OF THE PRESENT STATE OF CHEMISTRY. To finish this history it will be now proper to lay before the reader a kind of map of the present state of chemistry, that he may be able to judge how much of the science has been already explored, and how much still remains untrodden ground. Leaving out of view light, heat, and electricity, respecting the nature of which only conjectures can be formed, we are at present acquainted with fifty-three simple bodies, which naturally divide themselves into three classes; namely, supporters, acidifiable bases, and alkalifiable bases. The supporters are oxygen, chlorine, bromine, iodine, and fluorine. They are all in a state of negative electricity: for when compounds containing them are decomposed by the voltaic battery they all attach themselves to the positive pole. They have the property of uniting with every individual belonging to the other two classes. When they combine with the acidifiable bases in certain proportions they constitute acids; when with the alkalifiable bases, alkalies. In certain proportions they constitute neutral bodies, which possess neither the properties of acids nor alkalies. The acidifiable bases are seventeen in number; namely, hydrogen, azote, carbon, boron, silicon, sul The alkalifiable bases are thirty-one in number; namely, potassium, sodium, lithium, barium, strontium, calcium, magnesium, aluminum, glucinum, yttrium, cerium, zirconium, thorium, iron, manganese, nickel, cobalt, zinc, cadmium, lead, tin, bismuth, copper, mercury, silver, gold, platinum, palladium, rhodium, iridium, osmium. The compounds which these bodies form with oxygen, and the other supporters, constitute all the alkaline bases or the substances capable of neutralizing the acids. Some of the acidifiable bases, when united to a certain portion of oxygen, constitute, not acids, but bases or alkalies. Thus the green oxides of chro The opinion at present universally adopted by chemists is, that the ultimate particles of bodies consist of atoms, incapable of further division; and these atoms are of a size almost infinitely small. It can be demonstrated that the size of an atom of lead does not amount to so much as 1/888,492,000,000,000 of a cubic inch. But, notwithstanding this extreme minuteness, each of these atoms possesses a peculiar weight and a peculiar bulk, which distinguish it from the atoms of every other body. We cannot determine the absolute weight of any of them, but merely the relative weights; and this is done by ascertaining the relative proportions in which they unite. When two bodies unite in only one proportion, it is reasonable to conclude that the compound consists of 1 atom of the one body, united to 1 atom of the other. Thus oxide of bismuth is a compound of 1 oxygen and 9 bismuth; and, as the bodies unite in no other proportion, we conclude that an atom of bismuth is nine times as heavy as an atom of oxygen. It is in this way that the atomic weights of the simple bodies have been attempted to be determined. The following table exhibits these weights referred to oxygen as unity, and deduced from the best data at present in our possession:
The atomic weights of these bodies, divided by their specific gravity, ought to give us the comparative size of the atoms. The following table, constructed in this way, exhibits the relative bulks of these atoms which belong to bodies whose specific gravity is known:
We have no data to enable us to determine the shape of these atoms. The most generally received opinion is, that they are spheres or spheroids; though there are difficulties in the way of admitting such an opinion, in the present state of our knowledge, nearly insurmountable. The probability is, that all the supporters have the property of uniting with all the bases, in at least three proportions. But by far the greater number of these compounds still remain unknown. The greatest progress has been made in our knowledge of the compounds of oxygen; but even there much remains to be investigated; owing, in a great measure, to the scarcity of several of the bases which prevent chemists from subjecting them to the requisite number of experiments. The compounds of chlorine have also been a good deal investigated; but bromine and iodine have been known for so short a time, that chemists have not yet had leisure to contrive the requisite processes for causing them to unite with bases. The acids at present known amount to a very
The acids from the vegetable and animal kingdoms (not reckoning a considerable number which consist of combinations of sulphuric acid with a vegetable or animal body), amount to about forty-three: so that at present we are acquainted with very nearly eighty acids which contain oxygen as an essential constituent. The other classes of acids have been but imper
These constitute (such of them as can be procured) some of the most useful and most powerful chemical reagents in use. There is also another compound body, cyanogen, similar in its characters to a supporter: it also forms various acids, by uniting to hydrogen, chlorine, oxygen, sulphur, &c. Thus we have
