Instructive lessons are to be had from a study of the various alterations in form to which metallic bridgework is liable, which alterations may be due simply to the development of stress of ordinary amount, and are then generally small; or to abnormal stresses, the result of some distortion in the bridge structure itself not originally intended, and possibly extreme. In addition to these there may be deformations due to settlement, to “creeping” of parts of the structure relative to the rest, to temperature changes, to rust, and to original bad workmanship. In any instance quoted below the methods adopted to ascertain the amounts of such alterations were quite simple, even crude; but as care was exercised, and no attempt made to measure any very minute changes, the results may be accepted as practically correct. Dismissing for the present changes of form such as are to be expected, and touched upon in other places in this work, with respect to the particular parts of bridge structures affected by them, a few instances will be adduced of alterations which, though not very surprising, are such as in the design of the work are hardly likely, in most instances, to have been contemplated. A case has already been referred to in which, owing to eccentric loading of main girders, these were, as to the top flanges, flexed sideways a considerable amount. It is proposed to supplement this by further remarks relative to somewhat similar cases. A like effect is frequently to be If trough girders must be used, the better plan is to connect the two sides by a continuous bottom plate, the trough thus formed being properly drained, if the timber is not bedded in asphalt concrete; or to introduce stiff diaphragms at intervals beneath timbers, if the depth suffices. In the case just quoted the curvature of the top members of the girders was inwards, but in the instance given below, of twin girders 26 feet effective span, with longitudinal timbers between, resting, as before, upon the inner ledge formed by the bottom flanges, the curvature was observed in three out of four girders to be 1/2 inch in a contrary direction, the fourth remaining straight. Fig. 48. Fig. 49. Fig. 48. and Fig. 49. An inspection of the accompanying section, Fig. 49, will, perhaps, render the reason evident when it is noticed that the top members are very unsymmetrical in form, the effect of this being to give these members, under stress, a strong tendency to flex outwards, apparently more than sufficient to counteract the tendency of an eccentric application of load on the bottom flange to bring them inwards. It is to be observed that the eccentricity of the flange appears to be not materially in excess, and is actually so, only because the thinness of the web—1/4 inch—renders it incompetent to keep the bottom flange up to its work, and so secure the full effect of the eccentric loading in limiting the outward tendency, To give one other example of the consequences of eccentric loading, a bridge of 48 feet effective span may be quoted. This bridge carried four lines of way supported by five main girders, trussed by kicking-struts in such a manner as to form a bastard arch. A part section and plan are given in Figs. 50 and 51. Fig. 50. Fig. 51. The floor consisted of Lindsay’s troughing resting upon the lower flanges of the main girders, the three middle girders, subject to eccentric loading, sometimes on one side, sometimes on the other, were, with dead load only, straight; but the two outer girders, liable to loading only on one side, had, under repeated applications of such a load, assumed a permanent curve towards the rails—13/16 inch in one case and 1 inch in the other—which curvature, no doubt, increased when a live load came upon the contiguous roads, though this was not measured. It should be remarked in passing that, owing to settlement and the canting of the abutments, the three middle girders were also “down”—in one case 3/4 inch. The girders, with one near road loaded, deflected 1/8 inch—greatly less than would have been the case had the main girder not been trussed. The bridge, at the time these particulars were obtained, had been in existence six years. Deformations due to settlement may be very considerable. The author recalls two instances affecting continuous girders. In the first of these, a bridge twenty years old, of two spans of about 50 feet each, and with girders 4 feet 6 inches deep, the centre pier had sunk 4 inches, reducing the spans, as respects the dead load, practically to the condition of simple In the second case, also of two openings of about 55 feet each, with girders 8 feet deep, one abutment had sunk about 3 inches, more than doubling the stresses over the centre pier. It is manifest that continuous girders should only be adopted where settlement of the supporting points is not likely to occur to any material degree. If this cannot be relied upon, the theoretical flange sections may hardly be worked to with any prudence; it being then advisable to make a liberal allowance for settlement stresses, in which case any economical advantage that should exist will probably disappear. It is, however, to be acknowledged that so long as the girders are in touch, under dead load, with the bearings intended to support them, the stresses due to a live load are unaltered, the principal effect in this case being