Sir William Herschel conjectured that 18,000,000 of stars in the Milky Way might be seen by his still more powerful 40-feet reflecting telescope.—Humboldt’s Cosmos, vol. iii.

The assumption that the extent of the starry firmament is literally infinite has been made by Dr. Olbers the basis of a conclusion that the celestial spaces are in some slight degree deficient in transparency; so that all beyond a certain distance is and must remain for ever unseen, the geometrical progression of the extinction of light far outrunning the effect of any conceivable increase in the power of our telescopes. Were it not so, it is argued that every part of the celestial concave ought to shine with the brightness of the solar disc, since no visual ray could be so directed as not, in some point or other of its infinite length, to encounter such a disc.—Edinburgh Review, Jan. 1848.

STARS THAT HAVE DISAPPEARED.

Notwithstanding the great accuracy of the catalogued positions of telescopic fixed stars and of modern star-maps, the certainty of conviction that a star in the heavens has actually disappeared since a certain epoch can only be arrived at with great caution. Errors of actual observation, of reduction, and of the press, often disfigure the very best catalogues. The disappearance of a heavenly body from the place in which it had been before distinctly seen, may be the result of its own motion as much as of any such diminution of its photometric process as would render the waves of light too weak to excite our organs of sight. What we no longer see, is not necessarily annihilated. The idea of destruction or combustion, as applied to disappearing stars, belongs to the age of Tycho Brahe. Even Pliny makes it a question. The apparent eternal cosmical alternation of existence and destruction is not annihilation; it is merely the transition of matter into new forms, into combinations which are subject to new processes. Dark cosmical bodies may by a renewed process of light again become luminous.—Humboldt’s Cosmos, vol. iii.

THE POLE-STAR FOUR THOUSAND YEARS AGO.

Sir John Herschel, in his Outlines of Astronomy, thus shows the changes in the celestial pole in 4000 years:

At the date of the erection of the Pyramid of Gizeh, which precedes the present epoch by nearly 4000 years, the longitudes of all the stars were less by 55° 45' than at present. Calculating from this datum the place of the pole of the heavens among the stars, it will be found to fall near a Draconis; its distance from that star being 3° 44' 25. This being the most conspicuous star in the immediate neighbourhood, was therefore the Pole Star of that epoch. The latitude of Gizeh being just 30° north, and consequently the altitude of the North Pole there also 30°, it follows that the star in question must have had at its lowest culmination at Gizeh an altitude of 25° 15' 35. Now it is a remarkable fact, that of the nine pyramids still existing at Gizeh, six (including all the largest) have the narrow passages by which alone they can be entered (all which open out on the northern faces of their respective pyramids) inclined to the horizon downwards at angles the mean of which is 26° 47'. At the bottom of every one of these passages, therefore, the Pole Star must have been visible at its lower culmination; a circumstance which can hardly be supposed to have been unintentional, and was doubtless connected (perhaps superstitiously) with the astronomical observations of that star, of whose proximity to the pole at the epoch of the erection of these wonderful structures we are thus furnished with a monumental record of the most imperishable nature.

THE PLEIADES.

The Pleiades prove that, several thousand years ago even as now, stars of the seventh magnitude were invisible to the naked eye of average visual power. The group consists of seven stars, of which six only, of the third, fourth, and fifth magnitudes, could be readily distinguished. Of these Ovid says (Fast. iv. 170):

Aratus states there were only six stars visible in the Pleiades.

One of the daughters of Atlas, Merope, the only one who was wedded to a mortal, was said to have veiled herself for very shame and to have disappeared. This is probably the star of the seventh magnitude, which we call CelÆne; for Hipparchus, in his commentary on Aratus, observes that on clear moonless nights seven stars may actually be seen.

The Pleiades were doubtless known to the rudest nations from the earliest times; they are also called the mariner’s stars. The name is from p?e?? (plein), ‘to sail.’ The navigation of the Mediterranean lasted from May to the beginning of November, from the early rising to the early setting of the Pleiades. In how many beautiful effusions of poetry and sentiment has “the Lost Pleiad” been deplored!—and, to descend to more familiar illustration of this group, the “Seven Stars,” the sailors’ favourites, and a frequent river-side public-house sign, may be traced to the Pleiades.

CHANGE OF COLOUR IN THE STARS.

The scintillation or twinkling of the stars is accompanied by variations of colour, which have been remarked from a very early age. M. Arago states, upon the authority of M. Babinet, that the name of Barakesch, given by the Arabians to Sirius, signifies the star of a thousand colours; and Tycho Brahe, Kepler, and others, attest to similar change of colour in twinkling. Even soon after the invention of the telescope, Simon Marius remarked that by removing the eye-piece of the telescope the images of the stars exhibited rapid fluctuations of brightness and colour. In 1814 Nicholson applied to the telescope a smart vibration, which caused the image of the star to be transformed into a curved line of light returning into itself, and diversified by several colours; each colour occupied about a third of the whole length of the curve, and by applying ten vibrations in a second, the light of Sirius in that time passed through thirty changes of colour. Hence the stars in general shine only by a portion of their light, the effect of twinkling being to diminish their brightness. This phenomenon M. Arago explains by the principle of the interference of light.

Ptolemy is said to have noted Sirius as a red star, though it is now white. Sirius twinkles with red and blue light, and Ptolemy’s eyes, like those of several other persons, may have been more sensitive to the red than to the blue rays.—Sir David Brewster’s More Worlds than One, p. 235.

Some of the double stars are of very different and dissimilar colours; and to the revolving planetary bodies which apparently circulate around them, a day lightened by a red light is succeeded by, not a night, but a day equally brilliant, though illuminated only by a green light.

DISTANCE OF THE NEAREST FIXED STAR FROM THE EARTH.

Sir John Herschel wrote in 1833: “What is the distance of the nearest fixed star? What is the scale on which our visible firmament is constructed? And what proportion do its dimensions bear to those of our own immediate system? To this, however, astronomy has hitherto proved unable to supply an answer. All we know on this subject is negative.” To these questions, however, an answer can now be given. Slight changes of position of some of the stars, called parallax, have been distinctly observed and measured; and among these stars No. 61 Cygni of Flamstead’s catalogue has a parallax of 5, and that of a Centauri has a proper motion of 4 per annum.

The same astronomer states that each second of parallax indicates a distance of 20 billions of miles, or 3¼ years’ journey of light. Now the light sent to us by the sun, as compared with that sent by Sirius and a Centauri, is about 22 thousand millions to 1. “Hence, from the parallax assigned above to that star, it is easy to conclude that its intrinsic splendour, as compared with that of our sun at equal distances, is 2·3247, that of the sun being unity. The light of Sirius is four times that of a Centauri, and its parallax only 0·15. This, in effect, ascribes to it an intrinsic splendour equal to 96·63 times that of a Centauri, and therefore 224·7 times that of our sun.”

This is justly regarded as one of the most brilliant triumphs of astronomical science, for the delicacy of the investigation is almost inconceivable; yet the reasoning is as unimpeachable as the demonstration of a theorem of Euclid.

LIGHT OF A STAR SIXTEENFOLD THAT OF THE SUN.

The bright star in the constellation of the Lyre, termed Vega, is the brightest in the northern hemisphere; and the combined researches of Struve, father and son, have found that the distance of this star from the earth is no less than 130 billions of miles! Light travelling at the rate of 192 thousand miles in a second consequently occupies twenty-one years in passing from this star to the earth. Now it has been found, by comparing the light of Vega with the light of the sun, that if the latter were removed to the distance of 130 billions of miles, his apparent brightness would not amount to more than the sixteenth part of the apparent brightness of Vega. We are therefore warranted in concluding that the light of Vega is equal to that of sixteen suns.

DIVERSITIES OF THE PLANETS.

