CHAPTER XIII. TIMBER BRIDGES.

Previous

Timber bridges, though probably the most ancient in type, are yet the least durable in any particular instance. The perishable nature of the material when used for exposed construction renders it peculiarly liable to develop defects which quickly put a limit to the life of the structure. In addition to decay in the body of the main members—which may perhaps be long delayed, so that a simple beam bridge may last for many years—there is in more complex designs decay at connections and joints, which proves very detrimental to the integrity of the whole. Water running upon the surface of a member gravitates to its lower end, and, if there be a joint or other connection, settles there, to be productive of lasting mischief. From this cause, together with a very common deficiency of bearing surface relative to the forces to be met, the joints soon develop some movement; working of the structure commences under passing loads, its final destruction being then a question of time only. Each joint is, in fact, in timber bridge construction a source of serious weakness to a degree which has no parallel in well-designed metallic bridges.

Wrought-iron straps to confine the ends of raking members, or for other uses, are liable to crush into the wood, and bolts are apt to enlarge the hole through which they pass. Wood keys, where these are introduced to prevent one timber from sliding upon another, are also prone to develop cracks in the main members, and fibre crippling from excess of stress. All these defects are, however, in timber-work more easily defined than efficiently remedied, as it is barely practicable for any but the harder woods to ensure, for heavy loads, a sufficiency of bearing surfaces.

The most readily detected evidence of deterioration in timber bridges is the sag of its bearing members, or trusses, for the simple reason that if there is no local trouble at the joints, there will probably be no appreciable drop at the centre of the span. The existence of such a depression may, however, be caused in rare instances by the spread of the supporting piers or abutments, particularly in the case of beams trussed by end diagonal rakers and having no tie.

Bridges formed of deep trusses, with the road upon the top, are sometimes found to be wanting in lateral bracing, the result of which is that the main trusses go out of line, leaning considerably one way or the other, being checked only by such rigidity as the joints and floor-beam attachments may have, with possibly some assistance from the end connections of the span.

The decay of piles where entering the ground or water is, of course, a fruitful source of trouble, as also is the sinking of piles, where these are insufficient in number, or have not been well driven in the first place.

A vital difficulty with timber structures generally is the uncertainty that will commonly exist as to how far decay extends in those cases where it has started. Timber does not necessarily show upon its surface the evidences of internal rotting. Memel timber may, indeed, be sometimes found to have become thoroughly unreliable, yet showing no sign of this upon its painted surface. By sounding the wood with a hammer, or by probing, its condition may commonly be ascertained. In cases of doubt, an auger-hole will make it clear as to whether the interior be good or otherwise, as to the particular parts tested; but only as to those parts, leaving it a matter of guesswork as to the remainder.

Fig. 85.

A railway bridge having many of the defects which have been indicated may be quoted as an example. This structure crossed a canal, supported upon piles, some of which were in water, others carrying land spans. The canal span consisted of four trusses, one under each rail, or nearly so, framed in the manner shown in Fig. 85, precise details not, however, being now available. The trusses, apart from deflection under live load, sagged considerably—in one instance, 41/2 inches; one inside truss was also leaning towards the centre line of the bridge as much as 3 inches. One raker, or diagonal strut, was rotted half through its thickness, and many other timbers were badly decayed. The end connections and joints were also in a bad condition. The vertical tie-bolts of the main trusses were all slack. The piles generally, many of which were badly decayed, had sunk and inclined towards one end of the bridge about 4 inches in 7 feet of height, the ground being soft and unreliable.

Movement under a passenger train crawling over the bridge was very appreciable, but not startling. There had been introduced, from time to time, additional timbers and iron ties, with the object of rendering the spans more reliable, but leaving it somewhat difficult to determine the function of the several members. The bridge was, of course, reconstructed.

Fig. 86.

Fig. 87. Fig. 88.

Fig. 87. and Fig. 88.

An instance may here be cited showing how badly distorted a timber structure may become without actually falling. The bridge referred to consisted of three spans of 29 feet, each span having two trusses, between which ran a colliery tramroad, 1-foot 6-inch gauge; the corves running upon this, at 4 feet 6 inch centres, weighed, when full, about 10 cwt. each. The trusses were badly out of shape, the centre span having sagged 51/2 inches, with one truss of the same span nearly 10 inches out of line at the centre. This little bridge, of which some details are shown in Figs. 86, 87, and 88, had been in use about twenty years.