that the variation in stress due to the live load ranges between limits that are higher or lower in the scale of stress than is the case with bearings undisturbed; still, if it is desired that the maximum stress shall not exceed, say, 6 tons per square inch, it can hardly be a matter of indifference that settlement shall induce a maximum of, perhaps, 10 tons, as in that case the stress must be 4 tons nearer the limit of statical strength. Before leaving this matter it may be well to point out that in the case of continuous girders of uniform section a moderate settlement of the piers may even be advantageous by reducing the moments over the piers, and possibly making them equal to those obtaining near the middle of the spans, in which case there will be less inequality of stress in the booms and a reduction of the maximum stress. Bridges consisting of simple main girders connected by cross-girders may be very prejudicially affected by unequal settlement; for instance, if one girder bearing settles more than the others, a twist is put upon the structure very trying Instances of deformations due to the creeping of some part of the structure away from its work, are within the author’s knowledge, rare; except in the case of the ends of main girders in skew bridges, already referred to. Distortion, the result of temperature changes, is frequently to be observed in any considerable length of girder flange or parapet where there is not freedom of movement, unless due provision is made to check it. It is quite common to see parapets out of line, either because the ends are not free, or because the light work of the parapet being more exposed to the sun’s rays than the girder work to which the lower part is attached, expanding to a greater degree, is subject to considerable compressive force, and buckles under its influence. The cure for this condition is obviously to provide such parapets with free or flexible joints at moderate distances apart, or to make the parapet sufficiently stiff to take the stresses developed, without crippling. A parapet may also go out of shape if directly attached to the top flange of a girder liable to heavy loading, particularly if the girder be shallower than the parapet, simply by its inability to maintain truth of line under the compressive stress, which it shares with the top flange of the girder proper. Rivets spaced too far apart, by allowing the plates or other parts to spring open slightly, and permitting moisture to enter, results in the growth of rust, which, as it swells in forming, forces the parts asunder, and may set up considerable stress. Flat bars riveted together by rivets spaced 12 inches apart may from this cause be forced asunder, as much as 1/2 inch, sufficient to set up a stress, with any practicable thickness of bar, much exceeding the elastic limit. Local distortions may occur as the result of imperfect workmanship or careless erection, causing quite possibly very severe local stresses; or girder flanges may be out of straight as a result of riveting up along one side first, instead of advancing the riveting simultaneously along the whole breadth of the flange. The injury done by drifting is well known, and there is reason to think considerable damage is sometimes done to girderwork during manufacture by rough treatment to make the work come together; but the author has little to offer with respect to these matters that is not common knowledge. It may, however, be pointed out in passing that a bridge upon the design of which great care has been expended, with the idea that theoretical propriety shall not be violated, may be completely spoiled in this respect by careless construction. Fortunately, both steel and wrought iron, if of good quality, are long suffering. Incompetent erection will sometimes result in the true girder camber not appearing, or in differences as between girders supposed to be similar. This is not, of course, a deformation in the sense in which the word has previously been used, but it is desirable to bear the fact in mind as a possible cause of defective camber in dealing with questions of deformation. The foregoing has reference chiefly to alterations of form in bridgework of wrought iron or steel, but a case of considerable interest is that of a cast-iron arched structure, of which the author made a very complete examination. Fig. 53. This bridge, built in 1839, and carrying two lines of railway, consisted of three spans, 100 feet each, of 10 feet rise, made up of four inner and two outer ribs, each rib being in three nearly equal parts; the floor was of timber, Movements of Cast-Iron Ribs under Live Load in a Bridge
The particulars for spans 2 and 3 were obtained with the instrument set up on the pier between these spans. The tremor of this pier was such that no useful readings for lateral movement could be obtained. Further, as the rolling load came upon these spans, the effect was to rock the pier to an extent vitiating the readings for vertical displacement; but by sighting upon the fixed abutment, and observing the amount of this rocking, suitable corrections were made in the apparent rib movements. The figures given in the table are thus corrected. The pier rocking was equivalent, as an extreme, to an inclination from the vertical of 1 in 3200. An attempt to measure the horizontal movement of the pier-top |