We know, also, fluosilicic acid and fluoboric acids. If to these we add fulminic acid, and the various sulphur acids already investigated, we may state, without risk of any excess, that the number of acids at present known to chemists, and capable of uniting to bases, exceeds a hundred. The number of alkaline bases is not, perhaps, so great; but it must even at present exceed seventy; and it will certainly be much augmented when chemists turn their attention to the subject. Now every base is capable of uniting with almost every acid,9 in all probability in at least three different The animal and vegetable kingdoms present a still more tempting field of investigation. Animal and vegetable substances may be arranged under three classes, acids, alkalies, and neutrals. The class of acids presents many substances of great utility, either in the arts, or for seasoning food. The alkalies contain almost all the powerful medicines that are drawn from the vegetable kingdom. The neutral bodies are important as articles of food, and are applied, too, to many other purposes of first-rate utility. All these bodies are composed (chiefly, at least) of hydrogen, carbon, oxygen, and azote; substances easily procured abundantly at a cheap rate. Should chemists, in consequence of the knowledge acquired by future investigations, ever arrive at the knowledge of the mode of forming these principles from their elements at a cheap rate, the prodigious change which such a discovery would make upon the state of society must be at once evident. Mankind would be, in some measure, independent of climate and situation; every thing could be produced at pleasure in every part of the earth; and the inhabitants of the warmer regions would no longer be the exclusive possessors of comforts and conveniences to which those in less favoured regions of the I must say a few words upon the application of chemistry to physiology before concluding this imperfect sketch of the present state of the science. The only functions of the living body upon which chemistry is calculated to throw light, are the processes of digestion, assimilation, and secretion. The nervous system is regulated by laws seemingly quite unconnected with chemistry and mechanics, and, in the present state of our knowledge, perfectly inscrutable. Even in the processes of digestion, assimilation, and secretion, the nervous influence is important and essential. Hence even of these functions our notions are necessarily very imperfect; but the application of chemistry supplies us with some data at least, which are too important to be altogether neglected. The food of man consists of solids and liquids, The saliva is a liquid expressly secreted for this purpose, and the quantity certainly does not fall short of ten ounces in the twenty-four hours: indeed I believe it exceeds that amount: it is a liquid almost as colourless as water, slightly viscid, and without taste or smell: it contains about 3/1000 of its weight of a peculiar matter, which is transparent and soluble in water: it has suspended in it about 1·4/1000 of its weight of mucus; and in solution, about 2·8/1000 of common salt and soda: the rest is water. From the mouth the food passes into the stomach, where it is changed to a kind of pap called chyme. The nature of the food can readily be distinguished after mastication; but when converted into chyme, it loses its characteristic properties. This conversion is produced by the action of the eighth pair of nerves, which are partly distributed on the stomach; for when they are cut, the process is stopped: but if a current of electricity, by means of a small voltaic battery, be made to pass through the stomach, the process goes on as usual. Hence the process is obviously connected with the action of electricity. A current of electricity, by means of the nerves, seems to pass through the food in the stomach, and to decompose the common salt which is always mixed with the food. The muriatic acid is set at liberty, The chyme passes through the pyloric orifice of the stomach into the duodenum, the first of the small intestines, where it is mixed with two liquids, the bile, secreted by the liver, and the pancreatic juice, secreted by the pancreas, and both discharged into the duodenum to assist in the further digestion of the food. The chyme is always acid; but after it has been mixed with the bile, the acidity disappears. The characteristic constituent of the bile is a bitter-tasted substance called picromel, which has the property of combining with muriatic acid, and forming with it an insoluble compound. The pancreatic juice also contains a peculiar matter, to which chlorine communicates a red colour. The use of the pancreatic juice is not understood. During the passage of the chyme through the small intestines it is gradually separated into two substances; the chyle, which is absorbed by the lacteals, and the excrementitious matter, which is gradually protruded along the great intestines, and at last evacuated. The chyle, in animals that live on vegetable food, is semitransparent, colourless, and without smell; but in those that use animal food it is white, slightly similar to milk, with a tint of pink. When left exposed to the air it coagulates as blood does. The coagulum is fibrin. The liquid portion contains albumen, and the usual salts that exist in the blood. Thus the chyle contains two of the constituents of blood; namely, albumen, which perhaps may be formed in the stomach, and fibrin, which is formed in the small intestines. It still wants the third constituent of blood, namely, the red globules. From the lacteals the chyle passes into the tho The lungs are the organs of breathing, a function so necessary to hot-blooded animals, that it cannot be suspended, even for a few minutes, without occasioning death. In general, about twenty inspirations, and as many expirations, are made in a minute. The quantity of air which the