In illustration of the great diversity of the physical peculiarities and probable condition of the planets, Sir John Herschel describes the intensity of solar radiation as nearly seven times greater on Mercury than on the earth, and on Uranus 330 times less; the proportion between the two extremes being that of upwards of 2000 to 1. Let any one figure to himself, (adds Sir John,) the condition of our globe were the sun to be septupled, to say nothing of the greater ratio; or were it diminished to a seventh, or to a 300th of its actual power! Again, the intensity of gravity, or its efficacy in counteracting muscular power and repressing animal activity, on Jupiter is nearly two-and-a-half times that on the earth; on Mars not more than one-half; on the moon one-sixth; and on the smaller planets probably not more than one-twentieth; giving a scale of which the extremes are in the proportion of sixty to one. Lastly, the density of Saturn hardly exceeds one-eighth of the mean density of the earth, so that it must consist of materials not much heavier than cork.

Jupiter is eleven times, Saturn ten times, Uranus five times, and Neptune nearly six times, the diameter of our earth.

These four bodies revolve in space at such distances from the sun, that if it were possible to start thence for each in succession, and to travel at the railway speed of 33 miles per hour, the traveller would reach

Jupiter in 1712 years
Saturn 3113
Uranus 6226
Neptune 9685

If, therefore, a person had commenced his journey at the period of the Christian era, he would now have to travel nearly 1300 years before he would arrive at the planet Saturn; more than 4300 years before he would reach Uranus; and no less than 7800 years before he could reach the orbit of Neptune.

Yet the light which comes to us from these remote confines of the solar system first issued from the sun, and is then reflected from the surface of the planet. When the telescope is turned towards Neptune, the observer’s eye sees the object by means of light that issued from the sun eight hours before, and which since then has passed nearly twice through that vast space which railway speed would require almost a century of centuries to accomplish.—Bouvier’s Familiar Astronomy.

GRAND RESULTS OF THE DISCOVERY OF JUPITER’S SATELLITES.

This discovery, one of the first fruits of the invention of the telescope, and of Galileo’s early and happy idea of directing its newly-found powers to the examination of the heavens, forms one of the most memorable epochs in the history of astronomy. The first astronomical solution of the great problem of the longitude, practically the most important for the interests of mankind which has ever been brought under the dominion of strict scientific principles, dates immediately from this discovery. The final and conclusive establishment of the Copernican system of astronomy may also be considered as referable to the discovery and study of this exquisite miniature system, in which the laws of the planetary motions, as ascertained by Kepler, and specially that which connects their periods and distances, were specially traced, and found to be satisfactorily maintained. And (as if to accumulate historical interest on this point) it is to the observation of the eclipses of Jupiter’s satellites that we owe the grand discovery of the aberration of light, and the consequent determination of the enormous velocity of that wonderful element—192,000 miles per second. Mr. Dawes, in 1849, first noticed the existence of round, well-defined, bright spots on the belts of Jupiter. They vary in situation and number, as many as ten having been seen on one occasion. As the belts of Jupiter have been ascribed to the existence of currents analogous to our trade-winds, causing the body of Jupiter to be visible through his cloudy atmosphere, Sir John Herschel conjectures that those bright spots may possibly be insulated masses of clouds of local origin, similar to the cumuli which sometimes cap ascending columns of vapour in our atmosphere.

It would require nearly 1300 globes of the size of our earth to make one of the bulk of Jupiter. A railway-engine travelling at the rate of thirty-three miles an hour would travel round the earth in a month, but would require more than eleven months to perform a journey round Jupiter.

WAS SATURN’S RING KNOWN TO THE ANCIENTS?

In Maurice’s Indian Antiquities is an engraving of Sani, the Saturn of the Hindoos, taken from an image in a very ancient pagoda, which represents the deity encompassed by a ring formed of two serpents. Hence it is inferred that the ancients were acquainted with the existence of the ring of Saturn.

Arago mentions the remarkable fact of the ring and fourth satellite of Saturn having been seen by Sir W. Herschel with his smaller telescope by the naked eye, without any eye-piece.

The first or innermost of Saturn’s satellites is nearer to the central body than any other of the secondary planets. Its distance from the centre of Saturn is 80,088 miles; from the surface of the planet 47,480 miles; and from the outmost edge of the ring only 4916 miles. The traveller may form to himself an estimate of the smallness of this amount by remembering the statement of the well-known navigator, Captain Beechey, that he had in three years passed over 72,800 miles.

According to very recent observations, Saturn’s ring is divided into three separate rings, which, from the calculations of Mr. Bond, an American astronomer, must be fluid. He is of opinion that the number of rings is continually changing, and that their maximum number, in the normal condition of the mass, does not exceed twenty. Mr. Bond likewise maintains that the power which sustains the centre of gravity of the ring is not in the planet itself, but in its satellites; and the satellites, though constantly disturbing the ring, actually sustain it in the very act of perturbation. M. Otto Struve and Mr. Bond have lately studied with the great Munich telescope, at the observatory of Pulkowa, the third ring of Saturn, which Mr. Lassell and Mr. Bond discovered to be fluid. They saw distinctly the dark interval between this fluid ring and the two old ones, and even measured its dimensions; and they perceived at its inner margin an edge feebly illuminated, which they thought might be the commencement of a fourth ring. These astronomers are of opinion, that the fluid ring is not of very recent formation, and that it is not subject to rapid change; and they have come to the extraordinary conclusion, that the inner border of the ring has, since the time of Huygens, been gradually approaching to the body of Saturn, and that we may expect, sooner or later, perhaps in some dozen of years, to see the rings united with the body of the planet. But this theory is by other observers pronounced untenable.

TEMPERATURE OF THE PLANET MERCURY.

Mercury being so much nearer to the Sun than the Earth, he receives, it is supposed, seven times more heat than the earth. Mrs. Somerville says: “On Mercury, the mean heat arising from the intensity of the sun’s rays must be above that of boiling quicksilver, and water would boil even at the poles.” But he may be provided with an atmosphere so constituted as to absorb or reflect a great portion of the superabundant heat; so that his inhabitants (if he have any) may enjoy a climate as temperate as any on our globe.

SPECULATIONS ON VESTA AND PALLAS.

The most remarkable peculiarities of these ultra-zodiacal planets, according to Sir John Herschel, must lie in this condition of their state: a man placed on one of them would spring with ease sixty feet high, and sustain no greater shock in his descent than he does on the earth from leaping a yard. On such planets, giants might exist; and those enormous animals which on the earth require the buoyant power of water to counteract their weight, might there be denizens of the land. But of such speculations there is no end.

IS THE PLANET MARS INHABITED?

The opponents of the doctrine of the Plurality of Worlds allow that a greater probability exists of Mars being inhabited than in the case of any other planet. His diameter is 4100 miles; and his surface exhibits spots of different hues,—the seas, according to Sir John Herschel, being green, and the land red. “The variety in the spots,” says this astronomer, “may arise from the planet not being destitute of atmosphere and cloud; and what adds greatly to the probability of this, is the appearance of brilliant white spots at its poles, which have been conjectured, with some probability, to be snow, as they disappear when they have been long exposed to the sun, and are greatest when emerging from the long night of their polar winter, the snow-line then extending to about six degrees from the pole.” “The length of the day,” says Sir David Brewster, “is almost exactly twenty-four hours,—the same as that of the earth. Continents and oceans and green savannahs have been observed upon Mars, and the snow of his polar regions has been seen to disappear with the heat of summer.” We actually see the clouds floating in the atmosphere of Mars, and there is the appearance of land and water on his disc. In a sketch of this planet, as seen in the pure atmosphere of Calcutta by Mr. Grant, it appears, to use his words, “actually as a little world,” and as the earth would appear at a distance, with its seas and continents of different shades. As the diameter of Mars is only about one half that of our earth, the weight of bodies will be about one half what it would be if they were placed upon our globe.

DISCOVERY OF THE PLANET NEPTUNE.

