The new form of energy, for which there are two names—to wit, the Roentgen ray and the X-ray—is radiated from a highly exhausted discharge tube, which may be energized by an induction coil or other suitable electrical apparatus, such as a Holtz or a Wimshurst electrical machine. § 106. The principle underlying the construction of the usual induction (or Ruhmkorff) coil is disclosed in the subject-matter of § § 1, 2, and 3, and is represented in diagram in Figs. 1 and 2 on page 17. It would be well for the amateur or general scientific reader to study these sections carefully, for then he will have all the knowledge that is necessary for understanding the apparatus by which the discharge tube is energized. Of course, he will not comprehend the various mechanical details, nor the many electrical and mathematical relations existing in connection with an induction coil, but he will gain sufficient knowledge to appreciate what is intended when such a device is referred to here and there throughout the book. Since the time of Faraday, Page, and Fizeau induction coils of very large dimensions have been constructed, but none of them probably ever exceeded that built by Spottiswoode, during or about 1875, which was so powerful as to produce between the two electric terminals, in open air, a spark of 42 in. in the secondary current with only 30 small galvanic cells of the Grove type in the primary circuit. The cells are seldom used in this connection at the present time, the same being replaced by the dynamo, and the current being conveniently obtained from the regular incandescent-lamp circuit which may be found in almost any city. Those, therefore, who intend to become better acquainted with the details of the electrical apparatus should study in conjunction with this book some elementary treatise relating particularly to dynamos and electric currents. Fig. 1.—Head. Fig. 2.—Broken Arm, Overlapping. Fig. 3.—Ribs. Fig. 4.—Knee, Knickerbocker Buttons, Bullet in Femur. FROM SCIAGRAPHS BY PROF. DAYTON C. MILLER. § 204. For those who are not acquainted with the nature of the electric charge and discharge, nor with the peculiar and exceedingly interesting phenomena which various investigators have discovered from time to time, nor with the variety of effects according to the nature and the pressure of the atmosphere within the glass bulb, it is exceedingly difficult to understand with any degree of satisfaction the properties, principles, laws, theories, and manner of application of cathode and X-rays. Consequently, the greater part of the book treats of the electric charge and discharge in conjunction with certain kindred phenomena. Primarily, the meaning of the electric discharge may be derived by referring to Fig. 2, page 17, where there is shown an electric spark, indicated by radial lines between the terminals of a fine wire forming the long and fine coil or secondary circuit. Imagine that the wires are at great distances apart. Let them be brought closer and closer together. By suitable tests it will be found, for example, that no current passes through the wire, but when the points are brought sufficiently close together a spark will occur between the two terminals. § 2. Sometimes instead of what is understood as a spark, a brush or glow takes place (§ § 10 and 11), and in fact a numerous variety of effects occur, a general name for all being conveniently termed an electric discharge. Even if no sudden discharge takes place, yet, as when the terminals are far apart, there may be a charge or a tendency, or, as it is technically called, a difference of potential, between the two electrodes, one of which is the cathode and the other the anode. This is comparable to a weight upon one’s hand, tending continually to fall, and always exerting a pressure, and it will fall when the hand Upon the first announcement of the discovery, electricians, eminent and otherwise, were of one mind in assuming the possibility of obtaining Roentgen rays from other sources than that of the highly evacuated discharge tube. Instead of speculating and theorizing, hosts of crucial tests were instituted, resulting negatively, and it is now safe to conclude that the electric discharge is the only primary source, and it is reasonably safe to assert that the discharge must take place within a highly evacuated enclosure. The next stage of exhaustion, of no advantage to be considered, is that at which no discharge takes place (§ 25), and neither are any Roentgen rays propagated therefrom. |