Considerable latitude is observable in the practice of engineers in the use of rivets. Numberless experiments to determine the resistance of riveted connections have from time to time been made, but these are not to be considered by themselves as final, when the results of experience in actual construction, are available for further enlightenment. The class of workmanship so largely influences the degree in which rivets will maintain their integrity that it is only by the observation of a large number of cases, including all degrees of workmanship, that any reliable conclusions may be drawn. In this respect laboratory experiments have an apparent advantage, as the conditions may be kept sensibly the same; but, on the other hand, no such investigation reproduces the circumstances of actual use, which alone must in the end determine the utility of any inquiry for practical application. The author has studied the particulars of a number of cases to ascertain under what conditions as to stress, having due regard to the effects of vibration, rivets will remain tight, or become loose. Every loose rivet that may be found cannot, of course, be taken as being due to excessive stress; the more frequent cause is indifferent work, evidenced by the fact that neighbouring rivets will frequently be found quite sound, though the failure of some will cause a greater stress upon the remainder. When rivets loosen as the direct result of over-stress, it is usually by compression of the shank and In estimating stresses at which rivets have remained tight, or loosened, as the case may be, examples have generally been chosen in which there could be no reasonable doubt as to the amount of those stresses by the ordinary methods of computation. This is clearly most important, as, if any appreciable uncertainty remained as to the degree of stress, the results deduced would be of little value. For this reason those instances in which the loads upon girders, or parts of girders, may find their way to the supports by more than one route, are to be regarded with caution, as are those in which full loading possibly never obtains, but which may, on the other hand, perhaps have been frequent. The working diameter of the rivet as it fills the hole has been used in making the computations; in some cases from direct measurement from particular rivets, in others with a suitable allowance for excess diameter of hole, according to the class of work under consideration. Dealing first with main girders, it may be said that rivets attaching the webs of plate girders to the flange angles rarely loosen, though subject to considerable stress. In illustration of this may be named a bridge for two lines of way, 85 feet effective span, having two main girders with plate webs, and cross-girders resting on the top flanges, previously referred to (see Fig. 26). The girders, which were 6 feet 9 inches deep, had a bearing upon the abutments of 4 feet; the rivets were 7/8 inch in diameter and 4 inches pitch. There is in a case of this kind It is by no means uncommon to find cases of rivets in main girders taking 11 tons per square inch bearing pressure—occasionally more—and remaining tight. As furnishing an instructive, though slightly ambiguous, instance of rivets in single shear, may be cited a bridge not greatly less than that just referred to, of about 65 feet span, carrying two lines of way, there being two outer and one centre main girder of multiple lattice type, with cross-girders in one length 4 feet apart, riveted to the bottom booms of the main girders; these rivets, by the way, were in tension. The floor was plated, the road consisting of stout timber longitudinals, chairs, and rails (Fig. 29). It should be noted that there is in this case some difficulty in ascertaining the precise behaviour of the cross-girders, affecting the proportion of load carried by the outer and the inner main girders. Strict continuity of all the cross-girders could only obtain if the deflection of the main girders were such as to keep the three points of suspension of each cross-girder in the same straight line. A close inquiry showed that this was very far from being the case, and that while each cross-girder at the centre of the bridge would, under load, by relative depression of the middle point of With both roads carrying engine loads equal to those coming upon the bridge, the author estimates that for the centre main girder the shear on the rivets of the end diagonals, secured by one rivet only, was 14·9 tons per square inch, and the bearing pressure 16·3 tons; the flange stress being 7·1 tons per square inch net. The outer main girders are most heavily stressed when but one road, next to the outer girder considered, carries live load. For this condition the stresses work out at 9 tons per square inch shear on the rivets of the end diagonals, and 9 tons bearing pressure, the flange stress being 5·7 tons per square inch on the net section. Without intending to throw any doubt upon the substantial truth of these results, it must be admitted that instances of greater simplicity of stress determination are much to be preferred. For purposes of comparison, but not as having any other value, the results have also been The cross-girders were moderately stressed, and the tension on the rivets attaching them to the main girders probably did not exceed 3 tons per square inch. It should be pointed out that the traffic over the bridge was small. The centre main girder but seldom bore its full load, though at all times liable to receive it. Much importance cannot, therefore, be attached to the results for this girder, other than as showing how a structure may stand for many years, though liable at any time to the development of stresses which would commonly be regarded as destructive, or nearly so. Examples of Rivet Stresses, etc., in Lattice Girders.