This noble discovery marked in a signal manner the maturity of astronomical science. The proof, or at least the urgent presumption, of the existence of such a planet, as a means of accounting (by its attraction) for certain small irregularities observed in the motions of Uranus, was afforded almost simultaneously by the independent researches of two geometers, Mr. Adams of Cambridge, and M. Leverrier of Paris, who were enabled from theory alone to calculate whereabouts it ought to appear in the heavens, if visible, the places thus independently calculated agreeing surprisingly. Within a single degree of the place assigned by M. Leverrier’s calculations, and by him communicated to Dr. Galle of the Royal Observatory at Berlin, it was actually found by that astronomer on the very first night after the receipt of that communication, on turning a telescope on the spot, and comparing the stars in its immediate neighbourhood with those previously laid down in one of the zodiacal charts. This remarkable verification of an indication so extraordinary took place on the 23d of September 1846.20Sir John Herschel’s Outlines.

Neptune revolves round the sun in about 172 years, at a mean distance of thirty,—that of Uranus being nineteen, and that of the earth one: and by its discovery the solar system has been extended one thousand millions of miles beyond its former limit.

Neptune is suspected to have a ring, but the suspicion has not been confirmed. It has been demonstrated by the observations of Mr. Lassell, M. Otto Struve, and Mr. Bond, to be attended by at least one satellite.

One of the most curious facts brought to light by the discovery of Neptune, is the failure of Bode’s law to give an approximation to its distance from the sun; a striking exemplification of the danger of trusting to the universal applicability of an empirical law. After standing the severe test which led to the discovery of the asteroids, it seemed almost contrary to the laws of probability that the discovery of another member of the planetary system should prove its failure as an universal rule.

MAGNITUDE OF COMETS.

Although Comets have a smaller mass than any other cosmical bodies—being, according to our present knowledge, probably not equal to 1/5000th part of the earth’s mass—yet they occupy the largest space, as their tails in several instances extend over many millions of miles. The cone of luminous vapour which radiates from them has been found in some cases (as in 1680 and 1811) equal to the length of the earth’s distance from the sun, forming a line that intersects both the orbits of Venus and Mercury. It is even probable that the vapour of the tails of comets mingled with our atmosphere in the years 1819 and 1823.—Humboldt’s Cosmos, vol. i.

COMETS VISIBLE IN SUNSHINE—THE GREAT COMET OF 1843.

The phenomenon of the tail of a Comet being visible in bright Sunshine, which is recorded of the comet of 1402, occurred again in the case of the large comet of 1843, whose nucleus and tail were seen in North America on February 28th (according to the testimony of J.G. Clarke, of Portland, State of Maine), between one and three o’clock in the afternoon. The distance of the very dense nucleus from the sun’s light admitted of being measured with much exactness. The nucleus and tail (a darker space intervening) appeared like a very pure white cloud.—American Journal of Science, vol. xiv.

E. C. OttÉ, the translator of Bohn’s edition of Humboldt’s Cosmos, at New Bedford, Massachusetts, U.S., Feb. 28th, 1843, distinctly saw the above comet between one and two in the afternoon. The sky at the time was intensely blue, and the sun shining with a dazzling brightness unknown in European climates.

This very remarkable Comet, seen in England on the 17th of March 1843, had a nucleus with the appearance of a planetary disc, and the brightness of a star of the first or second magnitude. It had a double tail divided by a dark line. At the Cape of Good Hope it was seen in full daylight, and in the immediate vicinity of the sea; but the most remarkable fact in its history was its near approach to the sun, its distance from his surface being only one-fourteenth of his diameter. The heat to which it was exposed, therefore, was much greater than that which Sir Isaac Newton ascribed to the comet of 1680, namely 200 times that of red-hot iron. Sir John Herschel has computed that it must have been 24 times greater than that which was produced in the focus of Parker’s burning lens, 32 inches in diameter, which melts crystals of quartz and agate.21

THE MILKY WAY UNFATHOMABLE.

M. Struve of Pulkowa has compared Sir William Herschel’s opinion on this subject, as maintained in 1785, with that to which he was subsequently led; and arrives at the conclusion that, according to Sir W. Herschel himself, the visible extent of the Milky Way increases with the penetrating power of the telescopes employed; that it is impossible to discover by his instruments the termination of the Milky Way (as an independent cluster of stars); and that even his gigantic telescope of forty feet focal length does not enable him to extend our knowledge of the Milky Way, which is incapable of being sounded. Sir William Herschel’s Theory of the Milky Way was as follows: He considered our solar system, and all the stars which we can see with the eye, as placed within, and constituting a part of, the nebula of the Milky Way, a congeries of many millions of stars, so that the projection of these stars must form a luminous track on the concavity of the sky; and by estimating or counting the number of stars in different directions, he was able to form a rude judgment of the probable form of the nebula, and of the probable position of the solar system within it.

This remarkable belt has maintained from the earliest ages the same relative situation among the stars; and, when examined through powerful telescopes, is found (wonderful to relate!) to consist entirely of stars scattered by millions, like glittering dust, on the black ground of the general heavens.

DISTANCES OF NEBULÆ.

These are truly astounding. Sir William Herschel estimated the distance of the annular nebula between Beta and Gamma LyrÆ to be from our system 950 times that of Sirius; and a globular cluster about 5½° south-east of Beta Sir William computed to be one thousand three hundred billions of miles from our system. Again, in Scutum Sobieski is one nebula in the shape of a horseshoe; but which, when viewed with high magnifying power, presents a different appearance. Sir William Herschel estimated this nebula to be 900 times farther from us than Sirius. In some parts of its vicinity he observed 588 stars in his telescope at one time; and he counted 258,000 in a space 10° long and 2½° wide. There is a globular cluster between the mouths of Pegasus and Equuleus, which Sir William Herschel estimated to be 243 times farther from us than Sirius. Caroline Herschel discovered in the right foot of Andromeda a nebula of enormous dimensions, placed at an inconceivable distance from us: it consists probably of myriads of solar systems, which, taken together, are but a point in the universe. The nebula about 10° west of the principal star in Triangulum is supposed by Sir William Herschel to be 344 times the distance of Sirius from the earth, which would be the immense sum of nearly seventeen thousand billions of miles from our planet.

INFINITE SPACE.

After the straining mind has exhausted all its resources in attempting to fathom the distance of the smallest telescopic star, or the faintest nebula, it has reached only the visible confines of the sidereal creation. The universe of stars is but an atom in the universe of space; above it, and beneath it, and around it, there is still infinity.

ORIGIN OF OUR PLANETARY SYSTEM. THE NEBULAR HYPOTHESIS.22

The commencement of our Planetary System, including the sun, must, according to Kant and Laplace, be regarded as an immense nebulous mass filling the portion of space which is now occupied by our system far beyond the limits of Neptune, our most distant planet. Even now we perhaps see similar masses in the distant regions of the firmament, as patches of nebulÆ, and nebulous stars; within our system also, comets, the zodiacal light, the corona of the sun during a total eclipse, exhibit resemblances of a nebulous substance, which is so thin that the light of the stars passes through it unenfeebled and unrefracted. If we calculate the density of the mass of our planetary system, according to the above assumption, for the time when it was a nebulous sphere which reached to the path of the outmost planet, we should find that it would require several cubic miles of such matter to weigh a single grain.—Professor Helmholtz.

A quarter of a century ago, Sir John Herschel expressed his opinion that those nebulÆ which were not resolved into individual stars by the highest powers then used, might be hereafter completely resolved by a further increase of optical power:

In fact, this probability has almost been converted into a certainty by the magnificent reflecting telescope constructed by Lord Rosse, of 6 feet in aperture, which has resolved, or rendered resolvable, multitudes of nebulÆ which had resisted all inferior powers. The sublimity of the spectacle afforded by that instrument of some of the larger globular and other clusters is declared by all who have witnessed it to be such as no words can express.23

Although, therefore, nebulÆ do exist, which even in this powerful telescope appear as nebulÆ, without any sign of resolution, it may very reasonably be doubted whether there be really any essential physical distinction between nebulÆ and clusters of stars, at least in the nature of the matter of which they consist; and whether the distinction between such nebulÆ as are easily resolved, barely resolvable with excellent telescopes, and altogether irresolvable with the best, be any thing else than one of degree, arising merely from the excessive minuteness and multitude of the stars of which the latter, as compared with the former, consist.—Outlines of Astronomy, 5th edit. 1858.

