The apparatus for enlarging with artificial light is, as has been stated, more expensive than that for use with daylight. The negative box and screen, however, remain as given. But we need in addition two extra pieces, a light-box and a pair of condensing lenses. The form of light-box presupposes the choice of illuminant, and in this there is a wide range. Suffice it to say that a kerosene lamp with one or more one-and-a-half inch burners will be found suitable for very small work or weak negatives. For larger work or stronger negatives a stronger light will be needed. Of these, the first in point of strength is the arc-light, which is too strong for ordinary negatives to be enlarged not more than fourfold on ordinary bromide paper. Used with any of the slower papers it will be found very serviceable and satisfactory. Next comes the lime-light, which has pretty much the same advantages and disadvantages. After these come acetylene, a gas giving an intense light of high actinic power. This is within the reach of nearly all, as a first-class generator costs only about twelve dollars, and the uses of the gas are manifold. The same generators and burners can be used with a projecting Perhaps the simplest form of light-box is where the light is placed in one room and the enlarging done in an adjoining one, the light being admitted through a suitable opening. This prevents the possibility of stray light reaching the paper and is productive of no additional heat in a room presumably already hot enough. If this is not feasible a light-box must be constructed. As these vary so much in material and design, and must be altered with different forms of light in use, I will merely state the requirements. First of these is that it must be light-tight, and second, that it must have adequate ventilation and be fire-proof. Following these in importance, there should be a simple arrangement for looking at the light from time to time to see that it is burning properly and some means for readily attending to it if it is not. Having the light-box, the burners must be placed in it properly. Here the shortest way out of the In looking over the magazines and annuals we will now and then see some new method given for illuminating evenly the back of a negative in enlarging or reduction. The most of these the writer has tried, but he has never found one of them which could be relied upon to give even reasonable satisfaction. If the light is apparently evenly diffused it is too weak. If strong enough it is not evenly diffused. Hence I will recommend nothing short of a pair of condensing lenses, as these have been proved by experience to be satisfactory in every respect if properly handled and cared for. The diameter of these must be slightly greater than the diagonal of the largest negative from which enlargements are to be made. These can be bought in pairs, mounted or unmounted, at about the following prices:
The prices asked for condensers vary considerably in different price-lists. They can often be had at second-hand at a decided saving of expense. If it is desired to save the additional cost of the Side view of two lenses in a box. Their convex sides are facing each other.A piece of quarter-inch pine or poplar is cut to a square about an inch larger than the diameter of the lenses. In the center of this is sawed out a circular opening the exact size of the lens. In another board of the same dimensions is cut a circle a quarter of an inch less in diameter. These boards are placed together with the grain running in opposite directions, to prevent warping, and the lens kept in place by a wire bent in a circle and clamped in place so as to hold the lens, or other similar arrangement. See Fig. 8. The other lens is mounted in the same way. The two are mounted with their convex sides facing each other and a slight distance apart. It is better to place between them a thin sheet of finely ground glass, as this overcomes the bad effects of slight flaws in the lenses, which are not uncommon. The combination is then boxed up. Having now our light-box, condensers, negative box, camera and screen, they are next arranged in the order shown by Fig. 9. A long table especially constructed for the purpose makes the best base for this purpose. In putting the apparatus together there are several points to be noticed. First, the planes of the lenses, A box holds (from left to right) a lamp, the two condensing lenses, the negative, a bellows and a projecting lens. The projecting lens is aimed at a screen. In constructing the apparatus, for use with condensers and artificial light, the same provision should be made in the negative box for inserting a piece of colored or ground glass as was made in the daylight apparatus. When the diameter of the condensers is but little greater than the diagonal of the negative it will be necessary to have the latter quite close to the former, as the cone of light from the condensers has its apex at the lens, and hence if the negative in such a case is at a distance from the condensers the corners will receive no light. Reference to Fig. 9 will show this plainly. For this and other reasons it is always best to have the condensers of ample size for a given negative. In fact, before beginning to make enlargements the worker should work with one good negative until he finds out exactly what light-intensity is best suited In using the daylight apparatus, which we will now consider, the negative is placed in the holder opposite the center of the ground-glass, upside down and facing into the work room. The room is darkened and lens uncapped. An image more or less blurred will appear on the screen. If the enlarged picture is to be only slightly larger than the negative, the lens must be racked out until its distance from the negative is but little less than its distance from the screen. To make the enlargement greater we simply rack back the lens and move the screen further off. There are tables which show exactly the distance which the lens must be from the negative and screen in order to get an enlargement of a given size: The table here inserted covers the ordinary requirements and may be of service in constructing the apparatus: TIMES OF ENLARGEMENT Total distances from the negative, in inches.
ENLARGEMENTS From the British Journal of Photography Almanac.
In practice it is convenient, after having once found the focus for a given enlargement from a given negative with the lens in use, to mark on the base of the apparatus the point to which the lens has been extended. Then in making future enlargements of the same size, it is only necessary to set the lens at that point and move the easel backward or forward until an approximate focus is obtained, when the image will be of the proper size on the screen. As an approximate guide it is sufficient to know that the nearer the lens is to the negative the greater will be the enlargement, as may be seen in Fig. 7. If a piece of thin cardboard, or a sheet of paper cut to the exact size of the enlargement desired, is placed upon the easel-screen, little difficulty will be experienced in getting an enlarged image of the proper size and correctly focused. It is advisable to focus the enlargement with the largest aperture of the lens. If the lens, when working at its largest aperture, covers the plate from which the enlargement is being made, it will give proper definition over the enlargement. With a lens of the better sort, of course, the definition will be equally good whether a large or small aperture is used; but In making his first enlargements, the beginner should avail himself of the help of test-strips. These should be about one inch wide and the length of the paper. The exposure depends on a number of factors, among which are light, negative, focal length of lens, size of enlargement, stops, sensitiveness of paper, developer, temperature of developer, and length of development. The first experiment had best, therefore, be made on a purely arbitrary basis, for which we will take ten seconds. Pinning a test-strip on the screen, we uncap the lens and with a piece of cardboard shade two-thirds of the strip during five seconds; move the cardboard, and In determining the correct exposure, the method already set forth for contact exposures is a reasonably good one. If the paper with a given exposure takes half the proper time to develop, halve the next exposure; if double the time, or more, double it. More could be said on the subject of exposure, and possibly to advantage; for instance, there are tables showing the exact relation of exposure to the number of times of enlargement, but complicated calculations in the dark-room are troublesome and a test-strip is simpler. After a while one gets the ability to determine the approximate exposure required by looking at the enlarged image on the screen, correcting slight errors by length of development, and greater ones by modifying the developer by diluting or strengthening. It should be remembered, however, that in judging exposure by reference to the screen, we must consider the high lights, as well as the shadows. It is in the high lights that we need the detail if we are to have soft pictures. If this detail in the high lights is plentiful and clear we may know that our light is strong enough for a very short exposure. If it is very faint, But why is it that so many of our enlargements are black in the shadows and chalky in the high lights? Why, simply because our light is too weak for our negative. We forget that if we cannot modify our negative we must modify our light. It is this characteristic of the bromide enlargement which has prevented the process from enjoying the popularity it deserves. And I sometimes wonder whether this chalkiness is due to the use of the north light! |