The material and workmanship of the bridge were good. The rivets of the centre girder end diagonals, 1 inch in diameter, were originally 7/8 inch, but on becoming loose were Apart from looseness of rivets, the general appearance and behaviour of the bridge, which had been in existence about twenty years, was not suggestive of any weakness. Of smaller girders, an example showing the necessity for care in discriminating, if it be possible, between looseness of rivets resulting from over-stress and that due to other influences may first be quoted. Two trough girders, of 11 feet effective span, each of the section shown in Fig. 30, 111/2 inches deep at the ends, 14 inches at the middle, with 1/4-inch webs, and rivets 3/4 inch in diameter, of 41/2-inch pitch, showed certain defects, of which one, it may be incidentally mentioned, was a cracked web (Fig. 31). From the nature of the arrangement the lower web rivets, which were loose, would receive the first shock of the load coming upon the span, but there were evidences indicative of original bad work. The angle bars gaped, suggesting that these had first been riveted to the bottom plate, and left sufficiently wide to allow the web to be afterwards inserted, the rivets failing to pull the work close, and then readily working loose. Here there is considerable uncertainty as to how much of the loosening is to be attributed to bad work, and how much to stress. It may, however, be remarked that whatever bearing stress was the ultimate result of the load hammering on the lower angle flanges, loosening rivets never perhaps really tight, the stress of 7 tons per square inch bearing pressure on the upper rivets, though aggravated by considerable An instance of undoubted excessive bearing pressure was found in the cross-girders of a bridge, mentioned on p. 15, of which so many web plates were cracked. This bridge, carrying two lines of way, had outer main girders, and long cross-girders with 1/4-inch webs and 3/4-inch rivets, To take another case relating to a floor system of extremely bad design (Fig. 33). The main girders were 11 feet apart, 35 feet span, the floor having two cross-girders only, spaced at 11 feet 3 inches, and 9 inches deep, supporting hog-backed trough longitudinals. The cross-girders were at their ends but 63/4 inches deep, the distance from the bearing of cross-girders to centre of longitudinals carrying a rail being 2 feet 10 inches, in which length were eight rivets in the web and angles at the top, and six at the bottom, all 3/4 inch in diameter. The shear stress on the upper rivets works out at 7·3 tons per square inch on each shear surface, the bearing pressure 20·6 tons per square inch. On the lower rivets the In illustration of the behaviour of rivets in the ends of long cross-girders, both shallow and weak, and many years in use under heavy traffic, may be cited connections having end angle bars to the cross-girders, with six rivets through the web of main girders. The bearing pressure worked out at 7·8 tons per square inch. Many rivets were loose, but it should be remarked that the workmanship was not of the best class, and the cross girders flexible: a characteristic very trying to end rivets, and inducing a stretch in some, already referred to as a possible cause of loosening. This will be apparent if the probable end slope of weak girders be considered. The author concludes that this inclination should not, for ordinary cases, exceed 1 in 250; but the ratio must largely depend upon the degree of rigidity of the part to which the connection is made. It is commonly regarded as bad practice to submit rivets to tension, yet this is frequently, though unintentionally, permitted in end attachments, without any attempt to limit the amount of tension. With suitable restrictions, there appears no serious objection to rivet tension for many situations. Another instance of cross-girder end connections of a different type is illustrated in Fig. 34. The main girders of the bridge were 12 feet apart, each cross-girder end carrying its share of the half of one road. The two cases of cross-girder ends given are both rather exceptional in character, and in each case the defects appear to be due to general bad design and workmanship rather than to any serious excess of bearing pressure. This may be illustrated by taking the common case of cross-girders, 2 feet deep, carrying two roads, and having end angle irons riveted to the web and stiffeners of the main girders by ten rivets in single shear at each end. In this example, which Some sketches of rivets taken from old bridges have already been given in connection with the cases to which they belong; a few others are here shown (Figs. 36 to 40) to further illustrate what may be the actual condition of rivets after some years’ use, and how different from the ideal rivet upon which calculations are based. These are, however, bad instances. It should be noticed that rivets may, if in double shear, be loose in the middle thickness, due to enlargement of the hole in the central part and compression of the rivet, and yet show no sign of this by testing with the hammer. There is, however, generally marked evidence of another kind in It may be well to give here a summarised statement of the results already named, for purposes of ready reference. These by themselves are not sufficient to enable working stresses to be deduced, though they are instructive. The Examples of Rivet Stresses.