It should be added, that Sir John Herschel considers the “nebular hypothesis” and the above theory of sidereal aggregation to stand quite independent of each other.

ORIGIN OF HEAT IN OUR SYSTEM.

Professor Helmholtz, assuming that at the commencement the density of the nebulous matter was a vanishing quantity, as compared with the present density of the sun and planets, calculates how much work has been performed by the condensation; how much of this work still exists in the form of mechanical force, as attraction of the planets towards the sun, and as vis viva of their motion; and finds by this how much of the force has been converted into heat.

The result of this calculation is, that only about the 45th part of the original mechanical force remains as such, and that the remainder, converted into heat, would be sufficient to raise a mass of water equal to the sun and planets taken together, not less than 28,000,000 of degrees of the centigrade scale. For the sake of comparison, Professor Helmholtz mentions that the highest temperature which we can produce by the oxy-hydrogen blowpipe, which is sufficient to vaporise even platina, and which but few bodies can endure, is estimated at about 2000 degrees. Of the action of a temperature of 28,000,000 of such degrees we can form no notion. If the mass of our entire system were of pure coal, by the combustion of the whole of it only the 350th part of the above quantity would be generated.

The store of force at present possessed by our system is equivalent to immense quantities of heat. If our earth were by a sudden shock brought to rest in her orbit—which is not to be feared in the existing arrangement of our system—by such a shock a quantity of heat would be generated equal to that produced by the combustion of fourteen such earths of solid coal. Making the most unfavourable assumption as to its capacity for heat, that is, placing it equal to that of water, the mass of the earth would thereby be heated 11,200°; it would therefore be quite fused, and for the most part reduced to vapour. If, then, the earth, after having been thus brought to rest, should fall into the sun, which of course would be the case, the quantity of heat developed by the shock would be 400 times greater.

AN ASTRONOMER’S DREAM VERIFIED.

The most fertile region in astronomical discovery during the last quarter of a century has been the planetary members of the solar system. In 1833, Sir John Herschel enumerated ten planets as visible from the earth, either by the unaided eye or by the telescope; the number is now increased more than fivefold. With the exception of Neptune, the discovery of new planets is confined to the class called Asteroids. These all revolve in elliptic orbits between those of Jupiter and Mars. Zitius of Wittemberg discovered an empirical law, which seemed to govern the distances of the planets from the sun; but there was a remarkable interruption in the law, according to which a planet ought to have been placed between Mars and Jupiter. Professor Bode of Berlin directed the attention of astronomers to the possibility of such a planet existing; and in seven years’ observations from the commencement of the present century, not one but four planets were found, differing widely from one another in the elements of their orbits, but agreeing very nearly at their mean distances from the sun with that of the supposed planet. This curious coincidence of the mean distances of these four asteroids with the planet according to Bode’s law, as it is generally called, led to the conjecture that these four planets were but fragments of the missing planet, blown to atoms by some internal explosion, and that many more fragments might exist, and be possibly discovered by diligent search.

Concerning this apparently wild hypothesis, Sir John Herschel offered the following remarkable apology: “This may serve as a specimen of the dreams in which astronomers, like other speculators, occasionally and harmlessly indulge.”

The dream, wild as it appeared, has been realised now. Sir John, in the fifth edition of his Outlines of Astronomy, published in 1858, tells us:

Whatever may be thought of such a speculation as a physical hypothesis, this conclusion has been verified to a considerable extent as a matter of fact by subsequent discovery, the result of a careful and minute examination and mapping down of the smaller stars in and near the zodiac, undertaken with that express object. Zodiacal charts of this kind, the product of the zeal and industry of many astronomers, have been constructed, in which every star down to the ninth, tenth, or even lower magnitudes, is inserted; and these stars being compared with the actual stars of the heavens, the intrusion of any stranger within their limits cannot fail to be noticed when the comparison is systematically conducted. The discovery of AstrÆa and Hebe by Professor Hencke, in 1845 and 1847, revived the flagging spirit of inquiry in this direction; with what success, the list of fifty-two asteroids, with their names and the dates of their discovery, will best show. The labours of our indefatigable countryman, Mr. Hind, have been rewarded by the discovery of no less than eight of them.

FIRE-BALLS AND SHOOTING STARS.

Humboldt relates, that a friend at Popayan, at an elevation of 5583 feet above the sea-level, at noon, when the sun was shining brightly in a cloudless sky, saw his room lighted up by a fire-ball: he had his back towards the window at the time, and on turning round, perceived that great part of the path traversed by the fire-ball was still illuminated by the brightest radiance. The Germans call these phenomena star-snuff, from the vulgar notion that the lights in the firmament undergo a process of snuffing, or cleaning. Other nations call it a shot or fall of stars, and the English star-shoot. Certain tribes of the Orinoco term the pearly drops of dew which cover the beautiful leaves of the heliconia star-spit. In the Lithuanian mythology, the nature and signification of falling stars are embodied under nobler and more graceful symbols. The ParcÆ, Werpeja, weave in heaven for the new-born child its thread of fate, attaching each separate thread to a star. When death approaches the person, the thread is rent, and the star wanes and sinks to the earth.—Jacob Grimm.

THEORY AND EXPERIENCE.

In the perpetual vicissitude of theoretical views, says the author of Giordano Bruno, “most men see nothing in philosophy but a succession of passing meteors; whilst even the grander forms in which she has revealed herself share the fate of comets,—bodies that do not rank in popular opinion amongst the external and permanent works of nature, but are regarded as mere fugitive apparitions of igneous vapour.”

METEORITES FROM THE MOON.

The hypothesis of the selenic origin of meteoric stones depends upon a number of conditions, the accidental coincidence of which could alone convert a possible to an actual fact. The view of the original existence of small planetary masses in space is simpler, and at the same time more analogous with those entertained concerning the formation of other portions of the solar system.

Diogenes Laertius thought aerolites came from the sun; but Pliny derides this theory. The fall of aerolites in bright sunshine, and when the moon’s disc was invisible, probably led to the idea of sun-stones. Moreover Anaxagoras regarded the sun as “a molten fiery mass;” and Euripides, in PhaËton, terms the sun “a golden mass,” that is to say, a fire-coloured, brightly-shining matter, but not leading to the inference that aerolites are golden sun-stones. The Greek philosophers had four hypotheses as to their origin: telluric, from ascending exhalations; masses of stone raised by hurricanes; a solar origin; and lastly, an origin in the regions of space, as heavenly bodies which had long remained invisible: the last opinion entirely according with that of the present day.

Chladni states that an Italian physicist, Paolo Maria Terzago, on the occasion of the fall of an aerolite at Milan, in 1660, by which a Franciscan monk was killed, was the first who surmised that aerolites were of selenic origin. Without any previous knowledge of this conjecture, Olbers was led, in 1795 (after the celebrated fall at Siena, June 16th, 1794), to investigate the amount of the initial tangential force that would be required to bring to the earth masses projected from the moon. Olbers, Brandes, and Chaldni thought that “the velocity of 16 to 32 miles, with which fire-balls and shooting-stars entered our atmosphere,” furnished a refutation to the view of their selenic origin. According to Olbers, it would require to reach the earth, setting aside the resistance of the air, an initial velocity of 8292 feet in the second; according to Laplace, 7862; to Biot, 8282; and to Poisson, 7595. Laplace states that this velocity is only five or six times as great as that of a cannon-ball; but Olbers has shown that “with such an initial velocity as 7500 or 8000 feet in a second, meteoric stones would arrive at the surface of our earth with a velocity of only 35,000 feet.” But the measured velocity of meteoric stones averages upwards of 114,000 feet to a second; consequently the original velocity of projection from the moon must be almost 110,000 feet, and therefore 14 times greater than Laplace asserted. It must, however, be recollected, that the opinion then so prevalent, of the existence of active volcanoes in the moon, where air and water are absent, has since been abandoned.