lungs of an ordinary sized man can contain, when fully distended, is about 300 cubic inches. But the quantity actually drawn in and thrown out, during ordinary inspirations and expirations, amounts to about sixteen cubic inches each time. In ordinary cases the volume of air is not sensibly altered by respiration; but it undergoes two remarkable changes. A portion of its oxygen is converted into carbonic acid gas, and the air expired is saturated with humidity at the temperature of 98°. The moisture thus given out amounts to about seven ounces troy, or very little short of half an avoirdupois pound. The quantity of carbonic acid formed varies much in different individuals, and also at different times in the day; being a maximum at twelve o'clock at noon, and a minimum at midnight. Perhaps four of carbonic acid, in every 100 cubic inches of air breathed, may be a tolerable approach to the truth; that is to say, that every six respirations produce four cubic inches of carbonic acid. This would amount to 19,200 cubic inches in twenty-four hours. Now the weight of 19,200 cubic inches of carbonic acid gas is 18·98 troy ounces, which contain rather more than five troy ounces of carbon. These alterations in the air are doubtless con The temperature of the human body in a state of health is about 98° in this country; but in the torrid zone it is a little higher. Now as we are almost always surrounded by a medium colder than 98°, it is obvious that the human body is constantly giving out heat; so that if it did not possess the power of generating heat, it is clear that its temperature would soon sink as low as that of the surrounding atmosphere. It is now generally understood that common combustion is nothing else than the union of oxygen gas with the burning body. The substances commonly employed as combustibles are composed chiefly of carbon and hydrogen. The heat evolved is proportional to the oxygen gas which unites with these bodies. And it has been ascertained that every 3¾ cub¾ic inches of oxygen which combine with carbon or hydrogen occasion the evolution of 1° of heat. There are reasons for believing that not only carbon but also hydrogen unite with oxygen in the lungs, and that therefore both carbonic acid and The specific heat of arterial blood is somewhat greater than that of venous blood. Hence the reason why the temperature of the lungs does not become higher by breathing, and why the temperature of the other parts of the body are kept up by the circulation. The blood seems to be completed in the kidneys. It consists essentially of albumen, fibrin, and the red globules, with a considerable quantity of water, holding in solution certain salts which are found equally in all the animal fluids. It is employed during the circulation in supplying the waste of the system, and in being manufactured into all the different secretions necessary for the various functions of the living body. By these different applications of it we cannot doubt that its nature undergoes very great changes, and that it would soon become unfit for the purposes of the living body were there not an organ expressly destined to withdraw the redundant and useless portions of that liquid, and to restore it to the same state that it was in when it left the lungs. These organs are the kidneys; through which all the blood passes, and during its circulation through which the urine is separated from it and withdrawn altogether from the body. These organs are as necessary for the The quantity of urine voided daily is very various; though, doubtless, it bears a close relation to that of the drink. It is nearly but not quite equal to the amount of the drink; and is seldom, in persons who enjoy health, less than 2 lbs. avoirdupois in twenty-four hours. Urine is one of the most complex substances in the animal kingdom, containing a much greater number of ingredients than are to be found in the blood from which it is secreted. The water in urine voided daily amounts to about 1·866lbs. The blood contains no acid except a little muriatic. But in urine we find sulphuric, phosphoric, and uric acids, and sometimes oxalic and nitric acids, and perhaps also some others. The quantity of sulphuric acid may be about forty-eight grains daily, containing nineteen grains of sulphur. The phosphoric acid about thirty-three grains, containing about fourteen grains of phosphorus. The uric acid may amount to fourteen grains. These acids are in combination with potash, or soda, or ammonia, and also with a very little lime and magnesia. The common salt evacuated daily in the urine amounts to about sixty-two grains. The urea, a peculiar substance found only in the urine, amounts perhaps to as much as 420 grains. It would appear from these facts that the kidneys possess the property of converting the sulphur and phosphorus, which are known to exist in the blood, into acids, and likewise of forming other acids and urea. The quantity of water thrown out of the system by the urine and lungs is scarcely equal to the amount of liquid daily consumed along with the food. But there is another organ which has been Such is an imperfect sketch of the present state of that department of physiology which is most intimately connected with Chemistry. It is amply sufficient, short as it is, to satisfy the most careless observer how little progress has hitherto been made in these investigations; and what an extensive field remains yet to be traversed by future observers. THE END. C. WHITING, BEAUFORT HOUSE, STRAND. |