It is probable that the fact of a rivet being in single or in double shear largely affects its ability to resist the effects of bearing pressure, as commonly estimated. In the first case, the rivet-shank must bear heavily on the half-thickness of the plates or bars through which it passes, rather than on the whole thickness; and it is to be supposed that under this condition it will work loose at a lower average stress than if it were in double shear, and the pressure better distributed. The author has no very definite information in support of this contention, but suggests that for double shear the permissible bearing pressure may probably be as much as 50 per cent. greater than for rivets in single shear; the difference being made rather in the direction of increasing the allowable load on double-shear rivets, than in reducing that upon rivets in single shear. The propriety of this is evident when it is considered that the practice has commonly been to make no distinction, so that whatever bearing pressures are found to be sufficient for both cases may be increased for those capable of taking the greater amount. Figs. 41 and 42, here given, illustrate the behaviour of rivets under the two conditions. With reference to the amounts of the stresses to which rivets may be subject, the author concludes, as a result of his experience, coupled with a consideration of known laboratory tests, that for all dead load these may be quite prudently higher than is frequently taken. For iron the shear stress to be 10 per cent. less than the stress of parts joined; and the bearing pressure—for single-shear rivets, 20 per cent.; and for double-shear rivets, 80 per cent. greater. For ordinary mild steel the shear stress to be 20 per cent. less than the stress in parts connected, and the bearing pressure equal to it for single-shear rivets; and 50 per cent. more for rivets in double shear, though the two latter values may probably approach those for wrought iron in steel of the higher grades sometimes used in bridge-work. For live load, or part live and part dead load, the same rules may apply, the reduction of the nominal working stress, arrived at by any one of the methods in use which may be adopted, affecting both the parts connected, and the rivets connecting them. For reverse stresses it is advisable to keep the shear stress in any rivet so low, say 3 tons per square inch, that the frictional resistance of the parts gripped by the rivets shall be sufficient to prevent any tendency to slip under the influence of the smaller of the two forces to which the part is liable, to insure that, if brought to a bearing in one direction by the greater force, it shall not go back with reversal of stress. This requirement may be open to some question with respect to good machine-riveted work, but for hand-riveted connections it may certainly be adopted with wisdom. The following table will show at a glance how the stresses proposed vary with the unit stresses governing the main sections. Proposed Table of Rivet Stresses.
It may be objected that the shear stresses in the proposed table are somewhat high for wrought iron and steel. This feature is intentional, and is supported by the consideration Cases of loose rivets in main girders over 50 feet span, due to any cause but bad work, are extremely rare, unless resulting from the action of some other part of the structure. It may be stated broadly that for railway bridges of less than perfect design, the nearer the rail, the more loose rivets, generally at connections. This is, no doubt, largely due to the severe impact of the load, the effects of which are greater near the rail, both because of the small proportion of dead Any arrangement which favours the gradual acceptance of stress by one part from another will contribute to the integrity of riveted connections, and lessen the liability of the material to develop faults. In other branches of design this is well recognised, but appears in much old bridge work to have been entirely overlooked. Bridges carrying public roads very seldom furnish examples of loose rivets; the conditions are generally much more favourable, impact being practically absent, full loading infrequent, and the proportion of dead load to live, high. It is, perhaps, hardly necessary to insist upon rivets being, apart from mere considerations of strength, sufficiently near together to insure close work and exclude moisture. Outside edge seams should never be more widely spaced than 16 times the thickness of the plates; 12 thicknesses apart is better. In the case of angle, tee, and channel sections, the greater stiffness of the section makes wider spacing allowable up to, say, 20 times the thickness; but this must be governed largely by the amount of riveting required to pull the parts close together. Where more than four thicknesses are to be gripped by the rivets, 3/4 inch in diameter is hardly sufficient to insure tight work, and quite unsuitable if the plates exceed 5/8 inch thick. |