Laplace elsewhere states, that in all probability aerolites “come from the depths of space;” yet he in another passage inclines to the hypothesis of their lunar origin, always, however, assuming that the stones projected from the moon “become satellites of our earth, describing around it more or less eccentric orbits, and thus not reaching its atmosphere until several or even many revolutions have been accomplished.”

In Syria there is a popular belief that aerolites chiefly fall on clear moonlight nights. The ancients (Pliny tells us) looked for their fall during lunar eclipses.—Abridged from Humboldt’s Cosmos, vol. i. (Bohn’s edition).

Dr. Laurence Smith, U.S., accepts the “lunar theory,” and considers meteorites to be masses thrown off from the moon, the attractive power of which is but one-sixth that of the earth; so that bodies thrown from the surface of the moon experience but one sixth the retarding force they would have when thrown from the earth’s surface.

Look again (says Dr. Smith) at the constitution of the meteorite, made up principally of pure iron. It came evidently from some place where there is little or no oxygen. Now the moon has no atmosphere, and no water on its surface. There is no oxygen there. Hurled from the moon, these bodies,—these masses of almost pure iron,—would flame in the sun like polished steel, and on reaching our atmosphere would burn in its oxygen until a black oxide cooled it; and this we find to be the case with all meteorites,—the black colour is only an external covering.

Sir Humphry Davy, from facts contained in his researches on flame, in 1817, conceives that the light of meteors depends, not upon the ignition of inflammable gases, but upon that of solid bodies; that such is their velocity of motion, as to excite sufficient heat for their ignition by the compression even of rare air; and that the phenomena of falling stars may be explained by regarding them as small incombustible bodies moving round the earth in very eccentric orbits, and becoming ignited only when they pass with immense rapidity through the upper regions of the atmosphere; whilst those meteors which throw down stony bodies are, similarly circumstanced, combustible masses.

Masses of iron and nickel, having all the appearance of aerolites or meteoric stones, have been discovered in Siberia, at a depth of ten metres below the surface of the earth. From the fact, however, that no meteoric stones are found in the secondary and tertiary formations, it would seem to follow that the phenomena of falling stones did not take place till the earth assumed its present conditions.

VAST SHOWER OF METEORS.

The most magnificent Shower of Meteors that has ever been known was that which fell during the night of November 12th, 1833, commencing at nine o’clock in the evening, and continuing till the morning sun concealed the meteors from view. This shower extended from Canada to the northern boundary of South America, and over a tract of nearly 3000 miles in width.

IMMENSE METEORITE.

Mrs. Somerville mentions a Meteorite which passed within twenty-five miles of our planet, and was estimated to weigh 600,000 tons, and to move with a velocity of twenty miles in a second. Only a small fragment of this immense mass reached the earth. Four instances are recorded of persons being killed by their fall. A block of stone fell at Ægos Potamos, B.C. 465, as large as two millstones; another at Narni, in 921, projected like a rock four feet above the surface of the river, in which it was seen to fall. The Emperor Jehangire had a sword forged from a mass of meteoric iron, which fell in 1620 at Jahlinder in the Punjab. Sixteen instances of the fall of stones in the British Isles are well authenticated to have occurred since 1620, one of them in London. It is very remarkable that no new chemical element has been detected in any of the numerous meteorites which have been analysed.

NO FOSSIL METEORIC STONES.

It is (says Olbers) a remarkable but hitherto unregarded fact, that while shells are found in secondary and tertiary formations, no Fossil Meteoric Stones have as yet been discovered. May we conclude from this circumstance, that previous to the present and last modification of the earth’s surface no meteoric stones fell on it, though at the present time it appears probable, from the researches of Schreibers, that 700 fall annually?24

THE END OF OUR SYSTEM.

While all the phenomena in the heavens indicate a law of progressive creation, in which revolving matter is distributed into suns and planets, there are indications in our own system that a period has been assigned for its duration, which, sooner or later, it must reach. The medium which fills universal space, whether it be a luminiferous ether, or arise from the indefinite expansion of planetary atmospheres, must retard the bodies which move in it, even were it 360,000 millions of times more rare than atmospheric air; and, with its time of revolution gradually shortening, the satellite must return to its planet, the planet to its sun, and the sun to its primeval nebula. The fate of our system, thus deduced from mechanical laws, must be the fate of all others. Motion cannot be perpetuated in a resisting medium; and where there exist disturbing forces, there must be primarily derangement, and ultimately ruin. From the great central mass, heat may again be summoned to exhale nebulous matter; chemical forces may again produce motion, and motion may again generate systems; but, as in the recurring catastrophes which have desolated our earth, the great First Cause must preside at the dawn of each cosmical cycle; and, as in the animal races which were successively reproduced, new celestial creations of a nobler form of beauty and of a higher form of permanence may yet appear in the sidereal universe. “Behold, I create new heavens and a new earth, and the former shall not be remembered.” “The new heavens and the new earth shall remain before me.” “Let us look, then, according to this promise, for the new heavens and the new earth, wherein dwelleth righteousness.”—North-British Review, No. 3.

BENEFITS OF GLASS TO MAN.

Cuvier eloquently says: “It could not be expected that those Phoenician sailors who saw the sand of the shores of BÆtica transformed by fire into a transparent Glass, should have at once foreseen that this new substance would prolong the pleasures of sight to the old; that it would one day assist the astronomer in penetrating the depths of the heavens, and in numbering the stars of the Milky Way; that it would lay open to the naturalist a miniature world, as populous, as rich in wonders as that which alone seemed to have been granted to his senses and his contemplation: in fine, that the most simple and direct use of it would enable the inhabitants of the coast of the Baltic Sea to build palaces more magnificent than those of Tyre and Memphis, and to cultivate, almost under the polar circle, the most delicious fruit of the torrid zone.”

THE GALILEAN TELESCOPE.

Galileo appears to be justly entitled to the honour of having invented that form of Telescope which still bears his name; while we must accord to John Lippershey, the spectacle-maker of Middleburg, the honour of having previously invented the astronomical telescope. The interest excited at Venice by Galileo’s invention amounted almost to frenzy. On ascending the tower of St. Mark, that he might use one of his telescopes without molestation, Galileo was recognised by a crowd in the street, who took possession of the wondrous tube, and detained the impatient philosopher for several hours, till they had successively witnessed its effects. These instruments were soon manufactured in great numbers; but were purchased merely as philosophical toys, and were carried by travellers into every corner of Europe.

WHAT GALILEO FIRST SAW WITH HIS TELESCOPE.

The moon displayed to him her mountain-ranges and her glens, her continents and her highlands, now lying in darkness, now brilliant with sunshine, and undergoing all those variations of light and shadow which the surface of our own globe presents to the alpine traveller or to the aeronaut. The four satellites of Jupiter illuminating their planet, and suffering eclipses in his shadow, like our own moon; the spots on the sun’s disc, proving his rotation round his axis in twenty-five days; the crescent phases of Venus, and the triple form or the imperfectly developed ring of Saturn,—were the other discoveries in the solar system which rewarded the diligence of Galileo. In the starry heavens, too, thousands of new worlds were discovered by his telescope; and the Pleiades alone, which to the unassisted eye exhibit only seven stars, displayed to Galileo no fewer than forty.—North-British Review, No. 3.