Fig. 89.

A third case which may be named is that of a road bridge, about 12 feet wide, crossing by thirteen spans a shallow river liable to floods. The construction was of a simple character, as indicated in Fig. 89, and consisted of piles supporting trussed beams, which had sagged in some instances over 21/2 inches. The bridge had, some years previous to the author’s inspection, been heavily repaired, many new strut and stretching pieces having been introduced, the piles also being reinforced or renewed. Five years before, a traction engine, said to weigh 5 tons, had passed across the bridge in safety; but the author noticed that a coal wagon, which, with the horse, weighed about 50 cwt., when walked slowly over set up much movement. This bridge had been in use nearly thirty years, and was very much out of line from end to end.

Though timber bridges cannot at the best be considered durable, yet, by attention to certain points in design and construction, their length of life may be materially enhanced. Every cut across the grain may be considered an element of weakness by exposing the material to quicker decay, for which reason the number of ends, or of joints, should be reduced to a minimum. An additional reason for reducing the number of joints or other connections is the liability of these to develop movement, as already stated, the yield of any one joint, being the cause of movement in others, which might, but for this, have remained close. These considerations lead to the conclusion that fewness of parts is, in timber construction, as in structural work generally, an excellent principle to observe. Mortising, elaborate scarf joints, recessing, or any cutting into the timber which is not essential, should be avoided, the simplest forms of connection being preferable, if at all suitable. If a step or butt surface is wanted for any member, it is commonly better to provide this by a cleat or other added piece, rather than by cutting into the timber butted against.

A complicated joint formed in the body of main timbers can only be renewed by renewal of the timber itself, whereas by the method indicated the joint is readily tightened, or re-made, without involving the main member. Bearing surfaces should be ample, straps of liberal dimensions, and bolts large (with good washers), both for the sake of bearing surface in the holes, and reduction of any liability to bend under cross-stress. In trusses of the form shown in Figs. 85 and 86, it is desirable to introduce diagonal members in the middle bay, even though it may appear that the stiffness of the main beams is sufficient to render this unnecessary as a matter of strength, as without these there is apt to be, under rolling load, a slight distortion, leading to working of the joints and free entry of moisture. Lateral bracings should also, for much the same reasons, be introduced, even though they may not appear necessary in the new structure, with joints all close and effective.

Projecting ends of timbers should be carried out well beyond the requirement of strength or bearing, in order to ensure a liberal margin for that decay in the end fibres which commonly develops. Timbers resting upon abutments, or running into confined spaces, should be arranged for free ventilation and ready drying. Occasionally joints at the lower ends of timbers are protected by lead or zinc flashings to prevent water running into them, a method which should have some protective value. Whatever measures may be adopted, whether in the design or execution of timber bridge-work, will, however, be but little effective, if the timber itself is not good of its kind, and well seasoned.

Creosoting to be useful should be thorough and something more than skin deep. The timber itself should be well dried before treatment.

The repair of timber bridges very largely consists in the renewal of decaying timbers, where this is practicable, or in adding supplementary pieces where the old cannot conveniently be displaced. Joints may be tightened up by hard-wood wedges, properly secured to prevent slacking back, all bolts being also screwed up tight, perhaps some additional being introduced.

Piles standing in water, which have decayed, may be strengthened by driving other piles between the old, or on either side, but not of necessity opposite to them, and by means of waling timbers bolted to the old piles, put in a position to take load, either by the walings resting upon their tops, or being bolted to them. Piles decayed where entering solid ground may generally be strengthened by bolting on supplementary timbers to reach well above and below the decayed part, or by cutting out the bad length, introducing a new piece, and fishing the butt-joints in a proper manner. But all remedial measures have generally to be considered with reference to cost, as compared with the probable increase of life of the structure. With a bridge in an advanced state of decrepitude, such repairs may prove anything but economical, and at the best defer reconstruction but a very moderate length of time.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page