The first telescope “the starry Galileo” constructed with a leaden tube a few inches long, with a spectacle-glass, one convex and one concave, at each of its extremities. It magnified three times. Telescopes were made in London in February 1610, a year after Galileo had completed his own (Rigaud, On Harriot’s Papers, 1833). They were at first called cylinders. The telescopes which Galileo constructed, and others of which he made use for observing Jupiter’s satellites, the phases of Venus, and the solar spots, possessed the gradually-increasing powers of magnifying four, seven, and thirty-two linear diameters; but they never had a higher power.—Arago, in the Annuaire for 1842.

Clock-work is now applied to the equatorial telescope, so as to allow the observer to follow the course of any star, comet, or planet he may wish to observe continuously, without using his hands for the mechanical motion of the instrument.

ANTIQUITY OF TELESCOPES.

Long tubes were certainly employed by Arabian astronomers, and very probably also by the Greeks and Romans; the exactness of their observations being in some degree attributable to their causing the object to be seen through diopters or slits. Abul Hassan speaks very distinctly of tubes, to the extremities of which ocular and object diopters were attached; and instruments so constructed were used in the observatory founded by Hulagu at Meragha. If stars be more easily discovered during twilight by means of tubes, and if a star be sooner revealed to the naked eye through a tube than without it, the reason lies, as Arago has truly observed, in the circumstance that the tube conceals a great portion of the disturbing light diffused in the atmospheric strata between the star and the eye applied to the tube. In like manner, the tube prevents the lateral impression of the faint light which the particles of air receive at night from all the other stars in the firmament. The intensity of the image and the size of the star are apparently augmented.—Humboldt’s Cosmos, vol. iii. p. 53.

NEWTON’S FIRST REFLECTING TELESCOPE.

The year 1668 may be regarded as the date of the invention of Newton’s Reflecting Telescope. Five years previously, James Gregory had described the manner of constructing a reflecting telescope with two concave specula; but Newton perceived the disadvantages to be so great, that, according to his statement, he “found it necessary, before attempting any thing in the practice, to alter the design, and place the eye-glass at the side of the tube rather than at the middle.” On this improved principle Newton constructed his telescope, which was examined by Charles II.; it was presented to the Royal Society near the end of 1671, and is carefully preserved by that distinguished body, with the inscription:

The first Reflecting Telescope; invented by Sir Isaac Newton,
and made with his own hands.

Sir David Brewster describes this telescope as consisting of a concave metallic speculum, the radius of curvature of which was 12-2/3 or 13 inches, so that “it collected the sun’s rays at the distance of 6-1/3 inches.” The rays reflected by the speculum were received upon a plane metallic speculum inclined 45° to the axis of the tube, so as to reflect them to the side of the tube in which there was an aperture to receive a small tube with a plano-convex eye-glass whose radius was one-twelfth of an inch, by means of which the image formed by the speculum was magnified 38 times. Such was the first reflecting telescope applied to the heavens; but Sir David Brewster describes this instrument as small and ill-made; and fifty years elapsed before telescopes of the Newtonian form became useful in astronomy.

SIR WILLIAM HERSCHEL’S GREAT TELESCOPE AT SLOUGH.

The plan of this Telescope was intimated by Herschel, through Sir Joseph Banks, to George III., who offered to defray the whole expense of it; a noble act of liberality, which has never been imitated by any other British sovereign. Towards the close of 1785, accordingly, Herschel began to construct his reflecting telescope, forty feet in length, and having a speculum fully four feet in diameter. The thickness of the speculum, which was uniform in every part, was 3½ inches, and its weight nearly 2118 pounds; the metal being composed of 32 copper, and 10·7 of tin: it was the third speculum cast, the two previous attempts having failed. The speculum, when not in use, was preserved from damp by a tin cover, fitted upon a rim of close-grained cloth. The tube of the telescope was 39 ft. 4 in. long, and its width 4 ft. 10 in.; it was made of iron, and was 3000 lbs. lighter than if it had been made of wood. The observer was seated in a suspended movable seat at the mouth of the tube, and viewed the image of the object with a magnifying lens or eye-piece. The focus of the speculum, or place of the image, was within four inches of the lower side of the mouth of the tube, and came forward into the air, so that there was space for part of the head above the eye, to prevent it from intercepting many of the rays going from the object to the mirror. The eye-piece moved in a tube carried by a slider directed to the centre of the speculum, and fixed on an adjustible foundation at the mouth of the tube. It was completed on the 27th August 1789; and the very first moment it was directed to the heavens, a new body was added to the solar system, namely, Saturn and six of its satellites; and in less than a month after, the seventh satellite of Saturn, “an object,” says Sir John Herschel, “of a far higher order of difficulty.”—Abridged from the North-British Review, No. 3.

This magnificent instrument stood on the lawn in the rear of Sir William Herschel’s house at Slough; and some of our readers, like ourselves, may remember its extraordinary aspect when seen from the Bath coach-road, and the road to Windsor. The difficulty of managing so large an instrument—requiring as it did two assistants in addition to the observer himself and the person employed to note the time—prevented its being much used. Sir John Herschel, in a letter to Mr. Weld, states the entire cost of its construction, 4000l., was defrayed by George III. In 1839, the woodwork of the telescope being decayed, Sir John Herschel had it cleared away; and piers were erected, on which the tube was placed, that being of iron, and so well preserved that, although not more than one-twentieth of an inch thick, when in the horizontal position it contained within all Sir John’s family; and next the two reflectors, the polishing apparatus, and portions of the machinery, to the amount of a great many tons. Sir John attributes this great strength and resistance to the internal structure of the tube, very similar to that patented under the name of corrugated iron-roping. Sir John Herschel also thinks that system of triangular arrangement of the woodwork was upon the principle to which “diagonal bracing” owes its strength.

THE EARL OF ROSSE’S GREAT REFLECTING TELESCOPE.

Sir David Brewster has remarked, that “the long interval of half a century seems to be the period of hybernation during which the telescopic mind rests from its labours in order to acquire strength for some great achievement. Fifty years elapsed between the dwarf telescope of Newton and the large instruments of Hadley; other fifty years rolled on before Sir William Herschel constructed his magnificent telescope; and fifty years more passed away before the Earl of Rosse produced that colossal instrument which has already achieved such brilliant discoveries.”25

In the improvement of the Reflecting Telescope, the first object has always been to increase the magnifying power and light by the construction of as large a mirror as possible; and to this point Lord Rosse’s attention was directed as early as 1828, the field of operation being at his lordship’s seat, Birr Castle at Parsonstown, about fifty miles west of Dublin. For this high branch of scientific inquiry Lord Rosse was well fitted by a rare combination of “talent to devise, patience to bear disappointment, perseverance, profound mathematical knowledge, mechanical skill, and uninterrupted leisure from other pursuits;”26 all these, however, would not have been sufficient, had not a great command of money been added; the gigantic telescope we are about to describe having cost certainly not less than twelve thousand pounds.

Lord Rosse ground and polished specula fifteen inches, two feet, and three feet in diameter before he commenced the colossal instrument. It is impossible here to detail the admirable contrivances and processes by which he prepared himself for this great work. He first ascertained the most useful combination of metals for specula, both in whiteness, porosity, and hardness, to be copper and tin. Of this compound the reflector was cast in pieces, which were fixed on a bed of zinc and copper,—a species of brass which expanded in the same degree by heat as the pieces of the speculum themselves. They were ground as one body to a true surface, and then polished by machinery moved by a steam-engine. The peculiarities of this mechanism were entirely Lord Rosse’s invention, and the result of close calculation and observation: they were chiefly, placing the speculum with the face upward, regulating the temperature by having it immersed in water, usually at 55° Fahr., and regulating the pressure and velocity. This was found to work a perfect spherical figure in large surfaces with a degree of precision unattainable by the hand; the polisher, by working above and upon the face of the speculum, being enabled to examine the operation as it proceeded without removing the speculum, which, when a ton weight, is no easy matter.

The contrivance for doing this is very beautiful. The machine is placed in a room at the bottom of a high tower, in the successive floors of which trap-doors can be opened. A mast is elevated on the top of the tower, so that its summit is about ninety feet above the speculum. A dial-plate is attached to the top of the mast, and a small plane speculum and eye-piece, with proper adjustments, are so placed that the combination becomes a Newtonian telescope, and the dial-plate the object. The last and most important part of the process of working the speculum, is to give it a true parabolic figure, that is, such a figure that each portion of it should reflect the incident ray to the same focus. Lord Rosse’s operations for this purpose consist—1st, of a stroke of the first eccentric, which carries the polisher along one-third of the diameter of the speculum; 2d, a transverse stroke twenty-one times slower, and equal to 0·27 of the same diameter, measured on the edge of the tank, or 1·7 beyond the centre of the polisher; 3d, a rotation of the speculum performed in the same time as thirty-seven of the first strokes; and 4th, a rotation of the polisher in the same direction about sixteen times slower. If these rules are attended to, the machine will give the true parabolic figure to the speculum, whether it be six inches or three feet in diameter. In the three-feet speculum, the figure is so true with the whole aperture, that it is thrown out of focus by a motion of less than the thirtieth of an inch, “and even with a single lens of one-eighth of an inch focus, giving a power of 2592, the dots on a watch-dial are still in some degree defined.”

Thus was executed the three-feet speculum for the twenty-six-feet telescope placed upon the lawn at Parsonstown, which, in 1840, showed with powers up to 1000 and even 1600; and which resolved nebulÆ into stars, and destroyed that symmetry of form in globular nebulÆ upon which was founded the hypothesis of the gradual condensation of nebulous matter into suns and planets.27

Scarcely was this instrument out of Lord Rosse’s hands, when he resolved to attempt by the same processes to construct another reflector, with a speculum six feet in diameter and fifty feet long! and this magnificent instrument was completed early in 1845. The focal length of the speculum is fifty-four feet. It weighs four tons, and, with its supports, is seven times as heavy as the four-feet speculum of Sir William Herschel. The speculum is placed in one of the sides of a cubical wooden box, about eight feet wide, and to the opposite end of this box is fastened the tube, which is made of deal staves an inch thick, hooped with iron clamp-rings, like a huge cask. It carries at its upper end, and in the axis of the tube, a small oval speculum, six inches in its lesser diameter.

The tube is about 50 feet long and 8 feet in diameter in the middle, and furnished with diaphragms 6½ feet in aperture. The late Dean of Ely walked through the tube with an umbrella up.

The telescope is established between two lofty castellated piers 60 feet high, and is raised to different altitudes by a strong chain-cable attached to the top of the tube. This cable passes over a pulley on a frame down to a windlass on the ground, which is wrought by two assistants. To the frame are attached chain-guys fastened to the counterweights; and the telescope is balanced by these counterweights suspended by chains, which are fixed to the sides of the tube and pass over large iron pulleys. The immense mass of matter weighs about twelve tons.

On the eastern pier is a strong semicircle of cast-iron, with which the telescope is connected by a racked bar, with friction-rollers attached to the tube by wheelwork, so that by means of a handle near the eye-piece, the observer can move the telescope along the bar on either side of the meridian, to the distance of an hour for an equatorial star.

On the western pier are stairs and galleries. The observing gallery is moved along a railway by means of wheels and a winch; and the mechanism for raising the galleries to various altitudes is very ingenious. Sometimes the galleries, filled with observers, are suspended midway between the two piers, over a chasm sixty feet deep.

An excellent description of this immense Telescope at Birr Castle will be found in Mr. Weld’s volume of Vacation Rambles.

Sir David Brewster thus eloquently sketches the powers of the telescope at the close of his able description of the instrument, which we have in part quoted from his Life of Sir Isaac Newton.

We have, in the mornings, walked again and again, and ever with new delight, along its mystic tube, and at midnight, with its distinguished architect, pondered over the marvellous sights which it dis-closes,—the satellites and belts and rings of Saturn,—the old and new ring, which is advancing with its crest of waters to the body of the planet,—the rocks, and mountains, and valleys, and extinct volcanoes of the moon,—the crescent of Venus, with its mountainous outline,—the systems of double and triple stars,—the nebulÆ and starry clusters of every variety of shape,—and those spiral nebular formations which baffle human comprehension, and constitute the greatest achievement in modern discovery.

The Astronomer Royal, Mr. Airy, alludes to the impression made by the enormous light of the telescope,—partly by the modifications produced in the appearance of nebulÆ already figured, partly by the great number of stars seen at a distance from the Milky Way, and partly from the prodigious brilliancy of Saturn. The account given by another astronomer of the appearance of Jupiter was that it resembled a coach-lamp in the telescope; and this well expresses the blaze of light which is seen in the instrument.

The Rev. Dr. Scoresby thus records the results of his visits:

The range opened to us by the great telescope at Birr Castle is best, perhaps, apprehended by the now usual measurement—not of distances in miles, or millions of miles, or diameters of the earth’s orbit, but—of the progress of light in free space. The determination within, no doubt, a small proportion of error of the parallax of a considerable number of the fixed stars yields, according to Mr. Peters, a space betwixt us and the fixed stars of the smallest magnitude, the sixth, ordinarily visible to the naked eye, of 130 years in the flight of light. This information enables us, on the principles of sounding the heavens, suggested by Sir W. Herschel, with the photometrical researches on the stars of Dr. Wollaston and others, to carry the estimation of distances, and that by no means on vague assumption, to the limits of space opened out by the most effective telescopes. And from the guidance thus afforded us as to the comparative power of the six feet speculum in the penetration of space as already elucidated, we might fairly assume the fact, that if any other telescope now in use could follow the sun if removed to the remotest visible position, or till its light would require 10,000 years to reach us, the grand instrument at Parsonstown would follow it so far that from 20,000 to 25,000 years would be spent in the transmission of its light to the earth. But in the cases of clusters of stars, and of nebulÆ exhibiting a mere speck of misty luminosity, from the combined light of perhaps hundreds of thousands of suns, the penetration into space, compared with the results of ordinary vision, must be enormous; so that it would not be difficult to show the probability that a million of years, in flight of light, would be requisite, in regard to the most distant, to trace the enormous interval.

GIGANTIC TELESCOPES PROPOSED.

Hooke is said to have proposed the use of Telescopes having a length of upwards of 10,000 feet (or nearly two miles), in order to see animals in the moon! an extravagant expectation which Auzout considered it necessary to refute. The Capuchin monk Schyrle von Rheita, who was well versed in optics, had already spoken of the speedy practicability of constructing telescopes that should magnify 4000 times, by means of which the lunar mountains might be accurately laid down.

Optical instruments of such enormous focal lengths remind us of the Arabian contrivances of measurement: quadrants with a radius of about 190 feet, upon whose graduated limb the image of the sun was received as in the gnomon, through a small round aperture. Such a quadrant was erected at Samarcand, probably constructed after the model of the older sextants of Alchokandi, which were about sixty feet in height.

LATE INVENTION OF OPTICAL INSTRUMENTS.

A writer in the North-British Review, No. 50, considers it strange that a variety of facts which must have presented themselves to the most careless observer should not have led to the earlier construction of Optical Instruments. The ancients, doubtless, must have formed metallic articles with concave surfaces, in which the observer could not fail to see himself magnified; and if the radius of the concavity exceeded twelve inches, twice the focal distance of his eye, he had in his hands an extempore reflecting telescope of the Newtonian form, in which the concave metal was the speculum, and his eye the eye-glass, and which would magnify and bring near him the image of objects nearly behind him. Through the spherical drops of water suspended before his eye, an attentive observer might have seen magnified some minute body placed accidentally in its anterior focus; and in the eyes of fishes and quadrupeds which he used for his food, he might have seen, and might have extracted, the beautiful lenses which they contain, and which he could not fail to regard as the principal agents in the vision of the animals to which they belonged. Curiosity might have prompted him to look through these remarkable lenses or spheres; and had he placed the lens of the smallest minnow, or that of the bird, the sheep, or the ox, in or before a circular aperture, he would have produced a microscope or microscopes of excellent quality and different magnifying powers. No such observations seem, however, to have been made; and even after the invention of glass, and its conversion into globular vessels, through which, when filled with any fluid, objects are magnified, the microscope remained undiscovered.

A TRIAD OF CONTEMPORARY ASTRONOMERS.

It is a remarkable fact in the history of astronomy (says Sir David Brewster), that three of its most distinguished professors were contemporaries. Galileo was the contemporary of Tycho during thirty-seven years, and of Kepler during the fifty-nine years of his life. Galileo was born seven years before Kepler, and survived him nearly the same time. We have not learned that the intellectual triumvirate of the age enjoyed any opportunity for mutual congratulation. What a privilege would it have been to have contrasted the aristocratic dignity of Tycho with the reckless ease of Kepler, and the manly and impetuous mien of the Italian sage!—Brewster’s Life of Newton.

A PEASANT ASTRONOMER.

At about the same time that Goodricke discovered the variation of the remarkable periodical star Algol, or Persei, one Palitzch, a farmer of Prolitz, near Dresden,—a peasant by station, an astronomer by nature,—from his familiar acquaintance with the aspect of the heavens, was led to notice, among so many thousand stars, Algol, as distinguished from the rest by its variation, and ascertained its period. The same Palitzch was also the first to re-discover the predicted comet of Halley in 1759, which he saw nearly a month before any of the astronomers, who, armed with their telescopes, were anxiously watching its return. These anecdotes carry us back to the era of the Chaldean shepherds.—Sir John Herschel’s Outlines.

SHIRBURN-CASTLE OBSERVATORY.

Lord Macclesfield, the eminent mathematician, who was twelve years President of the Royal Society, built at his seat, Shirburn Castle in Oxfordshire, an Observatory, about 1739. It stood 100 yards south from the castle-gate, and consisted of a bed-chamber, a room for the transit, and the third for a mural quadrant. In the possession of the Royal Astronomical Society is a curious print representing two of Lord Macclesfield’s servants taking observations in the Shirburn observatory; they are Thomas Phelps, aged 82, who, from being a stable-boy to Lord-Chancellor Macclesfield, rose by his merit and genius to be appointed observer. His companion is John Bartlett, originally a shepherd, in which station he, by books and observation, acquired such a knowledge in computation, and of the heavenly bodies, as to induce Lord Macclesfield to appoint him assistant-observer in his observatory. Phelps was the person who, on December 23d, 1743, discovered the great comet, and made the first observation of it; an account of which is entered in the Philosophical Transactions, but not the name of the observer.

Lacaille, who made more observations than all his contemporaries put together, and whose researches will have the highest value as long as astronomy is cultivated, had an observatory at the CollÈge Mazarin, part of which is now the Palace of the Institute, at Paris.

For a long time it had been without observer or instruments; under Napoleon’s reign it was demolished. Lacaille never used to illuminate the wires of his instruments. The inner part of his observatory was painted black; he admitted only the faintest light, to enable him to see his pendulum and his paper: his left eye was devoted to the service of looking to the pendulum, whilst his right eye was kept shut. The latter was only employed to look to the telescope, and during the time of observation never opened but for this purpose. Thus the faintest light made him distinguish the wires, and he very seldom felt the necessity of illuminating them. Part of these blackened walls were visible long after the demolition of the observatory, which took place somewhat about 1811.—Professor Mohl.

NICETY REQUIRED IN ASTRONOMICAL CALCULATIONS.

In the Edinburgh Review, 1850, we find the following illustrations of the enormous propagation of minute errors:

The rod used in measuring a base-line is commonly about ten feet long; and the astronomer may be said truly to apply that very rod to mete the distance of the stars. An error in placing a fine dot which fixes the length of the rod, amounting to one-five-thousandth of an inch (the thickness of a single silken fibre), will amount to an error of 70 feet in the earth’s diameter, of 316 miles in the sun’s distance, and to 65,200,000 miles in that of the nearest fixed star. Secondly, as the astronomer in his observatory has nothing further to do with ascertaining lengths or distances, except by calculation, his whole skill and artifice are exhausted in the measurement of angles; for by these alone spaces inaccessible can be compared. Happily, a ray of light is straight: were it not so (in celestial spaces at least), there would be an end of our astronomy. Now an angle of a second (3600 to a degree) is a subtle thing. It has an apparent breadth utterly invisible to the unassisted eye, unless accompanied with so intense a splendour (e. g. in the case of a fixed star) as actually to raise by its effect on the nerve of sight a spurious image having a sensible breadth. A silkworm’s fibre, such as we have mentioned above, subtends an angle of a second at 3½ feet distance; a cricket-ball, 2½ inches diameter, must be removed, in order to subtend a second, to 43,000 feet, or about 8 miles, where it would be utterly invisible to the sharpest sight aided even by a telescope of some power. Yet it is on the measure of one single second that the ascertainment of a sensible parallax in any fixed star depends; and an error of one-thousandth of that amount (a quantity still unmeasurable by the most perfect of our instruments) would place the star too far or too near by 200,000,000,000 miles; a space which light requires 118 days to travel.

CAN STARS BE SEEN BY DAYLIGHT?

Aristotle maintains that Stars may occasionally be seen in the Daylight, from caverns and cisterns, as through tubes. Pliny alludes to the same circumstance, and mentions that stars have been most distinctly recognised during solar eclipses. Sir John Herschel has heard it stated by a celebrated optician, that his attention was first drawn to astronomy by the regular appearance, at a certain hour, for several successive days, of a considerable star through the shaft of a chimney. The chimney-sweepers who have been questioned upon this subject agree tolerably well in stating that “they have never seen stars by day, but that when observed at night through deep shafts, the sky appeared quite near, and the stars larger.” Saussure states that stars have been seen with the naked eye in broad daylight, on the declivity of Mont Blanc, at an elevation of 12,757 feet, as he was assured by several of the alpine guides. The observer must be placed entirely in the shade, and have a thick and massive shade above his head, else the stronger light of the air will disperse the faint image of the stars; these conditions resembling those presented by the cisterns of the ancients, and the chimneys above referred to. Humboldt, however, questions the accuracy of these evidences, adding that in the Cordilleras of Mexico, Quito, and Peru, at elevations of 15,000 or 16,000 feet above the sea-level, he never could distinguish stars by daylight. Yet, under the ethereally pure sky of Cumana, in the plains near the sea-shore, Humboldt has frequently been able, after observing an eclipse of Jupiter’s satellites, to find the planet again with the naked eye, and has most distinctly seen it when the sun’s disc was from 18° to 20° above the horizon.

LOST HEAT OF THE SUN.

By the nature of our atmosphere, we are protected from the influence of the full flood of solar heat. The absorption of caloric by the air has been calculated at about one-fifth of the whole in passing through a column of 6000 feet, estimated near the earth’s surface. And we are enabled, knowing the increasing rarity of the upper regions of our gaseous envelope, in which the absorption is constantly diminishing, to prove that about one-third of the solar heat is lost by vertical transmission through the whole extent of our atmosphere.—J.D. Forbes, F.R.S.; Bakerian Lecture, 1842.

THE LONDON MONUMENT USED AS AN OBSERVATORY.

Soon after the completion of the Monument on Fish Street Hill, by Wren, in 1677, it was used by Hooke and other members of the Royal Society for astronomical purposes, but abandoned on account of the vibrations being too great for the nicety required in their observations. Hence arose the report that the Monument was unsafe, which has been revived in our time; “but,” says Elmes, “its scientific construction may bid defiance to the attacks of all but earthquakes for centuries to come.” This vibration in lofty columns is not uncommon. Captain Smythe, in his Cycle of Celestial Objects, tells us, that when taking observations on the summit of Pompey’s Pillar, near Alexandria, the mercury was sensibly affected by tremor, although the pillar is a solid.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page